technologiewerte.de – MOOCblick November 2017

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Sustainable Soil Management: Soil for life
Coen J. Ritsema (Wageningen University & Research) et al.
Start: 28.11.2017 / Arbeitsaufwand: 84-108 Stunden

Externer Link: www.edx.org

Forscher entwerfen Datenbus für Quantencomputer

Medieninformation der Universität Innsbruck vom 06.11.2017

Die Quantenwelt ist sehr fragil. Fehlerkorrekturcodes helfen, Quanteninformation vor Störungen zu schützen. Innsbrucker Quantenphysiker haben nun ein Verfahren entwickelt, mit dem unterschiedlich kodierte Bauteile wie Prozessor und Speicher miteinander verbunden werden können. Mit der in der Fachzeitschrift Nature Communications präsentierten Methode kann ein Datenbus für Quantencomputer konstruiert werden.

Quantencomputer werden in Zukunft Rechenaufgaben bewältigen, an denen herkömmliche Computer scheitern. Weil Objekte in der Quantenwelt aber sehr sensibel auf Störungen reagieren, sind der Umsetzung heute noch Grenzen gesetzt. Obwohl die Systeme mit hohem Aufwand gegenüber Umwelteinflüssen abgeschirmt werden, können bisher im Labor nur kleine Protoypen für Quantencomputer gebaut werden. Die Fehleranfälligkeit lässt sich reduzieren, indem die Quanteninformation nicht in einem einzelnen Quantenteilchen gespeichert, sondern in einer größeren Anzahl an Quantenobjekten kodiert wird. Diese logischen Quantenbits sind gegenüber Störungen unempfindlicher. In den vergangenen Jahren haben Theoretiker viele verschiedene Fehlerkorrekturcodes entwickelt und diese für unterschiedliche Aufgaben optimiert. Physiker Hendrik Poulsen Nautrup und Hans Briegel vom Institut für Theoretische Physik der Universität Innsbruck und Nicolai Friis, nun am Institut für Quantenoptik und Quanteninformation in Wien, haben ein Verfahren gefunden, mit dem Quanteninformation zwischen unterschiedlichen, kodierten Systemen ausgetauscht werden kann.

Schnittstelle zwischen Prozessor und Speicher

Wie klassische Rechner kann auch der Quantencomputer der Zukunft aus unterschiedlichen Bauteilen bestehen. Schon heute existieren im Labor erste Quantenprozessoren und Quantenspeicher. Für sie können unterschiedliche Verfahren eingesetzt werden, um logische Quantenbits zu kodieren: für Quantenprozessoren zum Beispiel sogenannte „Color“ Codes und für Quantenspeicher „Surface“ Codes. „Damit diese beiden Systeme quantenmechanisch miteinander sprechen können, müssen sie verschränkt werden“, sagt Doktorand Hendrik Poulsen Nautrup. „Wir haben ein Verfahren entwickelt, mit dem unterschiedlich kodierte Quantensysteme verbunden werden können.“ Dabei handelt es sich um lokale Eingriffe an einzelnen Elementen des kodierten Quantenbits. Die Wissenschaftler sprechen auch von „Gitterchirurgie“, mit der Systeme wie ein Quantenspeicher und ein Prozessor verschränkt werden können. Nachdem die beiden Systeme vorübergehend miteinander „vernäht“ wurden, kann die Quanteninformation vom Prozessor in den Speicher oder umgekehrt geladen werden. „Ähnlich wie ein Datenbus im klassischen Computer, kann diese Methode verwendet werden, um die Bauteile eines Quantencomputers miteinander zu verbinden“, erläutert Poulsen Nautrup.

Das neu entwickelte Verfahren soll demnächst im Labor umgesetzt werden und stellt einen weiteren Schritt auf dem Weg zu einem universellen Quantencomputer dar. Die Arbeit entstand im Rahmen des Doktoratskolleg Atoms, Light, and Molecules an der Universität Innsbruck und wurde vom österreichischen Wissenschaftsfonds und der Templeton World Charity Foundation finanziell unterstützt.

Publikation:
Fault-tolerant interface between quantum memories and quantum processors. Hendrik Poulsen Nautrup, Nicolai Friis, and Hans J. Briegel. Nature Communications 2017 DOI: 10.1038/s41467-017-01418-2

Externer Link: www.uibk.ac.at

Im Auge des Betrachters

Pressemitteilung der Hochschule Coburg vom 07.11.2017

Mithilfe neuer Entwicklungen lassen sich Smartphones und Co. bedienen, ohne sie berühren zu müssen. Gesteuert werden könnten sie über einfache Handgesten.

Forscher der Hochschule Coburg haben untersucht, ob sich die Reflektionen im menschlichen Auge nutzen lassen, um diese Art der Bedienung zu ermöglichen. Und tatsächlich: Schaut ein Nutzer auf sein Smartphone oder Tablet spiegelt sich in seinen Augen die Umgebung um ihn herum. Bewegt er nun die Hände innerhalb dieser Umgebung, erkennt das Gerät diese Bewegung und kann die entsprechenden Befehle umsetzen.

Benötigt wird dafür nur die normale Frontkamera des Geräts. „Das muss also keine langfristige Zukunftsvision sein, sondern könnte schon mit der heutigen Generation von Smartphones umgesetzt werden“, erklärt Prof. Dr. Jens Grubert. Der Professor für Mensch-Maschine-Interaktion im Internet der Dinge erforscht Techniken, die die Bedienung von mobilen Endgeräten erleichtern können.

