technologiewerte.de – MOOCblick Juni 2017

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

How to Code: Complex Data
Gregor Kiczales (University of British Columbia)
Start: 20.06.2017 / Arbeitsaufwand: 48-60 Stunden

Externer Link: www.edx.org

Graphen-„Sandwich“ mit rotierenden Molekülen

Pressemeldung der Universität Wien vom 09.06.2017

„Wundermaterial“ Graphen als Nano-Reaktionskammer

Materialforscher um Jannik Meyer von der Fakultät für Physik der Universität Wien haben eine neue Hybridstruktur hergestellt: Bei den so genannten Buckyball-Sandwiches liegt eine einzelne Lage Fulleren-Moleküle (Kugeln aus 60 Kohlenstoffatomen mit der ungefähren Struktur eines Fußballs) eingebettet zwischen zwei Graphen-Membranen. Graphen gilt als neues „Wundermaterial“ und ist eine, nur ein Atom dicke, Schicht aus Kohlenstoff. Unter dem Elektronenmikroskop konnten die Forscher nun erstmals die Diffusion von einzelnen Molekülen im zweidimensionalen Hohlraum zwischen den Graphen-Membranen nachweisen, sowie deren Rotation und das Verschmelzen von zwei oder mehreren Molekülen beobachten. Die Studie erscheint in Science Advances.

Kohlenstoff ist eines der vielseitigsten Elemente: Es bildet die Basis für eine riesige Menge an chemischen Verbindungen, man findet es in verschiedenen Formen unterschiedlicher Dimensionalität, und es kann Bindungen in diversen Geometrien eingehen. Aus diesen Gründen nehmen Kohlenstoffmaterialien schon lange einen besonderen Platz in der Materialforschung ein. Während die dreidimensionalen Strukturen aus Kohlenstoff – Diamant und Graphit – seit der Antike bekannt sind, wurde das erste niedrigdimensionale Allotrop, die quasi 0-dimensionalen Fullerene, erst 1985 entdeckt. Seit 1991 sind eindimensionale Kohlenstoff-Nanoröhrchen ein beliebtes Forschungsthema; seit 2004 ist die zweidimensionale Form, Graphen, experimentell realisierbar. Auch verschiedene Kombinationen aus diesen Kohlenstoff-Allotropen, wie z.B. Fulleren-gefüllte Kohlenstoff-Nanoröhrchen und in Graphit eingebettete Fullerene haben WissenschafterInnen bereits hergestellt und erforscht.

Die Forscher der Universität Wien stellten jüngst ein hybrides Kohlenstoffsystem her, bei dem eine einzelne Lage Fullerene zwischen zwei Graphen-Schichten eingebettet ist. Die Untersuchung der Struktur dieses Buckyball-Sandwiches mittels atomar aufgelöster Raster-Transmissions-Elektronenmikroskopie lieferte überraschende Einblicke in die Dynamik der Moleküle. An den Rändern der Fulleren-Ebenen beobachteten die Forscher die Diffusion einzelner Fullerene innerhalb des Graphen-Sandwiches. Außerdem rotierten die Fullerene – diese Rotation wird aber blockiert, wenn die Fullerene unter längerer Elektronenbestrahlung zu größeren Objekten verschmelzen.

Mit dem Fulleren-Graphen-System haben die Wissenschafter ein neues Materialsystem hergestellt, das eine Lücke in den verfügbaren Kombinationen von Kohlenstoff-Hybridstrukturen füllt. Das Graphen-Sandwich stellt eine Nano-Reaktionskammer dar, mit der molekulare Dynamik im Transmissions-Elektronenmikroskop durch die Graphen-Fenster hindurch beobachtet werden kann. Die Forscher erwarten, dass diese Arbeit auch vielfältige neue Möglichkeiten zur Studie von anderen molekularen Systemen im zweidimensionalen Zwischenraum zweier Graphen-Membranen ermöglicht.

Originalpublikation:
Science Advances
R. Mirzayev, K. A. Mustonen, M. R. A. Monazam, A. Mittelberger, T. J. Pennycook, C. Mangler, T. Susi, J. Kotakoski, J. C. Meyer, Buckyball sandwiches. Sci. Adv. 3, e1700176 (2017)
DOI: 10.1126/sciadv.1700176

Externer Link: www.univie.ac.at

Newton auf den Kopf gestellt

Presseaussendung der Universität Innsbruck vom 01.06.2017

In der Quantenwelt bewegen sich Objekte nicht immer so, wie wir es im Alltag gewohnt sind. Innsbrucker Experimentalphysiker um Hanns-Christoph Nägerl haben gemeinsam mit Theoretikern in München, Paris und Cambridge ein Quantenteilchen beobachtet, das sich in einer Oszillationsbewegung durch ein eindimensionales Gas bewegt. Sie berichten darüber in der Fachzeitschrift Science.

