Knobeln auf dem Quanten-Schachbrett

Medieninformation der Universität Innsbruck vom 10.07.2019

Physiker der Universität Innsbruck schlagen ein neues Modell vor, mit dem die Überlegenheit von Quantencomputern gegenüber klassischen Supercomputern bei der Lösung von Optimierungsaufgaben gezeigt werden könnte. Sie demonstrieren in einer aktuellen Arbeit, dass schon wenige Quantenteilchen genügen würden, um das mathematisch schwierige Damenproblem im Schach auch für größere Schachbretter zu lösen.

Das Damenproblem ist eine schachmathematische Aufgabe, die schon den großen Mathematiker Carl Friedrich Gauß beschäftigt hat, für die er aber erstaunlicher Weise nicht die richtige Lösung fand. Es geht dabei um die Frage, wie acht Damen so auf einem klassischen Schachbrett mit 8 x 8 Feldern angeordnet werden können, dass sich keine davon gegenseitig schlagen können. Mathematisch kann noch relativ einfach ermittelt werden, dass es 92 verschiedene Möglichkeiten gibt, die Damen aufzustellen. Auf einem Schachbrett mit 25 x 25 Feldern sind es schon über 2 Billiarden Möglichkeiten. Allein die Berechnung dieser Zahl verschlang insgesamt 53 Jahre an CPU-Zeit.

Noch schwieriger wird die Aufgabe, wenn einige Damen bereits auf dem Feld stehen und bestimmte Diagonalen nicht besetzt werden dürfen. Vor kurzem wurde gezeigt, dass mit diesen zusätzlichen Einschränkungen das Problem mit 21 Damen durch klassische mathematische Algorithmen nicht mehr in angemessener Zeit gelöst werden kann. „Ich bin zufällig auf dieses Thema gestoßen und dachte mir, hier könnte die Quantenphysik ihre Vorteile ausspielen“, erzählt Wolfgang Lechner vom Institut für Theoretische Physik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften. Gemeinsam mit Helmut Ritsch und den Doktoranten Valentin Torggler und Philipp Aumann entwickelte Lechner ein Quanten-Schachbrett, auf dem das Damenproblem mit Hilfe der Quantenphysik experimentell gelöst werden könnte.

Aus Atomen werden Schachdamen

„Als Schachbrett kann ein optisches Gitter aus Laserstrahlen genutzt werden, in das einzelne Atome geladen werden“, erklärt Helmut Ritsch, der ebenfalls am Innsbrucker Institut für Theoretische Physik forscht. „Über die Einstellung der Wechselwirkung zwischen den Teilchen, können wir aus den Atomen Schachdamen machen, die sich nach den Schachregeln verhalten, sich also in allen Bewegungsrichtungen des Spiels aus dem Weg gehen.“ Diese Abstoßung der Teilchen wird mit Hilfe von Lasern erzeugt, die in den Bewegungsrichtungen eingestrahlt werden. Über einen optischen Resonator – zwei Spiegel oberhalb und unterhalb des optischen Gitters – wird diese Wechselwirkung noch einmal deutlich verstärkt und ist damit über deutlich größere Distanzen wirksam.

„Man könnte dieses Spiel auch mit sich entsprechend abstoßenden Billardkugeln spielen“, sagt Ritsch. „Weil es aber so viele Möglichkeiten gibt, würde das sehr, sehr lange dauern. Es ist deshalb entscheidend, dass die Atome sehr stark abgekühlt werden und deren Quanteneigenschaften zum Tragen kommen. Weil sie dann wie Wellen funktionieren, können die Teilchen viele Möglichkeiten gleichzeitig austesten und es zeigt sich sehr rasch, ob es eine nach Schachregeln gültige Lösung für die vorgegebenen Bedingungen gibt.

