Stromversorgung: Instabile Netze verstehen

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 29.09.2022

Neue Leitungen können Stabilität verringern – Forschende präsentieren Vorhersageinstrument in der Zeitschrift Nature Communications

Eine nachhaltige Energieversorgung erfordert den Ausbau der Stromnetze. Neue Leitungen können aber auch dazu führen, dass Netze nicht wie erwartet stabiler, sondern instabiler werden. Das Phänomen nennt sich Braess-Paradoxon. Dieses hat nun ein internationales Team, an dem auch Forschende des Karlsruher Instituts für Technologie (KIT) beteiligt sind, erstmals für Stromnetze im Detail simuliert, in größerem Maßstab demonstriert und ein Vorhersageinstrument entwickelt. Es soll Netzbetreiber bei Entscheidungen unterstützen. Die Forschenden berichten in der Zeitschrift Nature Communications.

Die nachhaltige Transformation des Energiesystems erfordert einen Ausbau der Netze, um regenerative Quellen einzubinden und Strom über weite Strecken zu transportieren. Dieser Ausbau verlangt große Investitionen und zielt darauf ab, die Netze stabiler zu machen. Durch das Aufrüsten bestehender oder das Hinzufügen neuer Leitungen kann es aber auch geschehen, dass das Netz nicht stabiler, sondern instabiler wird und es zu Stromausfällen kommt. „Wir sprechen dann vom Braess-Paradoxon. Dieses besagt, dass eine zusätzliche Option anstatt zur Verbesserung zur Verschlechterung der Gesamtsituation führt“, sagt Dr. Benjamin Schäfer, Leiter der Forschungsgruppe Datengetriebene Analyse komplexer Systeme (DRACOS) am Institut für Automation und angewandte Informatik des KIT.

Benannt ist das Phänomen nach dem deutschen Mathematiker Dietrich Braess, der es erstmals für Straßenverkehrsnetze erörterte: Unter bestimmten Bedingungen kann der Bau einer neuen Straße die Fahrzeit für alle Verkehrsteilnehmenden verlängern. Dieser Effekt wurde in Verkehrssystemen beobachtet und für biologische Systeme diskutiert, für Stromnetze aber bisher nur theoretisch prognostiziert und in sehr kleinem Maßstab dargestellt.

Forschende simulieren Stromnetz in Deutschland einschließlich geplanter Ausbauten

Das Phänomen haben die Forschenden um Schäfer nun erstmals im Detail für Stromnetze simuliert sowie in größerem Maßstab demonstriert. Sie nahmen eine Simulation des Stromnetzes in Deutschland einschließlich geplanter Verstärkungen und Ausbauten vor. Bei einem Versuchsaufbau im Labor, der das Braess-Paradoxon in einem Wechselstromnetz zeigt, beobachteten die Forschenden das Phänomen in der Simulation sowie im Experiment. Wesentlich dabei war eine Betrachtung von Kreisflüssen. Denn diese sind entscheidend, um das Braess-Paradoxon zu verstehen: Eine Leitung wird verbessert, indem beispielsweise der Widerstand verringert wird, und kann daraufhin mehr Strom transportieren. „Aufgrund von Erhaltungssätzen gibt es dadurch effektiv einen neuen Kreisfluss, und in manchen Leitungen fließt mehr, in anderen weniger Strom“, erläutert Schäfer. „Zum Problem wird dies, wenn die schon am meisten belastete Leitung nun noch mehr Strom führen muss, die Leitung damit überlastet wird und stillgelegt werden muss. Dadurch wird das Netz instabiler und bricht schlimmstenfalls zusammen.“

Intuitives Verständnis ermöglicht schnelle Entscheidungen

Die meisten Stromnetze verfügen über ausreichende Reservekapazitäten, um dem Braess-Paradoxon standzuhalten. Beim Bau neuer Leitungen und während des Betriebs prüfen die Netzbetreiber alle möglichen Szenarien. Wenn allerdings kurzfristig Entscheidungen zu treffen sind, beispielsweise um Leitungen stillzulegen oder Kraftwerksleistungen zu verschieben, genügt die Zeit nicht immer, um alle Szenarien durchzurechnen. „Dann bedarf es eines intuitiven Verständnisses von Kreisflüssen, um einschätzen zu können, wann das Braess-Paradoxons auftritt und so schnell die richtigen Entscheidungen zu treffen“, sagt Schäfer. Zusammen mit einem internationalen und interdisziplinären Team hat der Wissenschaftler deshalb ein Vorhersageinstrument entwickelt, das Netzbetreiber dabei unterstützt, das Braess-Paradoxon bei ihren Entscheidungen zu berücksichtigen. Die Ergebnisse der Forschung ermöglichten nun das theoretische Verständnis des Braess-Paradoxons und lieferten praktische Leitlinien, um Netzerweiterungen sinnvoll zu planen und die Stabilität des Netzes zu unterstützen, so Schäfer. (or)

Originalpublikation:
Benjamin Schäfer, Thiemo Pesch, Debsankha Manik, Julian Gollenstede, Guosong Lin, Hans-Peter Beck, Dirk Witthaut, and Marc Timme: Understanding Braess‘ Paradox in power grids. Nature Communications, 2022. DOI: 10.1038/s41467-022-32917-6

Externer Link: www.kit.edu

Ultrakalte Schaltkreise

Medienmitteilung der Universität Basel vom 22.09.2022

Materialien extrem abzukühlen ist wichtig für die physikalische Grundlagenforschung und technische Anwendungen. Basler Forschern ist es nun gelungen, einen elektrischen Schaltkreis auf einem Chip durch Verbesserung eines speziellen Kühlschranks und eines Niedrigtemperatur-Thermometers auf 220 Mikrokelvin zu kühlen – nahe dem absoluten Temperatur-Nullpunkt.

