Quanten-Effekt erstmals bewiesen: Die Spin-Rotations-Kopplung

Presseaussendung der TU Wien vom 17.02.2020

Vor über 30 Jahren wurde er vorausgesagt, nun konnte der Effekt von einem Team der TU Wien erstmals nachgewiesen werden: Der Spin von Neutronen zeigt eine bestimmte Art von Trägheit.

Stellen wir uns vor, wir tanzen über die Wiese und drehen uns dabei rasch um die eigene Achse. Und irgendwann hopsen wir dabei auf ein rotierendes Karussell. Die Drehung des Karussells beeinflusst augenblicklich unsere eigene Rotation, ein Drehimpuls wird übertragen – je nachdem, wie gut unser Gleichgewichtssinn trainiert ist, endet das möglicherweise schmerzhaft. Kann man ähnliche Effekte auch bei Quantenteilchen beobachten?

Nach jahrelanger Vorarbeit gelang es nun einem Team der TU Wien, den Eigendrehimpuls von Neutronen zu untersuchen, die von einem nichtrotierenden in ein rotierendes Bezugssystem überwechseln. Dazu musste eine neuartige Magnetspule entwickelt werden, die den Neutronenstrahl einem rotierenden Magnetfeld aussetzt. Dabei wurde nachgewiesen: Ähnlich wie klassische Objekte zeigt der Spin des Neutrons eine gewisse Trägheit, obwohl der Neutronen-Spin selbst keine Masse besitzt und grundsätzlich nur mit den Gesetzen der Quantenphysik verstanden werden kann. Die Ergebnisse des Experiments wurden nun im Fachjournal „Nature Partner Journal Quantum Information“ veröffentlicht.

Was sich dreht, will sich weiterdrehen

„Trägheit ist ein Grundprinzip, mit dem wir ständig zu tun haben“, sagt Stephan Sponar vom Atominstitut der TU Wien. „Wenn wir in einem Zug sitzen, der sich völlig gleichförmig dahinbewegt, dann fühlt sich das genauso an, als würden wir unbewegt zu Hause auf einem Sessel sitzen. Doch wenn wir das Bezugssystem wechseln, etwa wenn wir aus dem Zug auf die Wiese springen, dann werden wir unsanft abgebremst, wir spüren Kräfte aufgrund der Trägheit unserer Masse.“

Bei Drehungen ist die Sache ähnlich: Auch ein drehendes Objekt behält seinen Drehimpuls bei, solange kein äußeres Drehmoment auf das Objekt einwirkt. Doch hier wird die Sache kompliziert, wenn man den Blick auf Quantenteilchen richtet: „Teilchen wie Neutronen oder Elektronen besitzen nämlich eine ganz besondere Art des Drehimpulses – den Spin“, erklärt Armin Danner, Erstautor der aktuellen Publikation.

Der Spin ist der Eigendrehimpuls des Teilchens. Oft wird er mit der Eigendrehung eines Planeten um seine eigene Achse verglichen, aber der Vergleich trifft die Sache nicht besonders gut: Der Spin ist nämlich auch bei Quantenteilchen zu beobachten, die punktförmig sind, die also im klassischen Sinn gar nicht um eine Achse rotieren können. „Den Spin kann man sich vorstellen als Eigendrehung, zusammengezogen auf einen unendlich kleinen Punkt“, sagt Armin Danner. Der Spin lässt sich nur mit dem Formalismus der Quantentheorie vollständig erklären, zu unserer Alltagserfahrung passt er nicht so richtig. Das Konzept der Trägheit, das wir aus dem Alltag kennen, bleibt aber hier trotzdem noch gültig.

Kopplung zwischen Spin und Magnetfeld

„Schon 1988 wurde postuliert, wie sich ein Neutron verhalten soll, wenn es von einem nichtrotierenden in ein rotierendes Bezugssystem wechselt, und wieder zurück“, erzählt Prof. Yuji Hasegawa, Leiter der Arbeitsgruppe Neutroneninterferometrie des Atominstituts. „So wurde vorhergesagt, dass es eine Kopplung zwischen dem Neutronenspin und einem rotierenden Magnetfeld geben muss. Doch bisher ist es niemandem gelungen, diesen Effekt direkt in seiner quantenmechanischen Natur nachzuweisen. Auch wir haben einige Jahre und mehrere Anläufe dafür gebraucht, aber nun konnten wir den Kopplungseffekt eindeutig demonstrieren.“

