Neuer Gendefekt identifiziert

Presseinformation der LMU München vom 18.08.2014

LMU-Forscher haben eine neue Ursache angeborener Immunschwächekrankheiten entdeckt: Gendefekte im Gen „Jagunal-1“ verhindern die Bildung weißer Blutkörperchen. Die Folgen sind oft lebensbedrohliche Infektionen.

Forscher der LMU um Professor Christoph Klein vom Dr. von Haunerschen Kinderspital haben einen neuen Gendefekt bei Patienten mit einer seltenen angeborenen Immunschwäche identifiziert. Webfehler in dem Gen Jagunal-1 haben zur Folge, dass bestimmte Fresszellen im Blut, die neutrophilen Granulozyten, weder in ausreichender Zahl ausreifen noch adäquat funktionieren können. Ohne diese Fresszellen im Blut ist das Immunsystem zu schwach, um bakterielle Infektionen abzuwehren. Darüber berichten die Forscher zusammen mit Kollegen vom CeMM-Forschungszentrum für Molekulare Medizin in Wien und der Medizinischen Universität Wien in der Fachzeitschrift Nature Genetics.

„Diese Erkenntnisse zeigen, wie sich ausgehend von der ärztlichen Betreuung von Kindern mit seltenen Erkrankungen neue Dimensionen in der biologischen Grundlagenforschung und neue Therapieansätze eröffnen können“, sagt Christoph Klein. Bei insgesamt 14 Kindern aus aller Welt mit schwerer kongenitaler Neutropenie fanden die Ärzte Defekte im Gen Jagunal-1. „Jagunal” ist der koreanischen Sprache entlehnt und bedeutet „kleines Ei”. Es war bereits bekannt, dass Eizellen aus Fruchtfliegen mit Jagunal-Mutationen nicht wachsen können, da die Zufuhr von Nährstoffen gehemmt ist. Das internationale Forscherteam um Professor Klein konnte nun zeigen, dass das Eiweißmolekül Jagunal-1 beim Menschen für die Bildung und Funktion der neutrophilen Granulozyten entscheidend ist.

Viele Patienten mit angeborener Neutropenie können erfolgreich mit dem Medikament G-CSF behandelt werden – nicht aber die Kinder mit Jagunal-1 Mutationen. Der Grund dafür liegt in einer Fehlfunktion der entsprechenden Antenne auf den Immunzellen. Im Tiermodell konnten die Forscher nun gemeinsam mit der Arbeitsgruppe um Professor Josef Penninger in Wien erstmals feststellen, dass ein anderes Medikament, GM-CSF, zumindest im Modellversuch wirksam ist. Nun müssen klinische Studien zeigen, ob Patienten mit Jagunal-1 Defekt möglicherweise mit GM-CSF erfolgreich behandelt werden können. (cdr)

Publikationen:

Kaan Boztug et al.:
„JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia“
In: Nature genetics, 2014

Gerald Wirnsberger et al.:
„Jagunal homolog 1 is a critical regulator of neutrophil function in fungal host defense“
In: Nature genetics, 2014

Externer Link: www.uni-muenchen.de

Fettmoleküle helfen T-Zellen im Kampf gegen Leukämie

Medienmitteilung der Universität Basel vom 16.06.2014

T-Zellen können einen bisher kaum bekannten Weg nutzen, um Leukämiezellen zu bekämpfen. Sie sind in der Lage, bestimmte Fettbausteine auf der Oberfläche der Krebszellen zu erkennen und können die Tumorzellen durch die Interaktion mit diesen Lipidstrukturen vernichten. Das zeigten Forschende der Universität Basel, denen es gelang, Leukämiezellen im Reagenzglas ebenso wie im Tiermodell mithilfe dieser lipid-spezifischen T-Zellen zu zerstören. Die Studie wurde im «Journal of Experimental Medicine» veröffentlicht.

Leukämien werden auch als Blutkrebs bezeichnet und sind im akuten Zustand lebensbedrohlich, da die veränderten Blutzellen die Reifung gesunder Blutzellen verhindern. Zur Beseitigung der Krebszellen erhalten Erkrankte zuerst eine Chemotherapie, anschliessend versucht man mithilfe einer Knochenmarkspende, neue, gesunde Blutzellen aufzubauen. Trotz dieser Behandlung überleben bei manchen Patienten einzelne Leukämiezellen, die sich erneut im Körper ausbreiten. Diese vor einem erneuten Ausbruch der Krankheit im Knochenmark oder Blut rechtzeitig aufzustöbern und zu beseitigen, ist seit geraumer Zeit das Ziel verschiedener Forschungsprojekte.