Kühlt man Materialien auf extrem niedrige Temperaturen ab, so verhalten sie sich oft ganz anders als bei Raumtemperatur. Ein bekanntes Beispiel ist die Supraleitung, bei der einige Metalle und andere Stoffe unterhalb einer kritischen Temperatur elektrischen Strom komplett verlustfrei leiten. Bei noch tieferen Temperaturen können dann weitere quantenphysikalische Effekte auftreten, die sowohl für die Grundlagenforschung als auch für Anwendungen in Quantentechnologien höchst interessant sind.

Solche Temperaturen – weniger als ein Tausendstel Grad über dem absoluten Nullpunkt von 0 Kelvin oder -273.15 Grad Celsius – zu erreichen, ist allerdings äusserst schwierig. Physiker aus der Forschungsgruppe von Prof. Dr. Dominik Zumbühl an der Universität Basel haben nun gemeinsam mit Kolleginnen und Kollegen des VTT Technical Research Centre in Finnland und der Lancaster University in England einen neuen Niedrig-Temperaturrekord aufgestellt. Ihre Ergebnisse haben sie soeben im Fachjournal Physical Review Research veröffentlicht.

Abkühlen mit Magnetfeldern

«Das Problem ist nicht nur, ein Material stark abzukühlen», erklärt Christian Scheller, wissenschaftlicher Mitarbeiter in Zumbühls Labor, «sondern auch, die extrem tiefen Temperaturen dann verlässlich zu messen.» In ihren Experimenten kühlten die Forscher einen kleinen elektrischen Schaltkreis aus Kupfer auf einem Siliziumchip ab, indem sie ihn zuerst einem starken Magnetfeld aussetzten, dann mit einem als Kryostat bezeichneten speziellen Kühlschrank abkühlten und schliesslich das Magnetfeld langsam herunterfuhren. Dadurch wurden die Kernspins der im Chip enthaltenen Kupferatome anfangs wie kleine Magnete ausgerichtet und am Ende durch die vom Herunterfahren des Magnetfelds herbeigeführte Verringerung ihrer magnetischen Energie effektiv noch weiter abgekühlt.

«Mit solchen Methoden arbeiten wir zwar schon seit zehn Jahren», sagt Omid Sharifi Sedeh, der als Doktorand an dem Experiment beteiligt war, «doch bislang waren die tiefsten Temperaturen, die man so erreichen konnte, durch die Vibrationen des Kühlschranks begrenzt.» Diese Vibrationen, die durch das stetige Verdichten und Verdünnen des Kühlmittels Helium in einem so genannten «trockenen» Kryostaten entstehen, heizen den Chip merklich auf. Um das zu verhindern, entwickelten die Forscher eine neue Halterung, die so fest verdrahtet ist, dass sie den Chip trotz der Vibrationen auf niedrigste Temperaturen abkühlen können.

Robustes Thermometer

Um diese Temperaturen auch genau messen zu können, verbesserten Zumbühl und seine Mitarbeiter ein spezielles Thermometer, das in den Schaltkreis eingebettet ist. Das Thermometer besteht aus Kupfer-Inseln, die über sogenannte Tunnelkontakte verbunden sind. Durch diese Kontakte können Elektronen sich je nach Temperatur mehr oder weniger leicht bewegen. Die Physiker fanden nun eine Methode, um das Thermometer robuster gegen Materialfehler und zudem temperaturempfindlicher zu machen. Das erlaubte es ihnen schliesslich, eine Temperatur von nur 220 Millionstel Grad über dem Nullpunkt (220 Mikrokelvin) zu messen.

In Zukunft wollen die Basler Forscher mit ihrer Methode die Temperatur nochmals um einen Faktor zehn senken und langfristig auch Halbleiter-Materialien abkühlen. Damit ist dann der Weg frei für die Untersuchung neuer quantenphysikalischer Effekte, aber auch für verschiedene Anwendungen, wie etwa die Optimierung von Qubits in Quantencomputern.

Originalpublikation:
Mohammad Samani et al.
Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb-blockade thermometer
Physical Review Research (2022), doi: 10.1103/PhysRevResearch.4.033225

Externer Link: www.unibas.ch

Neue Quantenmaterialien am Computer entworfen

Presseaussendung der TU Wien vom 19.09.2022

Eine neues Designprinzip kann nun die Eigenschaften von bisher kaum erforschbaren Quantenmaterialien vorhersagen: So wurde erstmals mit dem Computer ein hochkorreliertes topologisches Halbmetall entdeckt.