Quantenüberlegenheit nachweisen

Die Antwort auf die Frage, ob es unter den jeweils vorgegebenen Einschränkungen eine Lösung gibt, kann aus dem von den Atomen abgestrahlten Licht sehr leicht abgelesen werden. Die konkrete Anordnung der Atom-Damen könnte im Prinzip mittels Atommikroskopie ermittelt werden, ein Verfahren, das an vergleichbaren Aufbauten bereits erfolgreich demonstriert wurde.

Simulationen auf klassischen Computern deuten stark darauf hin, dass das von den Innsbrucker Theoretikern entworfene Experiment aufgrund der Quanteneigenschaften der Teilchen sehr viel rascher zu einem Ergebnis führen würde, als jeder mathematische Algorithmus auf einem klassischen Computer das schaffen könnte. „Damit ließe sich die Überlegenheit von Quantencomputern für die Berechnung von bestimmten Optimierungsproblemen mit diesem Experiment erstmals eindeutig nachweisen“, resümiert Wolfgang Lechner. „Die Kontrolle weniger Dutzend Atome gehört heute im Labor schon zum Standard, weshalb die Umsetzung dieser Idee vielleicht schon bald Realität werden könnte.“

Die Arbeit ist im Fachmagazin Quantum erschienen und wurde vom österreichischen Wissenschaftsfonds FWF, der Hauser-Raspe-Stiftung und der Europäischen Union finanziell unterstützt.

Publikation:
A Quantum N-Queens Solver. Valentin Torggler, Philipp Aumann, Helmut Ritsch, and Wolfgang Lechner. Quantum 3, 149 (2019)

Externer Link: www.uibk.ac.at

Toxoplasmose-Erreger mobiler als gedacht

Presseinformation der LMU München vom 03.07.2019

LMU-Mikrobiologen zeigen eine neue Art der Fortbewegung des Parasiten T.gondii auf.

Toxoplasma gondii, der Erreger der Toxoplasmose, verfügt über mehr Möglichkeiten, sich fortzubewegen, als bislang bekannt war. Der weltweit verbreitete Parasit löst beim Menschen eine in der Regel harmlose Infektion aus, kann aber während einer Schwangerschaft dem ungeborenen Kind schaden. „Bislang war das fest akzeptierte Dogma, dass sich der Parasit über das Aktomyosin-System fortbewegt, also das Zytoskelett und Motorproteine“, sagt Markus Meissner, Professor für Experimentelle Parasitologie an der LMU. In einer aktuellen Publikation im Fachjournal PLOS Biology zeigt Meissner zusammen mit Kollegen der Universität Glasgow, Schottland, einen neuen Mechanismus der Fortbewegung auf.

T.gondii ist bogenförmig, verändert aber seine Form, wenn er in die Wirtszelle eindringt, im Gewebe ist er eher oval geformt. Ausgangspunkt der neuen Studie war die Beobachtung, dass der Parasit auch dann noch beweglich ist und in Wirtszellen eindringt, wenn seine Motorproteine zerstört sind. Das Team konnte nachweisen, dass T.gondii Partikel aufnehmen kann. Diesen Mechanismus nutzten die Forscher, um die Fortbewegung des einzelligen Parasiten mithilfe fluoreszierender Moleküle zu beobachten. „T.gondii sekretiert vorne an der Zelle Vesikel und nimmt sie hinten wieder auf. Dadurch erzeugt der Parasit einen Membranfluss, den er in Kraft für Fortbewegung umwandeln kann. Der Aufnahmemechanismus scheint völlig anders zu sein als bei anderen Eukaryonten und auch bei den Wirtszellen“, sagt Meissner. In einem nächsten Schritt wollen die Forscher die Mechanismen dieser Fortbewegung genauer klären und dadurch mögliche neue Angriffspunkte für Therapien aufzeigen.