Ähnlich wie ein Tänzer, der einen Eigendrehimpuls hat und sich dann plötzlich über ein rotierendes Karussell bewegt, wird das Neutron mit seinem Spin durch einen Bereich mit rotierendem Magnetfeld geschickt. Dadurch wird der Spin des Neutrons beeinflusst – allerdings so, dass es beim Verlassen des rotierenden Magnetfelds wieder genau dieselbe Orientierung hat wie am Anfang. Das heißt, die Drehachse des Eigendrehimpulses ist die gleiche. Beim Übertritt vom nicht rotierenden Bereich in den rotierenden Bereich und wieder zurück treten allerdings Trägheitsphänomene auf, die quantenmechanisch detektiert werden können.

Dazu muss man den Neutronenstrahl in zwei Pfade aufspalten: Einer wird durch das rotierende Magnetfeld gelenkt, der andere nicht. Am Ende werden beide Pfade miteinander vereint. Nach den Regeln der Quantenphysik legt jedes einzelne Neutron beide Pfade gleichzeitig zurück. Die Trägheitskräfte führen dazu, dass sich die Wellenlänge entlang des einen Weges lokal ändert – und das bestimmt, wie sich die beiden Teilchen-Wellen der beiden Pfade nach der Vereinigung gegenseitig verstärken oder auslöschen.

Die größte Herausforderung dabei war das Design einer speziellen Spule, mit der man ein rotierendes magnetisches Feld erzeugen kann. In die Spule muss ein kleines Fenster eingebaut werden, durch das der Neutronenstrahl gelangt – und gleichzeitig muss das Magnetfeld im Inneren der Spule exakt die richtige Form haben. Eine passende Geometrie wurde mittels Computer-Simulationen gefunden. Entwickelt und getestet wurde das System an der Neutronenquelle der TU Wien, die endgültigen Messungen wurden dann am ILL in Grenoble durchgeführt.

„Das Faszinierende daran ist, dass es sich hier um einen reinen Quanteneffekt handelt, den man zunächst auf klassische Weise nicht verstehen kann“, sagt Armin Danner. „Unser Alltagsverständnis von Drehimpuls und Rotation hilft uns hier scheinbar nicht weiter. Aber wir haben gezeigt, dass das klassische Konzept der Trägheit auch in den extremen Spezialfällen unserer Untersuchungen sinnvoll bleibt.“ (Florian Aigner)

Originalpublikation:
A. Danner et al., Spin-rotation coupling observed in neutron interferometry, npj Quantum Information 6, 23 (2020).

Externer Link: www.tuwien.ac.at

Nachhaltige Supermagnete aus dem 3D-Drucker

Presseaussendung der TU Graz vom 30.01.2020

Magnetwerkstoffe sind wichtiger Bestandteil elektrischer Produkte. Gefertigt werden sie meist mit herkömmlichen Produktionsverfahren unter Einsatz von seltenen Erden. Mehrere Forschungsteams der TU Graz arbeiten daran, sie umweltverträglicher herzustellen.

Ob in Windkraftanlagen, Elektromotoren, Sensoren oder magnetischen Schaltsystemen: Dauermagnete sind in vielen elektrischen Anwendungen verbaut. Gefertigt werden sie zumeist durch Sintern oder im Spritzguss-Verfahren. Durch die zunehmende Miniaturisierung der Elektronik und den damit einhergehenden geometrischen Anforderungen an Magnete stoßen diese herkömmlichen Produktionsmethoden immer öfters an ihre Grenzen. Additive Fertigungstechnologien hingegen bieten die notwendige Gestaltungsfreiheit, um Magnete herzustellen, die an die jeweiligen Anforderungen optimal angepasst sind.

Magnete nach Maß

Forschenden der TU Graz ist es nun gemeinsam mit Kolleginnen und Kollegen der Universitäten Wien und Erlangen-Nürnberg sowie mit einem Team von Joanneum Research gelungen, Supermagnete mittels laserbasiertem 3D-Druck herzustellen. Dabei wird Metallpulver des magnetischen Materials schichtweise aufgetragen, die Partikel werden durch Schmelzen miteinander verbunden. So entsteht ein Bauteil, das zur Gänze aus Metall besteht. Das Verfahren ist derart ausgereift, dass die Forschenden Magnete mit hoher relativer Dichte drucken und zugleich deren Mikrostruktur kontrollieren können. „Die Kombination dieser beiden Eigenschaften garantiert einen effizienten Materialeinsatz, weil wir damit die magnetischen Eigenschaften exakt auf die jeweilige Anwendung zuschneiden können“, so Siegfried Arneitz und Mateusz Skalon vom Institut für Werkstoffkunde, Fügetechnik und Umformtechnik der TU Graz.

