Stabil geteilt

Presseinformation der LMU München vom 12.04.2019

LMU-Forscher haben ein neues Protein entdeckt, das bei der korrekten Zellteilung eine entscheidende Rolle spielt.

Die Zellteilung ist ein elementarer Prozess des Lebens, bei dem aus einer Mutterzelle zwei Tochterzellen entstehen. Dabei werden die Chomosomen der Mutterzelle von einem Spindelapparat getrennt, der in tierischen Zellen von zwei Spindelpolen, den Zentrosomen, aufgebaut wird. Fehlerhafte Teilungen haben gravierende Konsequenzen und verursachen schwere Erkrankungen. Wie die Zellteilung auf Ebene der Zentrosomen reguliert wird, steht im Mittelpunkt der Forschung von Dr. Tamara Mikeladze-Dvali vom Biozentrum der LMU. Mit ihrem Team hat die Biologin nun ein Protein identifiziert, das für den korrekten Aufbau des Spindelapparats eine essenzielle Bedeutung hat. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Current Biology.

Ein Zentrosom besteht aus einem Paar zylinderförmiger Zentriolen, die in eine Proteinmatrix eingebettet sind. In der Mutterzelle befindet sich das Zentrosom meist mittig in der Nähe des Zellkerns. Vor der Teilung wird es dupliziert, anschließend werden Spindelfasern gebildet, welche die zwei Zentrosomen in entgegengesetzte Bereiche der Zelle schieben – als Pole der Spindel. Anschließend werden die Chromosomen von den Spindelfasern, die aus den Polen ausstrahlen, auseinandergezogen. Um den dabei wirkenden Zellteilungskräften Widerstand leisten zu können, müssen die Zentrosomen extrem robust sein.

Welche Faktoren dabei eine wichtige Rolle spielen, hat Tamara Mikeladze-Dvali mit ihrem Team anhand von Mutanten des Fadenwurms Caenorhabditis elegans untersucht, in deren DNA nach dem Zufallsprinzip eine Veränderung eingefügt wurde. „Diese Veränderungen können uns zeigen, welche Faktoren eine wichtige Rolle in der Zellteilung spielen“, sagt Mikeladze-Dvali. „Dabei sind wir auf ein bis jetzt unbekanntes Protein gestoßen, das wir als PCMD-1 bezeichnen.“ In weiteren Experimenten markierten die Wissenschaftler dieses Protein in der Zelle und schalteten es mithilfe der Genschere CRISPR/Cas9 gezielt aus. Auf diese Weise konnten sie nachweisen, dass das neue Protein für den korrekten Aufbau des Zentrosoms unentbehrlich ist. Insbesondere ist es wichtig für den Aufbau der aus sogenannten SPD-5-Proteinen bestehenden Proteinmatrix, die die Robustheit und Integrität der Zentrosomen gewährleistet. „Fehlt PCMD-1, hat das verheerende Auswirkungen auf den Aufbau des Spindelapparats und die Zellteilung. Die Zelle kann sich dadurch nicht mehr korrekt teilen“, sagt Mikeladze-Dvali.

Da PCMD-1 eine solch zentrale Funktion hat, haben diese Ergebnisse nach Ansicht der Wissenschaftler große Bedeutung für das generelle Verständnis der Regulierung von Zentrosomen. Fast alle Proteine, die in C. elegans entdeckt wurden, sind auch in höheren Organismen vorhanden. Auch das Matrixprotein SPD-5 hat ein solches Ortholog. Mutationen in diesem Protein sind eine Ursache für genetisch vererbte primäre Mikrozephalie beim Menschen. „Für das Verständnis dieser Entwicklungsstörung ist es wichtig zu wissen, wie das Protein auf der zellulären Ebene reguliert wird“, sagt Mikeladze-Dvali.

Publikation:
Current Biology 2019

Externer Link: www.uni-muenchen.de

Greifen mithilfe von Wärme und Kälte

Pressemitteilung der Universität Kassel vom 09.04.2019

Wissenschaftler der Universität Kassel haben gemeinsam mit einer Ausgründung aus der Hochschule ein Produkt entwickelt, das bestimmte Abläufe in automatisierten Fabriken effizienter machen kann. Das Produkt ist beispielhaft für die enge Zusammenarbeit von Wissenschaft und Start-ups in der nordhessischen Großstadt.