Mehr Schlagkraft gegen Tumorzellen

Dass T-Zellen eine wichtige Rolle bei der Bekämpfung von Leukämien spielen, ist bekannt. In der Regel erkennen die Abwehrzellen Bruchstücke von tumortypischen Proteinen, die auf der Oberfläche der Krebszellen zu finden sind. Im Idealfall werden die T-Zellen durch den Kontakt mit diesen sogenannten tumorassozierten Antigenen (TAA) aktiviert und können die Leukämiezellen vernichten. Manchmal allerdings ziehen sich die Proteinfragmente von der Oberfläche der Tumorzellen zurück oder verändern ihr Erscheinungsbild, wodurch es den Krebszellen gelingt, sich der Kontrolle des Immunsystems zu entziehen.

Einen neuen Ansatz, der dem Immunsystem zu mehr Schlagkraft verhelfen könnte, hat nun das Team um Prof. Gennaro De Libero von Universität und Universitätsspital Basel untersucht. Die Arbeitsgruppe beschäftigt sich schon längere Zeit mit T-Zellen, die anstelle der üblichen Proteine Fettbausteine (Lipide) erkennen. Die Basler Forscher konnten gemeinsam mit Kollegen aus Italien, China und Singapur ein neues Lipid charakterisieren, das sich in Leukämiezellen und auf deren Oberflächen anreichert und eine T-Zell-Antwort gegen den Tumor stimuliert. Bei dem Lipid handelt es sich um Methyl-Lysophosphatsäure (mLPA). Das Molekül ist bei verschiedenen Leukämieformen in grossen Mengen zu finden und darf als Lipid-TAA betrachtet werden.

Therapeutische Effekte beobachtet

Dem Team gelang es zudem, T-Zellen zu isolieren, die im Reagenzglas den Lipidbaustein erkennen und Leukämiezellen abtöten konnten. Bei Versuchen mit Mäusen, die an Blutkrebs erkrankt waren, konnte mit diesen Abwehrzellen ebenfalls ein therapeutischer Effekt beobachtet werden.

Das Lipid mLPA kann – anders als tumorassozierte Antigene aus Proteinen – sein Aussehen nicht ohne weiteres verändern oder sich von der Oberfläche der Leukämiezellen zurückziehen. Daher könnte mLPA, indem es die proteinvermittelte Anti-Tumor-Antwort verstärkt, als Ansatzpunkt für künftige Immuntherapien bei Leukämie dienen und mit dazu beitragen, dass die Erkrankung nach Chemotherapie und Knochenmarkspende nicht erneut aufflammt.

Originalbeitrag:
Marco Lepore, Claudia de Lalla, S. Ramanjaneyulu Gundimeda, Heiko Gsellinger, Michela Consonni, Claudio Garavaglia, Sebastiano Sansano, Francesco Piccolo, Andrea Scelfo, Daniel Häussinger, Daniela Montagna, Franco Locatelli, Chiara Bonini, Attilio Bondanza, Alessandra Forcina, Zhiyuan Li, Guanghui Ni, Fabio Ciceri, Paul Jenö, Chengfeng Xia, Lucia Mori, Paolo Dellabona, Giulia Casorati, and Gennaro De Libero
A novel self-lipid antigen targets human T cells against CDc+ leukemias
The Journal of Experimental Medicine (2014) | doi: 10.1084/jem.20140410

Externer Link: www.unibas.ch

Protein schärft Angriffsnadel von Salmonellen

Medienmitteilung der Universität Basel vom 16.05.2014

Kleinste Spritzen im Nanomassstab, das sind die Waffen der Salmonellen. Mit ihnen injizieren die Krankheitserreger molekulare Wirkstoffe in ihre Wirtszellen und manipulieren sie zu ihrem eigenen Vorteil. Die Forscher am Biozentrum der Universität Basel zeigen in ihrer aktuellen Publikation in «Cell Reports» nun erstmals, dass ein oft untersuchtes Protein aus dem Salmonellen-Stoffwechsel auch diese Spritzen aktiviert und damit erst die Vermehrung und Ausbreitung der Salmonellen im gesamten Körper ermöglicht.