Die Forschungsgruppe konzentrierte sich zunächst auf die Produktion von Neodym-Eisen-Bor-Magneten (NdFeB-Magneten). Neodym zählt zur Gruppe der sogenannten Seltenen Erden und bildet aufgrund seiner chemischen Eigenschaften die Basis für viele starke Dauermagnete, die in Computern, Smartphones und anderen wichtigen Anwendungen unersetzlich sind. Die Forschenden beschreiben ihre Arbeit ausführlich im Journal Materials. Es gibt jedoch auch Anwendungen wie beispielsweise elektrische Bremsen, Magnetschalter oder bestimmte Elektromotorsysteme, in denen die magnetische Stärke von NdFeB-Magneten nicht benötigt und auch nicht gewünscht ist.

Suche nach Alternativen zu Seltenerdmetallen

Siegfried Arneitz, Doktorand am Institut für Werkstoffkunde, Fügetechnik und Umformtechnik der TU Graz, setzt deshalb die Arbeit an 3D-gedruckten Magneten fort – aufbauend auf den bisherigen Forschungsergebnissen. In seiner Dissertation widmet sich Arneitz dem 3D-Druck von eisen- und kobaltbasierten Magneten (Fe-Co-Magnete). Dabei handelt es sich um vielversprechende Alternativen zu NdFeB-Magneten. In doppelter Hinsicht: Der Abbau von Seltenen Erden ist aufwendig und wenig nachhaltig, das Recycling dieser Metalle steckt noch in den Kinderschuhen. Fe-Co-basierte Magnete hingegen sind für die Umwelt weit weniger bedenklich.

Außerdem verlieren Seltenerdmetalle mit steigender Temperatur ihre magnetischen Eigenschaften, während spezielle Fe-Co basierte Legierungen selbst bei Temperaturen von 200 bis 400 Grad Celsius ihre magnetische Leistung behalten und sich durch eine gute Temperaturstabilität auszeichnen.

Erste Ergebnisse stimmen Arneitz zuversichtlich: „Bisherige theoretische Berechnungen haben gezeigt, dass die magnetischen Eigenschaften dieser Materialien sogar um das Doppelte bis Dreifache gesteigert werden können. Mit der Gestaltungsfreiheit, die der 3D-Druck bietet, sind wir zuversichtlich, diesem Ziel näher kommen zu können. In Kooperation mit verschiedenen Instituten werden wir weiter an diesem Thema arbeiten, um zukünftig für jene Bereiche alternative Magnetwerkstoffe anbieten zu können, in denen Neodym-Eisen-Bor-Magneten nicht notwendig sind.“ (Christoph Pelzl)

Originalpublikation:
„Influence of Melt-Pool Stability in 3D Printing of NdFeB Magnets on Density and Magnetic Properties”
in Materials 2020, 13, 139; doi:10.3390/ma13010139

Externer Link: www.tugraz.at

Das hörende Auto der Zukunft

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 03.02.2020

Wer heute ein neues Auto kauft, muss auf Features wie ferngesteuertes Einparken, automatisches Spurhalten oder Müdigkeitserkennung nicht verzichten. Autonome Fahrzeuge werden zukünftig auch über einen Hörsinn verfügen. Forscherinnen und Forscher am Fraunhofer-Institut für Digitale Medientechnologie IDMT in Oldenburg haben erste Prototypen für das Erkennen von Außengeräuschen wie Sirenen entwickelt.

Moderne Fahrzeuge verfügen über zahlreiche Fahrerassistenzsysteme, die den Autofahrer entlasten, ihm etwa beim Einparken helfen oder den toten Winkel überwachen. Kamera, Lidar und Radar erfassen die relevanten Objekte in der Umgebung, sie fungieren quasi als Augen. Was den Automobilen bislang noch fehlt, ist der Hörsinn, sprich Systeme, die in der Lage sind, Außengeräusche wahrzunehmen und einzuordnen. Sie werden künftig im Zusammenspiel mit intelligenten Radar- und Kamerasensorik die Grundlage für das autonome Fahren bilden. Um das »hörende Auto« zu realisieren, entwickeln Forscherinnen und Forscher am Fraunhofer IDMT in Oldenburg KI-basierte Technologien zur akustischen Ereigniserkennung.