Ein vom Baum fallender Apfel soll Isaac Newton zu jener Theorie inspiriert haben, die die Bewegung eines Objekts beschreibt. Die Newtonschen Gesetze besagen, dass ein sich bewegendes Objekt sich gerade weiterbewegt bis eine äußere Kraft die Bahn verändert. Die Bedeutung dieser Bewegungsgesetze ist allgegenwärtig und reicht vom Fallschirmspringer im Schwerefeld der Erde über das Gefühl der Trägheit in einem beschleunigenden Flugzeug bis zu den Umlaufbahnen der Planeten um die Sonne.

In der Quantenwelt hingegen stößt dieses Alltagsverständnis von Bewegung an Grenzen und scheitert manchmal überhaupt. „Oder können Sie sich eine Glasmurmel vorstellen, die sich durch eine Flüssigkeit auf und ab bewegt anstatt einfach runter zu fallen“, fragt Hanns-Christoph Nägerl vom Institut für Experimentalphysik der Universität Innsbruck. Sein Team hat gemeinsam mit Theoretikern in München, Paris und Cambridge ein Quantenteilchen entdeckt, das genau dieses Verhalten zeigt. Grundlage der überraschenden Beobachtung ist die sogenannte Quanteninterferenz, jene Gesetzmäßigkeit der Quantenmechanik, wonach Teilchen sich wie Wellen verhalten, die sich aufsummieren oder auslöschen können.

Nahe am absoluten Nullpunkt

Um das Teilchen oszillieren zu sehen, haben die Forscher ein Gas aus Cäsiumatomen fast bis auf den absoluten Nullpunkt gekühlt und in sehr dünne Röhrchen gesperrt, die mit Laserstrahlen erzeugt wurden. Durch einen speziellen Trick wurden die Atome dazu gebracht, stark miteinander zu wechselwirken. Unter diesen extremen Bedingungen bilden die Teilchen eine Art Quantenflüssigkeit, deren Bewegung nur entlang der Röhrchen möglich ist. Die Physiker beschleunigten dann ein weiteres Atom in einem anderen Spinzustand durch das Gas. Dabei beobachteten sie, wie die Quantenwelle dieses Atoms von den anderen Atomen gestreut und wieder zurückreflektiert wurde. Dies erzeugte die verblüffende Oszillationsbewegung, die im Gegensatz zu dem steht, was eine Murmel macht, wenn sie ins Wasser fällt. Das Experiment zeigt, dass Newtons Gesetze in der Quantenwelt nicht uneingeschränkt gelten.

Kristallines Verhalten von Quantenflüssigkeiten

Die Tatsache, dass Quantenwellen in bestimmte Richtungen reflektiert werden können, ist nicht neu. So ist zum Beispiel bekannt, dass Elektronen im Kristallgitter eines Festkörpers reflektiert werden, was als Bragg-Streuung bezeichnet wird. Im Innsbrucker Experiment war allerdings kein Kristall vorhanden. Es war vielmehr das atomare Gas selbst, das eine Art versteckte Ordnung darstellte, was Physiker als Korrelationen bezeichnen. Die nun in der Fachzeitschrift Science veröffentlichte Arbeit zeigt, wie diese Korrelationen in Verbindung mit der Wellen-Natur von Materie die Bewegung von Teilchen in der Quantenwelt bestimmen und zu neuen Phänomenen führen, die auf den ersten Blick unserer Intuition widersprechen.

Die Eigentümlichkeit der Quantenmechanik zu verstehen, kann auch für breitere Anwendungen interessant sein und zum Beispiel dabei helfen, grundlegende Mechanismen in elektronischen Bauteilen oder sogar Transportprozesse in komplexen biologischen Systemen besser zu verstehen.

Diese Forschungen wurden unter anderem vom österreichischen Wissenschaftsfonds FWF und dem europäischen Wissenschaftsrat ERC und dem TUM Institute for Advanced Study finanziell unterstützt.