Publikation:
Simon Gras, Elena Jimenez-Ruiz, Christen M. Klinger, Katja Schneider, Andreas Klingl: Leandro Lemgruber, Markus Meissner: An endocytic-secretory cycle participates in Toxoplasma gondii in motility. In: PLOS Biology 2019

Externer Link: www.uni-muenchen.de

Algen als Rohstoffquelle: Chemische Tricks aus dem Meer

Presseaussendung der TU Wien vom 09.07.2019

Algen könnten in Zukunft zum wichtigen Rohstoff werden – wenn man ihre Chemie versteht. Mit Beteiligung der TU Wien hat man nun entschlüsselt, wie Algen-Biomasse zerlegt wird.

Algen sind die Basis des Ökosystems im Meer. Sie speichern mehr Kohlenstoff als alle Landpflanzen zusammengenommen. Die Kohlenhydrate der Algen werden von Bakterien abgebaut, dadurch werden sie zur wichtigen Energiequelle für die gesamte marine Nahrungskette. Was bei diesem Abbau von Algen-Biomasse chemisch genau passiert, war bisher allerdings unbekannt.

Nun gelang es einem internationalen Forschungsteam, den kompletten Abbauweg eines wichtigen Polysaccharids zu analysieren und zu verstehen. Eine ganze Palette von Enzymen ist dafür notwendig, ihre biochemische Funktion konnte nun erstmals aufgeklärt werden. Mit diesem Wissen wird es nun möglich, Algen als Rohstoffquelle zu nutzen: Sie lassen sich für Fermentationen einsetzen, für die Herstellung wertvoller Arten von Zucker oder in Zukunft sogar auch für spezielle Bio-Kunststoffe. Das übergeordnete Ziel ist eine umweltschonende Kreislaufwirtschaft, in der man nachwachsende Rohstoffe möglichst vielfältig nutzt.

Das Forschungsprojekt wurde von der Universität Greifswald geleitet, beteiligt waren außerdem die TU Wien, das Max-Planck-Institut für Marine Mikrobiologie (Bremen), die Universität Bremen, das Zentrum für Marine Umweltwissenschaften Marum und die Biologische Station Roscoff (Frankreich). Publiziert wurden die Forschungsergebnisse nun in der Fachzeitschrift Nature Chemical Biology.

Makromoleküle in ihre Puzzlesteine zerlegen

Den meisten Menschen fallen Algen normalerweise eher unangenehm auf – etwa dann, wenn sie bei einer Algenblüte in Küstennähe massenhaft wuchern. Aber in Zukunft könnte man Algenteppiche als willkommenen Ausgangsstoff für die Industrie verwenden. „Um Algen zu nutzen, muss man die großen Moleküle, die sie produzieren, in verwertbare Einzelteile zerlegen“, erklärt Christian Stanetty vom Institut für Angewandte Synthesechemie der TU Wien. „Das ist ein hochkomplizierter Vorgang – aber zum Glück haben wir die Natur als Vorbild: Bestimmten Bakterien gelingt das nämlich ganz ausgezeichnet.“

Das internationale Forschungsteam analysierte, wie das Meeresbakterium Formosa agariphila das Polysaccharid Ulvan abbauen, das von der Alge Ulva produziert wird. Dieser Abbauprozess ist ein kleines chemisches Kunststück: In mehreren Schritten unter Einsatz von zwölf verschiedenen Enzymen wird das Ausgangsmolekül in immer kleinere Puzzleteile zerlegt. „Unsere Aufgabe an der TU Wien war es, mit Hilfe von Kernspinresonanz-Spektroskopie (NMR) sowie Massenspektrometrie zu klären, wie diese Puzzleteile genau aussehen“, sagt Christian Stanetty. „Dabei haben wir einige Überraschungen erlebt – manche der Zerlegungsprodukte sahen anders aus als erwartet. Das zeigte uns dann, dass die Bakterien beim Abbau des Zuckers andere chemische Pfade einschlagen als gedacht.“

So konnte man auch herausfinden, welche Enzyme die Bakterien in welchem Schritt nutzen. „Damit verstehen wir nicht nur, wie diese Mikroorganismen Zugang zu dieser Nahrungsquelle erhalten. Die nun verfügbare Toolbox einer ganzen Palette an neuen Biokatalysatoren eröffnet jetzt die Möglichkeit, dieses komplexe marine Polysaccharid gezielt als Rohstoffquelle für Fermentationen zu verwenden“, sagt Prof. Uwe Bornscheuer von der Universität Greifswald.