In den Sommermonaten sind Infektionen mit Salmonellen wieder allgegenwärtig. Sie werden durch verunreinigte Nahrungsmittel wie Speiseeis oder rohe Eier aufgenommen und führen zu schweren Durchfallerkrankungen. Auch lebensbedrohliche Erkrankungen wie Typhus werden durch Salmonellen ausgelöst.

Prof. Dirk Bumann vom Biozentrum der Universität Basel beschäftigt sich schon seit mehreren Jahren mit den Infektionsmechanismen von Salmonellen. Er konnte mit seinem Team nun erstmals zeigen, dass das bakterielle Protein EIIAGlc nicht nur, wie bereits bekannt, für die Aufnahme von Nährstoffen zuständig ist, sondern eine weitere zentrale Rolle bei der Besiedlung des Wirtsorganismus spielt.

Neue Funktion für altbekanntes Protein

Salmonellen besitzen einen ausgefeilten Injektionsapparat, das Typ III Sekretionssystem. Mit dieser molekularen Nadel injizieren sie Giftstoffe in die Wirtszelle. Diese manipulieren Vorgänge in der Wirtszelle und sorgen damit für optimale Wachstumsbedingungen im Bakterienversteck. Völlig unerwartet haben Bumann und sein Team in dem Protein EIIAGlc nun einen wichtigen Mitspieler in diesem Infektionsgeschehen erkannt. Dem Protein wurden zuvor schon viele Funktionen im bakteriellen Stoffwechsel zugeschrieben wie zum Beispiel die Aufnahme von Zuckermolekülen.

Aufmerksam machte die Forscher jedoch die Tatsache, dass die Fähigkeit der Salmonellen sich intrazellulär zu vermehren und im Organismus zu streuen bei defektem EIIAGlc komplett verloren ging. Weitere Untersuchungen brachten die Basler Forscher schliesslich auf die richtige Spur. Das Protein EIIAGlc dockt im Bakterium an den Injektionsapparat an, stabilisiert diesen und aktiviert so die Freisetzung der Effektoren. «Wir konnten eindeutig zeigen, dass das EIIAGlc hauptsächlich diese Aktivierungsfunktion hat, während die vielfältigen anderen beschriebenen Stoffwechselfunktionen für das Krankheitsgeschehen eine geringe Rolle spielen», bringt Bumann seine Ergebnisse auf den Punkt.

Zielmolekül für antibiotische Therapie

Jedes Jahr, so schätzt man, erkranken weltweit etwa 16 Millionen Menschen an einer lebensbedrohlichen Salmonelleninfektion, die den gesamten Organismus befällt. Dass sich die Bakterien im Wirt ausbreiten können, hängt dabei stark von der Funktionstüchtigkeit des Injektionssystems ab. «Mit EIIAGlc haben wir einen neuen möglichen therapeutischen Angriffspunkt gefunden», sagt Bumann. Durch eine Hemmung des Proteins könnte man gezielt den Sekretionsapparat ausser Gefecht setzen. Da dieser vorrangig in Krankheitserregern vorkommt, könnten so Infektionen wirksam und gezielt bekämpft werden, ohne die natürliche Darmflora zu schädigen.

Originalbeitrag:
Alain Mazé, Timo Glatter, Dirk Bumann
The central metabolism regulator EIIAGlc switches Salmonella from growth arrest to acute virulence through activation of virulence factor secretion
Cell Reports, published online 15 May 2014 | doi: 10.1016/j.celrep.2014.04.022

Externer Link: www.unibas.ch

Verräterische Muster

Presseinformation der LMU München vom 22.04.2014

LMU-Wissenschaftler konnten in lebenden Zellen kartieren, wie virale RNA vom angeborenen Immunsystem erkannt wird.

Viren-infizierte Zellen werden von ihren Eindringlingen zur Produktion viraler Proteine gezwungen. Dazu schleusen die Viren RNA-Moleküle als Bauanleitung für die Proteine in ihren Wirt. Zur Abwehr der ungebetenen Gäste besitzen Zellen spezielle Sensoren: Bestimmte Proteine, sogenannte RIG-I like Rezeptoren (kurz RLRs) können körperfremde RNA erkennen und das angeborene Immunsystem zur Abwehr der fremden Moleküle aktivieren. „Aus in vitro Versuchen weiß man, dass die RLRs bestimmte RNA-Muster erkennen. Bisher war es aber unklar, wie RLRs – insbesondere der MDA5 Rezeptor – virale RNA in lebenden Zellen erkennt“, sagt Professor Karl-Peter Hopfner vom Genzentrum der LMU.