Der sogenannte Polygreifer kann auf Roboterarme montiert werden und Werkstücke verschiedener Materialien greifen und tragen. Herzstück ist eine doppelschichtige Platine, die aus einem Aluminiumblech und einem aufgetragenen Spezialpolymer besteht. Diese Material reagiert auf Wärme und Kälte: Wird die Platine erwärmt, verformt sich das Polymer und schmiegt sich in Sekundenschnelle um winzig kleine Unebenheiten, die selbst glatte Materialien wie Glas oder Metalle aufweisen. Nach der Abkühlung der Platine haftet das Werkstück und kann umgesetzt werden. Wird die Platine anschließend erneut erwärmt, wird es wieder freigegeben.

Das thermoplastische Polymer ist eine Entdeckung des Fachgebiets Kunststofftechnik der Universität Kassel. Die technisch anspruchsvolle Verbindung zwischen Aluminium und Polymer entwickelte das Fachgebiet Trennende und Fügende Fertigungsverfahren (tff). Das Start-up-Unternehmen eta opt, das von einem Absolventen der Universität Kassel gegründet wurde, bringt das Produkt zur Marktreife. Das Land Hessen förderte die Entwicklung des Polygreifers im Rahmen seiner LOEWE-Initiative mit rund 327.000 Euro.

Im Gegensatz zu bisherigen industriellen Greifverfahren wie beispielsweise mit Druckluft oder Vereisung ist der Polygreifer universell einsetzbar; das Material des Werkstücks spielt praktisch keine Rolle und selbst kleine Greifflächen genügen. Das Greifsystem eignet sich besonders für industrielle Produktionsstraßen, die unterschiedliche Produkte fertigen, da Umrüstzeiten entfallen. Gegenüber Druckluft-basierten Verfahren liegt die Energieersparnis bei bis zu 70 Prozent. Prototypen des Polygreifers gibt es bereits, binnen eines Jahres will eta opt das Produkt nun auf den Markt bringen.

Das Fachgebiet tff der Universität (Leitung Prof. Dr.-Ing. Stefan Böhm) forscht in den Bereichen Fertigungs-, Produktions- und Automatisierungstechnik sowie Schweißen, Kleben, Spanen und Strahlen. Das Fachgebiet Kunststofftechnik (Prof. Dr.-Ing. Hans-Peter Heim) vereint die Forschungsschwerpunkte Werkstofftechnik, Kunststoffprozesstechnik sowie Fügetechnik und Werkstoffverbunde. Die Ingenieurwissenschaften gehören zu den großen Schwerpunkt-Bereichen der nordhessischen Universität.

Förderung für Start-ups „ab dem ersten Geistesblitz“

Die Firma eta opt wurde 2015 von Dr.-Ing. Christoph Pohl gegründet, einem Absolventen und ehemaligen Mitarbeiter der Universität Kassel. Sie hat ihren Sitz im Science Park, in dem junge Unternehmen aus dem Umfeld der Hochschule auf dem Markt Fuß fassen und wachsen können. „Wir fördern vielversprechende Ideen und Start-ups im Grunde ab dem ersten Geistesblitz“, beschreibt es Kanzler Dr. Oliver Fromm, im Präsidium der Universität zuständig für Wissenstransfer. „Die Erfolgsgeschichte von eta opt zeigt beispielhaft, wie sich Beratung, die Anbahnung von Netzwerken, die Vermittlung von Stipendien und Förderprogrammen und die Zusammenarbeit mit der Forschung im Umfeld unserer Universität auszahlen. Hinzu kam hier eine großzügige Förderung des Landes, die es auch jungen Unternehmen ermöglicht, kapitalintensive Entwicklungen zu stemmen.“

Die Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz LOEWE ist ein Programm, mit dem das Land Hessen seit 2008 seine Forschungslandschaft stärkt und herausragende wissenschaftliche Verbundvorhaben fördert. Eine der Förderlinien unterstützt die Zusammenarbeit zwischen kleinen und mittleren Unternehmen und Hochschulen in der angewandten Forschung.

Der Science Park auf dem Campus der Universität Kassel ist ein Projekt von Universität und Stadt Kassel und der Sitz von zur Zeit etwa 20 jungen Unternehmen aus dem Umfeld der Hochschule. Bereits kurz nach der Einweihung 2015 war er weitgehend ausgebucht.