Wie findet man neuartige Materialien mit ganz bestimmten Eigenschaften – zum Beispiel einem speziellen Zusammenspiel von Elektronen, wie man es für Quantencomputer benötigt? Meist ist das eine sehr komplizierte Aufgabe: Man produziert verschiedene Verbindungen, in denen potenziell erfolgversprechende Atome in bestimmten Kristallstrukturen angeordnet sind und untersucht das Material dann, etwa im Tieftemperaturlabor der TU Wien.

Nun gelang es durch eine Kooperation von Rice University (Texas), TU Wien und anderen internationalen Forschungsinstitutionen, geeignete Materialien am Computer aufzuspüren. Aus der unüberschaubar großen Anzahl von möglichen Materialien werden durch neue theoretische Methoden besonders vielversprechende Kandidaten identifiziert. Messungen an der TU Wien zeigten dann: Die gesuchten Materialeigenschaften sind tatsächlich messbar, die Methode funktioniert. Für die Forschung an Quantenmaterialien ist das ein wichtiger Schritt nach vorn. Die Ergebnisse wurden nun im Fachjournal „Nature Physics“ publiziert.

Topologische Halbmetalle

Auf der Suche nach neuartigen Quantenmaterialien mit ganz besonderen Eigenschaften arbeiteten die Rice University in Texas und die TU Wien schon in vergangenen Jahren sehr erfolgreich zusammen: 2017 wurde von den beiden Forschungsgruppen erstmals ein sogenanntes „Weyl-Kondo Halbmetall“ präsentiert – ein Material, das unter anderem für die Forschung an Quantencomputer-Technologien eine wichtige Rolle spielen könnte.

„Die Elektronen in einem solchen Material kann man nicht einzeln beschreiben“, erklärt Prof. Silke Bühler-Paschen vom Institut für Festkörperphysik der TU Wien. „Es kommt zu sehr starken Wechselwirkungen zwischen den Elektronen, sie überlagern sich nach den Gesetzen der Quantenphysik als Wellen, gleichzeitig stoßen sie einander durch ihre elektrische Ladung ab.“

Genau diese starke Wechselwirkung führt zu Anregungen der Elektronen, die man nur mit sehr aufwändigen mathematischen Methoden beschreiben kann. In den nun untersuchten Materialien spielt außerdem die Topologie eine wichtige Rolle – sie ist ein Teilgebiet der Mathematik, das sich mit geometrischen Eigenschaften befasst, die durch kontinuierliche Verformung nicht verändert werden, wie etwa die Zahl der Löcher in einem Doughnut, die auch dann gleichbleibt, wenn das Doughnut leicht gequetscht wird.

Auf ähnliche Weise können elektronische Zustände im Material stabil bleiben, auch wenn das Material leicht gestört wird. Genau deshalb sind diese Zustände für praktische Anwendungen wie Quantencomputer so nützlich.

Mit dem Computer mögliche Kandidaten identifizieren

Das Verhalten aller stark miteinander wechselwirkenden Elektronen im Material exakt zu berechnen ist unmöglich – kein Supercomputer der Welt ist dazu imstande. Doch auf Basis der bisherigen Erkenntnisse gelang es nun, ein Designprinzip zu entwickeln, das auf Basis vereinfachter Modellrechnungen zusammen mit mathematischen Symmetrieüberlegungen und einer Datenbank aus bekannten Materialien Vorschläge liefert, in welchem dieser Materialien die theoretisch erwarteten topologischen Eigenschaften vorliegen könnten.

„Drei solche Kandidaten hat diese Methode geliefert, eines dieser Materialien haben wir dann hergestellt und in unserem Labor bei tiefen Temperaturen vermessen“, sagt Silke Bühler-Paschen. „Und tatsächlich deuten diese ersten Messungen darauf hin, dass es sich um ein hochkorreliertes topologisches Halbmetall handelt – das erste, das auf theoretischer Basis mit Hilfe eines Computers vorhergesagt wurde.“

Ein wichtiger Schlüssel zum Erfolg war, die Symmetrien des Systems auf kluge Weise auszunutzen: „Wir haben postuliert, dass stark korrelierte Anregungen immer noch gewissen Symmetrieanforderungen unterliegen. Deshalb kann ich viel über die Topologie eines Systems aussagen, ohne auf Ab-Initio-Berechnungen zurückgreifen zu müssen, die oft erforderlich sind, aber bei der Untersuchung stark korrelierter Materialien eine besondere Herausforderung darstellen“, sagt Qimiao Si von der Rice University. „Alles weist darauf hin, dass wir ein robustes Verfahren gefunden haben, um Materialien zu identifizieren, die die Eigenschaften aufweisen, die wir haben möchten.“ (Florian Aigner)

Originalpublikation:
L. Chen et al., “Topological semimetal driven by strong correlations and crystalline symmetry”, Nature Physics 913, 191 (2022). DOI: 10.1038/s41567-022-01743-4

Externer Link: www.tuwien.at