Stabile Bindung durch UV-Licht

Hopfners Team benützte in Zusammenarbeit mit Forschungsgruppen um Karl-Klaus Conzelmann und Johannes Söding (beide LMU) sowie Adolfo García-Sastre (Mount Sinai Hospital, New York) nun eine spezielle experimentelle Strategie, mit der Protein-RNA Komplexe aus virus-infizierten Zellen isoliert und untersucht werden können: Da die Bindung zwischen RLR-Protein und RNA-Bindungspartner normalerweise nur sehr schwach ist, stabilisierten die Wissenschaftler diese Interaktion, indem sie mit dem Masernvirus infizierte Zellen mit einem photoaktivierbarem RNA-Bestandteil fütterten, der dann in neu gebildete virale RNA eingebaut wird. „Wenn sich nun Proteine in unmittelbarer Nähe zu dieser veränderten RNA befinden, kann durch Bestrahlung der Zellen mit UV Licht eine stabile Bindung zwischen dem Protein und der RNA induziert werden“, sagt Hopfner.

Die so entstandenen Protein-RNA-Komplexe wurden anschließend aus der Zelle isoliert, das Protein abgetrennt und die Zusammensetzung der RNA mit Hilfe von Deep Sequencing ermittelt. „So konnten wir genau feststellen, mit welchen Elementen der viralen RNA die Rezeptoren interagieren, was Aufschlüsse gibt, wie RLRs körperfremde RNA detektieren und was diese von endogener RNA unterscheidet“, erklärt Hopfner.

Als Ergebnis konnten die Wissenschaftler zeigen, dass die RLRs RIG-I und MDA5 auch in lebenden, mit dem Masernvirus infizierten Zellen bestimmte Teile der viralen RNA detektieren. Masern-Viren, aber auch zahlreiche andere Erreger wie etwa das Tollwut-Virus, besitzen ein RNA Genom. Das bedeutet, dass das Erbmaterial im Virus nicht in Form von DNA sondern direkt als RNA zur Verfügung steht, das entweder direkt oder erst nach der Synthese eines Botenmoleküls, der komplementären Boten-RNA (mRNA), in Proteine übersetzt wird.

Virensensoren erkennen bestimmte RNA-Bereiche

„Während RIG-I wie in vitro auch in vivo bevorzugt bestimmte Muster an den ungeschützten Enden verschiedener viraler RNAs erkennt, detektiert MDA5 überraschenderweise nur bestimmte Regionen innerhalb viraler mRNA und offensichtlich nicht auf dem viralen Genom“, sagt Hopfner. Diese Regionen unterscheiden sich außerdem in ihrer Zusammensetzung von den restlichen viralen RNAs, was auf einen Zusammenhang zwischen dem Aufbau der RNA und der Erkennung durch MDA5 schließen lässt.

Im nächsten Schritt wollen die Wissenschaftler die Interaktion von RLRs mit weiteren Viren untersuchen, um die Grundlagen der Erkennung körperfremder RNAs durch RLRs noch detaillierter zu erforschen. Auf diese Weise wollen sie besser verstehen, warum verschiedene Viren unterschiedlich gut vom menschlichen Immunsystem erkannt werden und wie RLR assoziierter Autoimmunkrankheiten – wie etwa der rheumatoiden Arthritis – entstehen. Beides könnte in der Zukunft dazu beitragen, neue therapeutische Strategien zu entwickeln. (göd)

Publikation:
PloS Pathogens 2014

Externer Link: www.uni-muenchen.de

Erstmals Nasenflügel mit gezüchtetem Gewebe rekonstruiert

Medienmitteilung der Universität Basel vom 11.04.2014

Forschende der Universität Basel berichten von ersten erfolgreichen Nasenflügelrekonstruktionen, bei denen im Labor gezüchtetes Knorpelgewebe verwendet wurde. Sie haben bei Patienten, bei denen ein Teil der Nase wegen Hautkrebs entfernt werden musste, Knorpelzellen aus der Nasenscheidewand entnommen, vermehrt, auf einer Matrix kultiviert und das entstandene Gewebe wieder eingesetzt. Die Resultate werden in der aktuellen Ausgabe der Fachzeitschrift «The Lancet» veröffentlicht.