Externer Link: www.uni-kassel.de

Saar-Universität vergibt Lizenz für ein geschütztes augenchirurgisches Instrument

Pressemitteilung der Universität des Saarlandes vom 08.04.2019

Ein neues Instrument zur Vereinfachung von Hornhauttransplantationen wurde jetzt von der Geuder AG, einem der führenden Hersteller für augenchirurgische Instrumente, lizenziert. Die Universität des Saarlandes hatte die Erfindung von Dr. Shady Suffo als Gebrauchsmuster schützen lassen. Es handelt sich dabei um einen neuartigen Hornhautmarkierer, der bei der so genannten Keratoplastik, also der Hornhauttransplantation, zum Einsatz kommt. Diese ist eine relativ häufige und an vielen Kliniken durchgeführte Augenoperation. Allein am saarländischen Universitätsklinikum gab es im vergangenen Jahr über fünfhundert dieser Operationen. Die Patentverwertungsagentur der saarländischen Hochschulen war für die Vermarktung der Erfindung verantwortlich.

Bei einer Hornhauttransplantation wird die erkrankte Hornhaut durch eine gesunde Spenderhornhaut ersetzt. Es wird dabei eine Kreuzstichnaht erzeugt, um die Hornhaut dauerhaft am Augapfel zu fixieren. Diese Technik, die „Kreuzstichnaht nach Hoffmann“, stellt für ungeübte Operateure eine große Hürde dar. Schon seit einiger Zeit sind daher verschiedene Hilfsmittel, so genannte Hornhautmarkierer, auf dem Markt erhältlich. Durch die Erfindung von Dr. Shady Suffo werden gleich mehrere Probleme der bestehenden Hilfssysteme gelöst. Zum einen entfällt die Schwierigkeit, das Instrument per Augenmaß zu zentrieren. Zum anderen wird die Markierung auf punktuelle Weise erzeugt, so dass es für den Operateur nun wesentlich einfacher ist, die Stichtiefe während des Nahtvorgangs zu erkennen.

Die Erfindung wurde durch die Patentverwertungsagentur der saarländischen Hochschulen als Gebrauchsmuster für die Universität des Saarlandes geschützt. Das Gerät wurde bereits erfolgreich getestet und von Dr. Shady Suffo in Workshops mit Nachwuchsärzten eingesetzt. Kürzlich hat sich nun die Firma Geuder entschlossen, ihre Produktpalette um den „Kreuzstichnahtmarker nach Suffo“ zu erweitern.

Externer Link: www.uni-saarland.de

technologiewerte.de – MOOCblick April 2019

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Digital Transformation: Business Development and Marketing
Henrik Blomgren (KTH Royal Institute of Technology) et al.
Start: 24.04.2019 / Arbeitsaufwand: 20-30 Stunden

Externer Link: www.edx.org

Fehler in Stromnetzen mit Künstlicher Intelligenz automatisiert erkennen

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.04.2019

Die Stromnetze verändern sich: Gab es in der Vergangenheit vor allem große, zentrale Stromerzeuger, kommen nun zunehmend kleine, dezentrale Erzeuger dazu. Um solche komplexen Netze stabil zu halten, ist hochauflösende Sensorik gefragt. Mit Künstlicher Intelligenz lassen sich genaue Prognosen anfertigen sowie Fehler und Anomalien automatisiert in Echtzeit erkennen. Fraunhofer-Forscher haben die erforderlichen Komprimierungsverfahren, Algorithmen und neuronalen Netze entwickelt, um die Stromübertragung fit für die Zukunft zu machen.

Die Stromversorgung wandelt sich: Statt den Strom ausschließlich über große Kraftwerke zu generieren, kommen zahlreiche dezentrale Stromquellen wie Windräder, Photovoltaikzellen und Co. hinzu. Dieser Umschwung wirkt sich auch auf die Stromnetze aus – vor allem die Betreiber von Übertragungsnetzen sehen sich großen Herausforderungen gegenüber. Laufen relevante Netzparameter wie Phase oder Winkel aus dem Ruder? Gibt es Abweichungen vom regulären Netzbetrieb, also Anomalien? Oder sind Leitungen oder Kraftwerke ausgefallen? Um solche Fragen beantworten zu können, reicht die übliche Messtechnik nicht mehr in jeder Situation aus. Sie wird daher zunehmend um Phasormessungen, kurz PMU, sowie um Digitalisierungstechnologien ergänzt: Die entsprechenden Messsysteme erfassen die Amplitude von Strom und Spannung bis zu 50-mal pro Sekunde. Aus den Daten lassen sich verschiedene relevante Parameter wie Frequenz, Spannung oder Phasenwinkel ermitteln. Die Datenmenge, die dabei entsteht, ist enorm – pro Tag kommen schnell mehrere Gigabyte an Daten zusammen.