»Für autonome Fahrzeuge existieren externe akustische Wahrnehmungssysteme bisher nicht, trotz Ihres hohen Anwendungspotenzials. Sie signalisieren beispielsweise im Bruchteil einer Sekunde, wenn ein Fahrzeug mit eingeschaltetem Martinshorn naht. So weiß das autonome Fahrzeug, das es ausweichen muss, damit eine Rettungsgasse gebildet werden kann«, sagt Danilo Hollosi, Gruppenleiter Akustische Ereignisdetektion am Fraunhofer IDMT in Oldenburg. Neben der Sirenenerkennung gibt es zahlreiche weitere Szenarien, wo ein akustisches Frühwarnsystem unerlässlich ist: beim Einbiegen in Spielstraßen, aber auch zum Erkennen von gefährlichen Situationen oder Fehlern – etwa wenn ein Nagel im Reifen steckt. Darüber hinaus kann das System die Zustandsüberwachung des Fahrzeugs übernehmen oder per Spracherkennung als Notrufsäule fungieren.

KI-basierte Algorithmen analysieren die Geräusche

Um das »hörende Auto« zu verwirklichen, bringen die Entwicklerinnen und Entwickler am Fraunhofer IDMT in Oldenburg spezielle Projekterfahrungen im Bereich Automotive sowie gruppenübergreifende Kompetenzen mit. Zu den Herausforderungen zählen die optimale Signalaufnahme durch Sensorpositionierung, die Signalvorverarbeitung und – verbesserung sowie die Störgeräuschbefreiung. Eigene Beamforming-Algorithmen ermöglichen die dynamische Lokalisation von sich bewegenden Schallquellen, wie beispielsweise das Martinshorn an einem Einsatzfahrzeug. Die Ereignis-Erkenner des IDMT wurden zuvor über Machine-Learning-Verfahren mit den akustischen Signaturen der relevanten Töne trainiert. Hierfür wurden eigens akustische Bibliotheken angelegt. So entstehen intelligente Sensorplattformen mit effektiver Erkennerleistung. Eigens entwickelte KI-basierte Algorithmen zur Audioanalyse ermitteln die Stör- und Zielgeräusche. »Wir wenden Methoden des Maschinellen Lernens an. Wir trainieren unsere Algorithmen mit unterschiedlichsten, zuvor erhobenen Geräuschen«, so Hollosi. Gemeinsam mit Industriepartnern wurden bereits erste Prototypen realisiert, die Mitte des kommenden Jahrzehnts marktreif sein sollen.

Die akustische Sensorik der IDMT-Forscherinnen und -Forscher setzt sich aus eingehausten Mikrofonen, Steuergerät und Software zusammen. Außen am Fahrzeug angebracht nehmen die Mikrofone den Luftschall auf. Die Sensoren leiten die Audiodaten an ein spezielles Steuergerät weiter, wo diese dann zu relevanten Metadaten weiterverarbeitet werden. In vielen anderen Anwendungsfällen, zum Beispiel im Sicherheitsbereich, in der Pflege oder bei Consumer-Produkten, verwerten smarte Sensoren die Audiodaten direkt und geben nur Metadaten weiter.

Die computerbasierten Verfahren zur Ereigniserkennung des Forscherteams lassen sich in angepassten Varianten auch in anderen Branchen und Märkten einsetzen, etwa zur Qualitätssicherung in der industriellen Produktion. Hier verarbeiten intelligente akustische Sensoren batteriebetrieben Audiosignale von Maschinen und Anlagen. Aus den Informationen, die drahtlos an eine Auswerteeinheit weitergeleitet werden, lassen sich Rückschlüsse auf den Zustand der Fertigungsanlagen ziehen und mögliche Schäden vermeiden. Automatische Spracherkenner ermöglichen berührungslose Dokumentationssysteme für professionelle Einsatzzwecke, beispielsweise in der Turbinenwartung.

Externer Link: www.fraunhofer.de

technologiewerte.de – MOOCblick Februar 2020

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Digital Transformation in Business
Henry Lucas (University of Maryland) et al.
Start: 10.02.2020 / Arbeitsaufwand: 56-70 Stunden

Externer Link: www.edx.org