Der Einsatz von Algen zur Synthese von Kohlenwasserstoffen ist völlig CO2-neutral. Wenn es gelingt, auf diese Weise Produkte zu erzeugen, die man bisher auf Basis fossiler Rohstoffe produziert hat, wäre das ein wichtiger Schritt für den Klimaschutz. „Das ist absolut realistisch“, glaubt Prof. Marko Mihovilovic von der TU Wien. „Vorerst wird man eher einfache Produkte nutzen, etwa spezielle Arten von Zucker. Aber je besser wir die Chemie dahinter verstehen, desto besser wird es gelingen, diese Algen auch als Ausgangsstoffe komplizierter Synthesen zu nutzen, bis hin zu Bioplastik.“

Das Ziel: die Kreislaufwirtschaft biogener Rohstoffe

Besonders wichtig für den Erfolg war die interdisziplinäre Zusammenarbeit: „Wissenschaftlich derart komplexe Fragestellungen kann man nur gemeinsam beantworten“, betont Marko Mihovilovic. „Schon lange arbeiten wir mit unseren Partnern aus Deutschland sehr erfolgreich zusammen. Das werden wir auch in Zukunft fortsetzen – so gelingen wesentliche Schritte vorwärts, hin zu einer nachhaltigen Chemie, die eine echte, ökologisch sinnvolle Kreislaufwirtschaft ermöglicht.“ (Florian Aigner)

Originalpublikation:
Stanetty et al., “A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan”, Nature Chemical Biology (2019).

Externer Link: www.tuwien.ac.at

Keine Fettabdrücke dank Nanolack

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.07.2019

Fettige Fingerabdrücke auf glänzenden Edelstahloberflächen sehen nicht nur unschön aus, sondern greifen auch die Oberfläche an. Ein neuer Nanolack von Fraunhofer-Forscherinnen und Forschern soll künftig verhindern, dass beim Anfassen von Edelstahlfronten lästige Fingerabdrücke zurückbleiben. Möglich machen es spezielle Nanopartikel, die dem Lack zugesetzt werden.

Der neue Kühlschrank glänzt in moderner Edelstahloptik. Doch schon nach kurzer Zeit ist die Front übersät mit dunkel wirkenden Fingerabdrücken, die sich mit Lappen und Putzmittel nur mühsam entfernen lassen – es ist vielmehr aufwändiges Polieren gefragt. Solche Fingerabdrücke sind nicht nur ein optisches Ärgernis, denn der Fettfilm greift zudem die Oberfläche an.

Fettabdrücke adé

Forscherinnen und Forscher vom Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS in Halle bereiten solchen Fettabdrücken nun ein Ende, gemeinsam mit ihren Kollegen der FEW Chemicals GmbH Wolfen. Der Clou liegt in einer Beschichtung mit einem Lack, der spezielle Zusätze enthält und wasser- und ölabweisend ist. Dazu kommen zwei weitere Effekte: Lagern sich die im Lack befindlichen integrierten Partikel an der Oberfläche des Edelstahls an, wird die Oberfläche rauer und vergrößert sich. Fasst nun ein Finger etwa an die Kühlschranktür, berührt dieser die Oberfläche nur an den erhöhten Stellen, während das Fingerfett die tiefer liegenden »Täler« nicht erreicht. Die Fläche, mit dem das Fingerfett in Berührung kommt, ist also recht klein. Zudem ist der Brechungsindex des Lacks so eingestellt, dass er dem des Fettgehalts des Fingers entspricht. Das heißt: Das Licht, das auf die beschichtete Edelstahl-Oberfläche fällt, wird in etwa so reflektiert wie an einer Oberfläche, die mit einem »Fingerpatscher« versehen ist. Ergo: Der Fingerabdruck fällt kaum auf.