Datenkompression: 80 Prozent der Daten einsparen

Forscher des Institutsteils Angewandte Systemtechnik AST des Fraunhofer-Instituts für Optronik, Systemtechnik und Bildauswertung IOSB in Ilmenau wollen die Datenauswertung nun durch Künstliche Intelligenz optimieren, die Netzsicherheit erhöhen und die Stromübertragung somit fit machen für die Zukunft. »Wir können bis zu 4,3 Millionen Datensätze pro Tag automatisiert erfassen, komprimieren und über Verfahren der Künstlichen Intelligenz auswerten«, fasst Prof. Peter Bretschneider, Leiter der Abteilung Energie am Fraunhofer IOSB-AST, zusammen. In einem ersten Schritt haben die Forscherinnen und Forscher Komprimierungsverfahren entwickelt, mit denen sich 80 Prozent der Daten einsparen lassen. Somit lassen sich die Daten nicht nur leichter speichern, sondern auch schneller und effizienter auswerten.

Datenauswertung: Automatisch und in Echtzeit

In einem zweiten Schritt lernten die Wissenschaftler mit den erhobenen Phasormessdaten neuronale Netze – also die Basis der Künstlichen Intelligenz – an. Sprich: Sie »fütterten« die neuronalen Netze mit Beispielen typischer Betriebsstörungen. Die Algorithmen lernen auf diese Weise Schritt für Schritt, normale Betriebsdaten von bestimmten Betriebsstörungen zu unterscheiden sowie exakt zu kategorisieren. Nach dieser Trainingsphase wendeten die Wissenschaftler die neuronalen Netze bei den aktuellen Daten aus den Phasormessungen an. Bisher konnten diese nur manuell und im Nachhinein ausgewertet werden. Der Algorithmus schafft hier erstmalig den Sprung in die Echtzeit: Er entscheidet automatisch innerhalb von Millisekunden, ob eine Anomalie oder ein Fehler vorliegt und gibt zusätzliche Auskunft über Ort und Art der Betriebsstörung. Ein Beispiel: Fällt etwa ein Kraftwerk aus, so steigt die Last für die anderen Kraftwerke abrupt an. Die Generatoren werden durch die große Last langsamer, die Frequenz des Wechselstroms sinkt. Nun sind schnelle Gegenmaßnahmen gefragt: Sinkt die Frequenz unter einen vorgegebenen Grenzwert, so müssen gegebenenfalls Netzabschnitte aus Gründen der Systemstabilität abgeschaltet werden. Schnell, das heißt mitunter: Unter 500 Millisekunden. Da der Algorithmus seine Entscheidung innerhalb von 20 bis 50 Millisekunden trifft, bleibt genügend Zeit, um vollautomatische Gegenmaßnahmen einzuleiten.

Der Algorithmus ist einsatzbereit, an der Steuerung und Regelung der Gegenmaßnahmen arbeiten die Forscher zurzeit. Die Entwicklung ist nicht nur für Betreiber großer, sogenannter Übertragungsnetze interessant, sondern auch für die der regionalen Verteilnetze. »Um eine Analogie zum Verkehr zu ziehen: Was nützt es, wenn die Autobahnen frei sind, doch die regionalen Straßen permanent verstopft?«, erläutert Bretschneider.

Vorhersage noch unbekannter Probleme

Die Forscher widmen sich jedoch nicht nur bereits bekannten Problemen, sondern wollen auch Anomalien berücksichtigen, die bisher noch gar nicht auftreten. »Gehen wir den Weg der erneuerbaren Energien weiter, kann dies künftig zu Phänomenen führen, die wir derzeit noch nicht kennen«, sagt Bretschneider. Auch hier setzen die Wissenschaftler auf die Künstliche Intelligenz. Genauer gesagt: Sie arbeiten daran, solche Phänomene zu kategorisieren und die erforderlichen Algorithmen zu entwickeln – und zwar anhand digitaler Netzabbildungen.

Externer Link: www.fraunhofer.de