Grüner Strom trifft blaues Wasser: Forschungsteam findet neuen Ansatz zur Entsalzung von Meerwasser

Pressemitteilung der Universität des Saarlandes vom 06.05.2021

Weltweit gilt Wasserstoff als ein Hoffnungsträger für die Energiewende. Aber um ihn im industriellen Maßstab zu gewinnen, muss man auf Meerwasser zurückgreifen. Dessen Entsalzung ist aber bisher nur unter großem Energieeinsatz möglich. Die Energie-Experten Yuan Zhang und Volker Presser haben einen Weg gefunden, dem Meerwasser direkt mit einer Brennstoffzelle das Salz zu entziehen, die bisher „nur“ für die Stromerzeugung genutzt wurde. Das könnte die Herstellung von Wasserstoff revolutionieren.

Ihr Prinzip haben sie in der renommierten Fachzeitschrift Cell Reports Physical Science veröffentlicht.

Im Grunde genommen ist die Wende hin zur Wasserstoffwirtschaft ein Klacks: Von den rund 1,4 Milliarden Kubikkilometern Wasser auf der Erde (das sind 1.400.000.000.000.000.000 oder 1400 Trillionen Liter) ist die überwältigende Mehrheit als Salzwasser in den Ozeanen gut zugänglich und, das kann man wohl ohne Untertreibung sagen, in ausreichender Menge vorhanden, um die Menschheit über lange Zeit mit Energie zu versorgen. Dieses schier unerschöpfliche Gut könnte man also nutzen, um so viel Wasserstoff herzustellen, wie man nur braucht, um daraus Strom zu gewinnen. Die „grüne“ Energiewende weg von fossilen Energieträgern wäre geschafft.

Dass das noch niemand gemacht hat, liegt an einem kleinen, aber feinen Haken: „Heutige Elektrolysesysteme können keinen Wasserstoff aus salzhaltigem Wasser gewinnen“, bringt es Volker Presser auf den Punkt. Der Professor für Energie-Materialien an der Universität des Saarlandes und Leiter des Programmbereichs Energie-Materialien am INM – Leibniz-Institut für Neue Materialien ist einer der führenden Experten auf dem Gebiet der Energiespeicherung. Seine Arbeiten insbesondere auf dem Gebiet der Elektrochemie finden internationale Beachtung in hochrangigen Zeitschriften.

Gemeinsam mit seiner Doktorandin Yuan Zhang ist ihm nun ein großer Schritt in Richtung „Energie aus Meerwasser“ gelungen – im experimentellen Maßstab zumindest. Bisherige Systeme sehen vor, dass Wasserstoff für Brennstoffzellen erzeugt wird, indem man zuvor mit viel Energie deionisiertes (also entsalztes) Wasser aus Meerwasser herstellt, um aus diesem aufbereiteten Wasser wiederum Wasserstoff zu gewinnen. Denn nur so ließe sich genügend Wasserstoff herstellen, ohne die begrenzten, wertvollen Süßwasservorräte drastisch zu verringern. Dieses Verfahren ist aber nicht wirklich nachhaltig, wenn die Energie zur Entsalzung nicht vollständig aus regenerativen Quellen stammt. „Yuan Zhang hatte nun eine revolutionäre Idee: Wir benutzen einfach die Brennstoffzelle selbst, um das Meerwasser zu entsalzen und anschließend Süßwasser zu erhalten, das dann in der Brennstoffzelle für die Wasserstofferzeugung genutzt werden kann“, so Energie-Experte Presser.

Dazu haben sich er und seine Doktorandin einen simplen und für jedermann nachvollziehbaren Experiment-Aufbau überlegt: Aus einer Brennstoffzelle für den Schulbedarf haben sie eine Anlage gebaut, die aus dem Ausgangsstoff Salzwasser am Ende Süßwasser erzeugt und dazu noch Strom und Wärme produziert, die wiederum in die Gewinnung von Wasserstoff investiert werden können. Das im Salzwasser vorhandene Salz (vor allem NaCl, Kochsalz) wird dabei durch die Zugabe von Wasserstoff und Sauerstoff gezwungen, seine Verbindung mit dem Wasser aufzulösen. Es entstehen neben dem dann entstandenen Trinkwasser (das man im Anschluss für die Gewinnung von Wasserstoff nutzen kann) eine Säure (insbesondere HCl; Salzsäure) und eine Base (insbesondere NaOH, Natriumhydroxid) als Zwischenprodukte. „Außerdem erzeugen wir an dieser Stelle Elektrizität, die wir weiter nutzen können“, so Volker Presser. Die Säure und die Base erzeugen, wenn man sie zum Schluss wieder zusammenbringt, zusätzlich Wärme, die man ebenfalls weiter nutzen kann.

„Wir können nun also aus jeder Brennstoffzelle ein Modul bauen, das nicht nur Strom generiert, sondern ganz nebenbei auch Trinkwasser erzeugt. Dieses kann dann auch für die Wasserstoffproduktion genutzt werden. Man braucht dazu halt Wasserstoff, aber den kann man über Elektrolyse ‚grün‘ mit ‚Power to Gas‘ herstellen“, erklärt Volker Presser den möglichen Nutzwert des neuen Technologieansatzes, der in weiterer Zukunft in großem Maßstab zum Einsatz kommen könnte.