In Basel konnte kürzlich gezeigt werden, dass eine Rekonstruktion des Nasenflügels mit gezüchtetem Nasenknorpel möglich ist, der mit Methoden des Tissue Engineering aus patienteneigenen Zellen im Labor hergestellt wurde. Diese Technik wurde bei fünf Patienten zwischen 76 und 88 Jahren angewandt, deren Nasenflügel durch Hautkrebs so stark beschädigt waren, dass eine Rekonstruktion erforderlich war. Ein Jahr nach der erfolgreichen Wiederherstellung der Nasenflügel waren alle Empfänger sowohl mit ihrer Fähigkeit zur Nasenatmung zufrieden wie auch mit dem äusseren Erscheinungsbild ihrer Nase. Sie berichteten auch von keinen Nebenwirkungen.

Zellen aus der Nasenscheidewand

Der in dieser Studie behandelte nicht melanomartige Hautkrebs tritt am häufigsten an der Nase, vor allem an den Nasenflügeln, auf, da diese am stärksten und wiederholt der Sonne ausgesetzt sind. Um den Tumor vollständig zu entfernen, müssen die Chirurgen jeweils auch Teile des Nasenknorpels mit wegnehmen. In der Regel werden Transplantate aus der Nasenscheidewand, einem Ohr oder einer Rippe entnommen und für die funktionelle Rekonstruktion der Nase verwendet. Allerdings ist dieses Verfahren äusserst invasiv, schmerzhaft und kann, bedingt durch die zusätzliche Operation, zu Komplikationen an der Entnahmestelle führen.

Das Team vom Departement Biomedizin der Universität Basel hat nun mit Kollegen aus dem Universitätsspital einen alternativen Ansatz entwickelt – und zwar indem sie Gewebe aus Zellen der Nasenscheidewand von Patienten herstellten. Dafür entnahmen sie von dort eine kleine Biopsie, isolierten die Knorpelzellen (Chondrozyten) und vermehrten sie während zwei Wochen in Kultur. Die herangewachsenen Zellen wurden dann auf eine Kollagenmembran aufgebracht und zwei weitere Wochen lang kultiviert, sodass Knorpeltransplantate mit der 40-fachen Grösse der ursprünglichen Probe gezüchtet werden konnten. Die so hergestellten Transplantate wurden auf die Form der defekten Stelle am Nasenflügel zurechtgeschnitten und implantiert.

Neue Möglichkeiten für die Gesichtschirurgie

«Mit dem gezüchteten Knorpel konnten klinische Ergebnisse erzielt werden, die vergleichbar mit den derzeitigen Standardmethoden sind», sagt Prof. Ivan Martin, Professor für Tissue Engineering am Departement Biomedizin an Universität und Universitätsspital Basel. «Die neue Technik könnte dazu beitragen, dass der Körper das Gewebe besser akzeptiert und dass die Stabilität und Funktionalität des Nasenflügels verbessert wird. Unser Erfolg basiert auf einer langjährigen, effizienten Zusammenarbeit zwischen den Forschungsgruppen am Departement Biomedizin und den chirurgischen Disziplinen am Universitätsspital. Die Methode öffnet zudem den Weg zur Nutzung eines künstlichen Knorpels für anspruchsvollere Rekonstruktionen in der Gesichtschirurgie, wie etwa der kompletten Nase, dem Augenlid oder dem Ohr.»

Die gleichen Transplantate werden derzeit in einer Parallelstudie für die Knorpelrekonstruktion im Kniegelenk getestet. Trotz der optimistischen Aussichten liegt die routinemässige Anwendung des Verfahrens in der klinischen Praxis aber noch in weiter Ferne. Nötig seien, so Martin, eine strenge Beurteilung der Wirksamkeit an grösseren Patientengruppen und die Entwicklung von Geschäftsmodellen und Herstellungsarten, um die Kosteneffizienz der Methode sicherzustellen und ein Einführung in die klinische Routine zu ermöglichen.

Originalbeitrag:
Ilario Fulco, Sylvie Miot, Martin D Haug, Andrea Barbero, Anke Wixmerten, Sandra Feliciano, Francine Wolf, Gernot Jundt, Anna Marsano, Jian Farhadi, Michael Heberer, Marcel Jakob, Dirk J Schaefer, Ivan Martin
Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial
The Lancet, Early Online Publication, 11 April 2014 | doi:10.1016/S0140-6736(14)60544-4

Externer Link: www.unibas.ch