Diese Erkenntnisse zur Interaktion mit Mobilgeräten mittels Augenreflektionen stellten er und sein Mitarbeiter Daniel Schneider auf den international Konferenzen IEEE International Symposium on Mixed and Augmented Reality (IEEE ISMAR) in Nantes (Frankreich) und auf der ACM International Conference on Interactive Surfaces and Spaces (ACM ISS) in Brighton (England) vor.

Externer Link: www.hs-coburg.de

Kabeleigenschaften schnell und einfach bestimmen

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.11.2017

Die Menge an benötigten Kabeln im Auto unterzubringen, ist alles andere als einfach. Simulationen können dabei helfen, allerdings müssen zuvor die Eigenschaften der einzelnen Kabel genau bestimmt werden. Mit der automatisierten Anlage MeSOMICS haben Autobauer die Möglichkeit, diese Parameter nun erstmals schnell und einfach selbst zu ermitteln – und so Zeit und Geld zu sparen.

Im Auto herrscht ein ziemliches Kabelgewirr: Bis zu drei Kilometer Kabel sind dort verbaut. Sie versorgen Motoren, Sensoren, Bordcomputer, Einparkhilfen, Lampen und Co. Diese große Anzahl an Kabeln unterzubringen, ist keine einfache Angelegenheit: Sie dürfen sich weder verheddern noch über scharfe Kanten rutschen, an denen sie aufgescheuert werden – schließlich könnte dies einzelne Komponenten ausfallen lassen, eventuell die Sicherheit der Insassen beeinträchtigen und zu teuren und imageschädigenden Rückrufaktionen der Fahrzeuge führen.

Viele Automobilhersteller setzen daher auf die vom Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM und vom Fraunhofer-Chalmers Research Center FCC entwickelte Software IPS Cable Simulation. Mit ihr können sie in Echtzeit simulieren, wie Kabel im Fahrzeug am besten verlegt werden. Doch auch die beste Simulation kann nur dann zu brauchbaren Ergebnissen kommen, wenn als Basis für die Berechnung die realistischen physikalischen Parameter eingegeben werden. Bei Kabeln sind solche Parameter die Biege-, Torsions- und Zugsteifigkeit. Bislang war es sehr zeitaufwändig, solche Werte zu bestimmen. Die Kabelproben mussten an ein Labor versandt werden, wo sie dann auf unterschiedlichen Prüfmaschinen vermessen wurden. Die anschließende Ermittlung der benötigten Steifigkeitsparameter aus den Messdaten erfordert zusätzliches Expertenwissen und ist insgesamt ein sehr zeitaufwändiger Prozess.

Datensätze liegen in nur drei Stunden vor

Nun halten die Kunden die gewünschten Datensätze innerhalb von drei Stunden in den Händen. Möglich macht es die hochautomatisierte Messmaschine MeSOMICS, kurz für »Measurement System for the Optically Monitored Identification of Cable Stiffnesses«, die Forscher am Fraunhofer ITWM entwickelt haben. »Mit unserer Anlage können die Kunden ihre Kabel direkt in ihrem Unternehmen vermessen – das spart nicht nur viel Zeit, sondern auch Kosten«, sagt Dr.-Ing. Michael Kleer, Wissenschaftler am Fraunhofer-Institut in Kaiserslautern. Die Messung läuft automatisch, auch nicht speziell dafür ausgebildete Mitarbeiter können sie daher übernehmen. Sie müssen das Kabel lediglich in die Maschine einspannen und die Messung starten. Im Inneren der Maschine wird das Kabel in einem speziellen Messzyklus deformiert und es werden die Kräfte und Momente gemessen, die dazu nötig sind. »Der Mess- und Auswerteprozess ist komplett in MeSOMICS verlagert, die Maschine ist somit extrem leicht zu bedienen«, verdeutlicht Kleer. Als Ergebnis erhält der Mitarbeiter zum einen Fotos des gebogenen Kabels mit überlagert dargestelltem theoretischen Verlauf der Biegelinie für den ermittelten Steifigkeitswert. Er sieht also auf den ersten Blick, ob die Parameter mit der Realität übereinstimmen. Zum anderen bekommt er die Steifigkeiten als Datensatz, den er direkt in die Simulation einlesen kann.

Verbesserung der bisherigen Messmethode

Eine weitere Besonderheit: Die Maschine bildet die reale Einbaukrümmung ab. Sie biegt das Kabel also so weit durch, wie es später auch im Fahrzeug durchgebogen würde. Bislang war dies nicht der Fall: Beim generell üblichen 3-Punkt-Biegeversuch wird das Werkstück auf zwei Auflagen gelegt und in der Mitte von einem Prüfstempel ein kleines Stück weit herunter gedrückt. Sinnvoll ist dieser Ansatz allerdings nur für sehr steife Bauteile – für Kabel also weniger. »Wir haben den Versuchsaufbau daher so umgewandelt, dass er wesentlich größere Durchbiegungen zulässt und dadurch Kabel und Schläuche in einem sehr realitätsnahen Verformungszustand vermisst«, erläutert Kleer.

Die MeSOMICS-Anlage ist bereits serienmäßig verfügbar – als skalierbare Lösung, die an die Erfordernisse des Kunden angepasst wird. In den nächsten Jahren wollen die Forscher die Technologie noch weiter entwickeln. So arbeiten sie unter anderem daran, die Messmaschine mit einer Klimakammer auszustatten, um verschiedene Temperaturen und Luftfeuchten einzustellen und diese in die Messung sowie die Simulation einfließen zu lassen.

Externer Link: www.fraunhofer.de