Publikation:
Zhang et al., Electrocatalytic fuel cell desalination for continuous energy and freshwater generation, Cell Reports Physical Science (2021)

Externer Link: www.uni-saarland.de

technologiewerte.de – MOOCblick Mai 2021

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Plant Based Diets: Food for a Sustainable Future
Eva Everloo (Wageningen University & Research) et al.
Start: 18.05.2021 / Arbeitsaufwand: 14-21 Stunden

Externer Link: www.edx.org

Schritt in Richtung Massenmarkt

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 05.05.2021

Redox-Flow-Batterien eignen sich hervorragend, um große Mengen regenerativer Energien zu speichern. Allerdings waren sie bislang noch zu teuer für den Massenmarkt. Forschende des Fraunhofer-Instituts für Umwelt-, Sicherheits- und Energietechnik UMSICHT haben nun das »Herz« einer Redox-Flow-Batterie – den Stack – vollständig re-designt – und konnten so den Materialeinsatz und die Kosten massiv senken. Dafür erhalten sie den Joseph-von-Fraunhofer-Preis.

Sonne und Wind orientieren sich nicht an unserem Strombedarf – regenerative Energie muss daher bis zum Verbrauch gespeichert werden, zum Beispiel in Redox-Flow-Batterien. Diese sind sowohl zyklenstabil – ihre Kapazität nimmt also auch nach tausenden Zyklen nicht merklich ab – als auch nicht brennbar und lassen sich in puncto Leistung und Kapazität auf den Bedarf auslegen. Zudem brauchen sie keine kritischen Materialien, und ihre Elektrolyte können vollständig zurückgewonnen werden. Aber: Bis dato waren sie schlichtweg zu teuer für den Massenmarkt.

Kostengünstig, leicht und kompakt

Forscher des Fraunhofer UMSICHT konnten nun dieses Problem nachhaltig lösen: Sie haben die Herstellungsweise des zentralen elektrisch leitfähigen Kunststoffs neu erfunden, so dass dieser flexibel bleibt und sich verschweißen lässt. Dieses neue Verfahren hat erhebliche Auswirkungen auf die Redox-Flow-Batterien. »Der entwickelte Stack, das Herzstück einer jeden Redox-Flow-Batterie, ist von den Materialkosten her 40 Prozent günstiger, auch die Produktionskosten konnten deutlich gesenkt werden. Der Stack wiegt 80 Prozent weniger als ein herkömmlicher Stack und ist nur etwa halb so groß«, fasst Prof. Christian Doetsch zusammen. Vermarktet wird der Stack vom Spin-off Volterion. Für diese Entwicklung erhalten Christian Doetsch und Lukas Kopietz vom Fraunhofer UMSICHT sowie Dr. Thorsten Seipp von der Volterion GmbH & Co. KG den Joseph-von-Fraunhofer-Preis. Die Jury begründete ihre Entscheidung unter anderem mit »der Ausgründung und dem erfolgreichen Exit von Fraunhofer, die prototypisch den Weg der Vermarktung von neuen Fertigungstechnologien zeigen«.

Üblicherweise bestehen die Stacks aus 160 gestapelten Komponenten, die mit einer Vielzahl von Schrauben und massiven Metallplatten zusammengehalten und mit zahlreichen Dichtungen abgedichtet werden. Ein Teil dieser Komponenten wird spritzgegossen und ist aufgrund der für den Spritzguß notwendigen hohen Drücke und Temperaturen spröde wie eine Bleistiftmine. Um dies zu umgehen, verwendet das Forscherteam zwar ähnliche Ausgangsstoffe, also Grafite und Ruße, ging aber auf andere Art und Weise an den Prozess heran: Pelletförmiger Kunststoff wird auf bis zu minus 80 Grad gekühlt, zu Pulver zermahlen und mit 80 Gewichtsprozent Graphit gemischt. Das entstehende Pulver schickt das Forscherteam durch ein System aus mehreren Walzen mit verschiedenen Temperaturen und Geschwindigkeiten. Zwischen den Walzen wird das Pulver bei moderaten Temperaturen und geringen Drücken kurz aufgeschmolzen, geknetet, zu einer »Endlos-Platte« gewalzt und schließlich aufgerollt. »Das neue Material erhält dabei thermoplastische Eigenschaften, es ist also biegsam und verschweißbar, obwohl der Kunststoff nur einen Anteil von 20 Prozent hat«, erläutert Lukas Kopietz. Der Stack kommt somit ohne eine einzige Dichtung aus, auch Schrauben sind überflüssig – die Zellen werden einfach miteinander verschweißt. Ein weiterer Vorteil: Über diese Methode lassen sich Bipolarplatten nicht nur deutlich schneller und damit kostengünstiger herstellen, es gibt auch keine Größenbegrenzung mehr. Bipolarplatten mit bis zu mehreren Quadratmetern sind problemlos möglich.