Analyse der Schichtsysteme

Während die FEW Chemicals GmbH die Entwicklung der Lacksysteme übernimmt, widmet sich das Fraunhofer-Team der Analyse dieser Schichten. »Wir untersuchen die hergestellten Schichten zum einen über Lichtmikroskopie, Rasterelektronenmikroskopie und Rasterkraftmikroskopie. Wie groß sind die einzelnen Partikel im Lacksystem? Sind die Partikel homogen verteilt? Wie wirken sich die eingesetzten Additive aus?«, erläutert Dr. Jessica Klehm, wissenschaftliche Mitarbeiterin im Geschäftsfeld »Biologische und makromolekulare Materialien« am Fraunhofer IMWS. Solcherlei Fragen sind extrem wichtig, um die Qualität des Lacks beurteilen zu können. Lagern sich die Nanopartikel beispielsweise zu größeren Partikeln zusammen, büßt der Lack eventuell seine Transparenz ein. Sind die Teilchen dagegen zu klein, bleibt die Oberfläche zu glatt – der Fettfilm könnte dann trotz des Lacks großflächig an ihr haften.

Um diese Untersuchungen zu ermöglichen, galt es einige Hindernisse zu überwinden. So müssen die Proben beispielsweise in ihren Abmessungen verkleinert werden: Für eine optimale Untersuchung mit dem Lichtmikroskop sowie für die Weiterverarbeitung mit anderen Untersuchungsmethoden sollten die Proben nicht dicker sein als 60 bis 80 Mikrometer – also etwa so dick wie ein menschliches Haar –, für eine Untersuchung im Transmissionselektronenmikroskop sogar noch tausendmal dünner. »Mit einer Säge können wir die Proben nicht zurechtschneiden, sie würde die Beschichtung zerstören. Wir betten die Proben daher in Harz ein und schleifen sie dann auf die gewünschte Dicke herunter«, erklärt Frau Dr. Klehm.

Automatische Prüfmaschine quantifiziert Antifingerprintwirkung

Darüber hinaus entwickeln die Forscherinnen und Forscher eine automatische Prüfmaschine für die Schichten. Diese soll nicht die Partikel im Lack untersuchen, sondern die Sichtbarkeit der Fingerabdrücke selbst. Dazu taucht ein Stempel in eine Lösung, deren Zusammensetzung dem Fettfilm auf der menschlichen Haut ähnelt. Automatisiert, mit stets identischer Kraft und jeweils gleich lange drückt dieser Stempel anschließend auf die beschichtete Oberfläche, um dort einen »Fingerabdruck« zu hinterlassen. Über eine Kombination aus spektrometrischen und optischen Verfahren soll die Prüfmaschine schließlich analysieren, wie viel Lösung auf der Oberfläche verblieben ist – und damit, wie viel Prozent Antifingerprint-Wirkung der Lack aufweist. Welche Kombination von Analysegeräten hierfür optimal ist, untersuchen die Wissenschaftler derzeit.

Einen Favoriten unter den verschiedenen untersuchten Lacksystemen haben die Forscher bereits gefunden. Nun gilt es, diesen weiter zu optimieren. Bis Ende 2020 soll die Entwicklung abgeschlossen sein, dann wird die FEW Chemicals GmbH die Herstellung des Lacksystems in einen industriellen Maßstab übertragen.

Externer Link: www.fraunhofer.de

technologiewerte.de – MOOCblick Juli 2019

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Identifying Entrepreneurial Opportunities
James Green (University of Maryland)
Start: 08.07.2019 / Arbeitsaufwand: 8-12 Stunden

Externer Link: www.edx.org