Originalpublikation:
Bloch oscillations in the absence of a lattice. Florian Meinert, Michael Knap, Emil Kirilov, Katharina Jag-Lauber, Mikhail B. Zvonarev, Eugene Demler, Hanns-Christoph Nägerl. Science 2017. DOI: 10.1126/science.aah6616

Externer Link: www.uibk.ac.at

Afrikanische Genvariante verändert Blutzellen

Presseinformation der LMU München vom 01.06.2017

Eine vor allem bei Menschen afrikanischer Herkunft weit verbreitete Genvariante schützt vor Malaria. LMU-Forscher zeigen erstmals, wie sie auch die Eigenschaften wichtiger Abwehrzellen des Immunsystems beeinflusst.

Im Erbmaterial nahezu der gesamten Bevölkerung Afrikas südlich der Sahara und auch bei 70 Prozent der Afroamerikaner findet sich eine Genvariante, die als „Duffy-negativ“ bezeichnet wird. Es ist bekannt, dass die Menschen, die sie in ihren Zellen tragen, seltener an Malaria erkranken. Seit Kurzem wird diese Variante auch mit einer gutartigen Verminderung der weißen Blutkörperchen – einer sogenannten benignen Neutropenie – in Verbindung gebracht. Obwohl weiße Blutkörperchen bei der angeborenen Immunabwehr eine wichtige Rolle spielen, neigen die Träger der Genvariante nicht zu vermehrten Infektionen. Im Rahmen einer von den LMU-Forschern Dr. Johan Duchêne, Professor Christian Weber und Professor Antal Rot (York, England) geleiteten Studie hat ein Wissenschaftler-Team aus Deutschland, Großbritannien, Spanien, Österreich und den USA nun aufgeklärt, auf welche Weise die Genvariante die Blutbildung beeinflusst und warum sie zu einer Neutropenie führt. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Nature Immunology.

Der überwiegende Teil der Blutbildung findet im Knochenmark statt. Dabei differenzieren sogenannte multipotente hämatopoetische Stamm- und Vorläuferzellen zu verschiedenen reifen Blutzellen, unter anderem zu neutrophilen Granulozyten, einer Untergruppe der weißen Blutzellen, und zu Erythrozyten, den roten Blutzellen. Duffy-negativen Menschen fehlt ein bestimmtes Eiweiß auf den roten Blutzellen, der „Atypical Chemokine Receptor 1“, kurz ACKR1, der mit chemischen Botenstoffen im Körper interagiert. Da auch einige Malaria-Erreger an ACKR1 andocken, sind Menschen ohne dieses Eiweiß besser vor einigen Formen der Erkrankung geschützt. „Auf welche Weise das Fehlen von ACKR1 auf den roten Blutzellen aber die weißen Blutzellen beeinflusst, war bisher völlig unbekannt“, sagt Duchêne.

Mithilfe von Untersuchungen am Mausmodell konnten die Wissenschaftler nun zeigen, dass dieser Zusammenhang auf Mechanismen bei der Differenzierung der blutbildenden Stamm- und Vorläuferzellen beruht: Spezielle Vorläufer-Erythrozyten bilden im Knochenmark eine „Nische“, in der sich die hämatopoetischen Stammzellen befinden – und die Expression von ACKR1 auf diesen Vorläufer-Erythrozyten entscheidet über das weitere Schicksal der Stammzellen. „Wenn die Vorläufer-Erythrozyten kein ACKR1 bilden, differenzieren die Stammzellen zu neutrophilen Granulozyten, die sich molekular und funktional von denen unterscheiden, die nach Kontakt mit ACKR1 gebildet werden“, sagt Rot. „Unsere Ergebnisse legen nahe, dass diese veränderten Neutrophilen den Blutkreislauf leicht verlassen und in Gewebe, vor allem in die Milz, einwandern.“ Dadurch sinkt die Anzahl an Neutrophilen im Blut und die typische Neutropenie entsteht. Ob die in die Milz gewanderten Neutrophilen dort überdauern und zur Immunabwehr beitragen, ist noch unklar.

Nach Ansicht der Wissenschaftler könnten die veränderten Eigenschaften der Neutrophilen bei Duffy-negativen Personen die Abwehr von Krankheitserregern positiv beeinflussen und daher einen Selektionsvorteil darstellen. „Aber eine stärkere Immunantwort kann natürlich auch kontraproduktiv sein, etwa wenn die Immunreaktion ohnehin überschießt und zu chronischen Entzündungen und Autoimmunkrankheiten führt“, sagt Weber. Als nächsten Schritt wollen die Wissenschaftler daher untersuchen, wie die alternative Blutbildung ohne ACKR1 die Abwehr von Infektionskrankheiten sowie Entzündungen, Atherosklerose, Gefäßerkrankungen und Krebs beeinflusst. Dies könnte helfen, neue gezielte Behandlungsstrategien für Duffy-negative Patienten zu entwickeln.