In der Volterion GmbH & Co. KG bis zur Batterie umgesetzt

Der zweite entscheidende, weil kostensenkende, Schritt war die Entwicklung eines kontinuierlichen Produktionsverfahrens: das Pulver-zu-Rolle-Verfahren, in dem sich die Bipolarplatten als Endlos-Rolle fertigen lassen. Auf diese Weise lassen sich sehr dünne Platten herstellen. Ist die Plattendicke beim Spritzgießen produktionsbedingt auf mehrere Millimeter begrenzt, kann sie beim Pulver-zu-Rolle-Verfahren zwischen 0,1 und 0,4 Millimeter dünn werden. Es ist also deutlich weniger Material notwendig, was den Preis wiederum senkt sowie leichtere kompaktere Stacks ermöglicht. »All dies verschafft ganz neue Möglichkeiten in der Konstruktion, die wir in der Volterion GmbH & Co. KG bis hin zur ganzen Batterie umgesetzt haben«, sagt Thorsten Seipp. Mittlerweile hat Volterion bereits über tausend Stacks gebaut und verkauft.

Externer Link: www.fraunhofer.de

Quantenkryptographie: Neue Methode für abhörsichere Kommunikation

Pressemeldung der JKU Linz vom 15.04.2021

Die moderne Gesellschaft ist auf virtuellen Informationsaustausch aufgebaut. Quantentechnologie basierend auf Quantenlicht verspricht eine absolut sichere Kommunikation.

Bankgeschäfte, E-Mails, Handel – die moderne Gesellschaft ist auf virtuellen Informationsaustausch aufgebaut. Genau das macht sie angreifbar und Cyber-Security zu einem wesentlichen Faktor. Quantentechnologie basierend auf Quantenlicht verspricht eine absolut sichere Kommunikation.

Forscher*innen der Johannes Kepler Universität Linz ist es gemeinsam mit der Uni Wien gelungen, erstmalig eine neuartige Quantenlichtquelle für die Erzeugung von verschränkten Lichtteilchen aus Halbleiternanostrukturen für eine sichere Quantenkommunikation zu demonstrieren. Ein wesentlicher Vorteil dieser Lichtquellen ist die Rauscharmut und im Prinzip hörer Datenrate gegenüber bisher genutzen Lichtquellen.

Mit 85 Bit pro Sekunde ist die Übertragung zwar noch nicht praxistauglich, aber: „Die Quantenübertragung war nicht nur fehlerfrei – sie kann auch nicht mehr unbemerkt abgehört werden“, erklären die JKU Physiker DI Christian Schimpf und Prof. Armando Rastelli (Abteilung für Halbleiterphysik). Jeder Versuch würde die Verschränkung zwischen den Photonen stören – und somit auffallen, noch ehe die Übertragung stattfindet.

Gelungene Übertragung zwischen Gebäuden

Tatsächlich gelungen ist die Informationsübertragung zwischen dem Physikgebäude der JKU und dem Open Innovation Center des Linz Institute of Technology. „Damit ist die technische Machbarkeit nachgewiesen“.

Anders als bei vorherigen Demonstrationen stammen die Photonen erstmalig aus Halbleiternanostrukturen, sogenannten Quantenpunkten, die aus Materialien ähnlich wie herkömmliche Lichtquellen für die faserbasierte Kommunikation aufgebaut sind. Der Vorteil dieser Methode: „Zwar ist noch weitere Forschung notwendig, aber mit unserer Methode sind Übertragungsraten im Bereich von hunderten Megabit pro Sekunde durchaus möglich“, ist Rastelli sicher.

Ein weiterer Vorteil besteht in der Qualität der erzeugten Photonen. „Quantenpunkte erzeugen wirklich Photonen in einer Qualität, die bisher genutze Photonenquellen nicht erreichen“, so Philip Walther. Daher sind diese Art von Quellen nicht nur für die Quantenkommunikation von Interesse, sondern auch für optische Quantencomputer und Quantensimulatoren. Das Paper wurde gestern im renommierten Journal „Science Advances“ unter dem Titel „Quantum Cryptography with highly entangled photons from semiconductor quantum dots“ publiziert.

EU-Interesse an Forschung

Die Teams aus Linz und Wien sind durch die Partnerschaft in der Lage, ihr Wissen und ihre Erfahrung synergetisch zu kombinieren, um die Quanten-Verschlüsselung weiterzuentwickeln und an weiteren Anwendungen für die Quantenpunkte in den Bereichen Kommunikation, Sicherheit und Informationsverarbeitung zu forschen. Forschung in diesen Bereich wird vom Linz Institute of Technology (LIT) im Rahmen des Projektes „EQKD-QD – Entanglement-Based Quantum Key Distribution with On-Demand Photons Generated by Semiconductor Quantum Dots“, dem LIT Secure and Correct Systems Lab, die FWF Forschungsgruppe FG5 „Multiphoton Experiments with Semiconductor Quantum Dots“ (geleitet von der JKU und mit Partner*innen an der Universität Wien und der Universität Innsbruck) sowie der EU unterstützt. (Christian Savoy)

Externer Link: www.jku.at