Publikation:
Nature Immunology 2017

Externer Link: www.uni-muenchen.de

Einzelne Zellen auf dem Präsentierteller

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.06.2017

Je mehr Tumorzellen sich im Blut auf Wanderschaft befinden, desto größer die Gefahr einer Metastasenbildung. Im Blut zirkulierende Tumorzellen sind ein wichtiger Indikator dafür, ob und wie eine Therapie wirkt. Fraunhofer-Forscher haben jetzt einen Mikrolochchip entwickelt, der eine zuverlässige Identifizierung und Charakterisierung der Zellen ermöglicht – und das innerhalb von nur wenigen Minuten.

Mit dem herkömmlichen Analyseverfahren FACS (fluorescence-activated cell sorting) lässt sich die Anzahl der im Blut zirkulierenden Tumorzellen nur grob bestimmen. »Bei FACS werden die Zellen farblich markiert, sortiert und in verschiedenen Behältern gesammelt«, erklärt Dr. Thomas Velten, dessen Team den neuen Mikrolochchip am Fraunhofer-Institut für Biomedizinische Technik IBMT entwickelt hat. Das Problem: Die Anzahl der Farben für die Markierung ist begrenzt. »Irgendwann überlappen sie sich und man kann sie nicht mehr voneinander unterscheiden. Außerdem gibt es nicht für alle Tumorzellen gute Marker, daher werden sie mit FACS nicht erfasst.« Weiterhin lässt sich beim FACS ein Messergebnis nicht eindeutig einer bestimmten Zelle zuordnen, da der Auffangbehälter Tausende von Zellen enthält.

Zellen werden mit Unterdruck fixiert

»Mit unserem neuen Mikrolochchip lassen sich die Zellen aus der Probe problemlos ›einfangen‹, für eine anschließende Analyse einzeln positionieren und nach der Analyse auch einzeln entnehmen. Denn hier liegen die Zellen geordnet nebeneinander wie auf einem Präsentierteller. Jede Zelle sitzt auf einem Loch, kann aber nicht durchrutschen. Sie wird von einem leichten Unterdruck angesaugt und fixiert«, so Velten.

In einem gerade zu Ende gegangenen Verbundprojekt zur Identifikation zirkulierender Tumorzellen erfolgte die Zellanalyse in zwei Schritten: Zunächst wurden verdächtige Zellen mit Hilfe eines Mikroskops ausgewählt. Dann wurden sie mit der zeitaufwändigeren Methode der Raman-Spektroskopie eingehend untersucht. Dabei werden die Zellen mit dem Licht eines bestimmten Frequenzbereichs bestrahlt; anhand der Streuung lassen sich Tumorzellen sicher identifizieren. Mit dem neuen IBMT-Chip aus Siliziumnitrid ist das kein Problem – mit Chips aus Glas oder Kunststoff unmöglich, da die Materialien die ramanspektroskopische Messung stören.

Chip bietet Platz für 200 000 Zellen

Ein weiterer Vorteil des neuen Mikrolochchips: Er bietet Platz für 200 000 Zellen, die innerhalb von wenigen Minuten auf ihr Loch rutschen. »Nur wenn die Probe groß genug ist, kann man zirkulierende Tumorzellen überhaupt finden, weil sie im Blut in nur sehr kleiner Menge vorkommen. Ältere Chips haben rund 1000 Löcher. Das ist für diese Anwendung zu wenig«, erläutert Velten.

Die Tumorzellen auf dem Chip können mit einer Mikropipette einzeln entnommen und weiter untersucht werden. Denn der Unterdruck ist so gewählt, dass er die Zellen zwar festhält, aber nicht beschädigt. Eine molekularbiologische Analyse kann helfen Hinweise zu finden, warum ein Medikament bei den Tumorzellen gewirkt oder versagt hat.

Für den neuen Mikrolochchip sind auch zahlreiche andere Anwendungen denkbar, beispielsweise als Selektionssystem für Protein-produzierende Zellen, die für die Produktion von Biopharmazeutika wie Insulin notwendig sind. Zudem lassen sich Mikrochips mit exakt definierten Mikroporen als Substrate für In-vitro-Modelle von physiologischen Barrieren wie die Blut-Hirn-Schranke oder die Darmbarriere verwenden. Solche Barrieremodelle sind für die Entwicklung von Medikamenten außerordentlich interessant.

Der nächste Schritt ist es, Partner für die Adaptierung der Technologieplattform an verschiedene Anwendungen zu finden.

Externer Link: www.fraunhofer.de