Markierte Zellen als Fenster in den Körper

Pressemitteilung der Universität Tübingen vom 05.09.2017

Tübinger Forscher entwickeln Verfahren, das Zellen in Mäusen gezielt sichtbar macht und helfen könnte, Tierversuche zu reduzieren

Eine neue und besonders zuverlässige Methode zur Markierung von Zellen kann Forschungen zu Krankheiten wie Herzinfarkt, Diabetes oder Alzheimer vereinfachen und den Einsatz von Versuchstieren reduzieren: Wissenschaftlerinnen und Wissenschaftler der Universität Tübingen haben ein Verfahren entwickelt, mit dem sie bestimmte Zelltypen in Mäusen gezielt markieren und ihr Verhalten durch Positronen-Emissions-Tomografie (PET) verfolgen können. Mit dem „PET-basierten Cell Tracking“ kann man komplexe Lebensprozesse im Körper beobachten, ohne die Versuchstiere mit invasiven Methoden zu belasten.

„Die Möglichkeit, das Verhalten ausgewählter Zellpopulationen im lebenden Tier nichtinvasiv und in Aktion zu beobachten, eröffnet neue Wege für die Erforschung, Erkennung und Behandlung von Krankheiten. Gleichzeitig reduziert sie die Belastung und Anzahl der Versuchstiere gegenüber bisherigen Methoden“, erklärt Professor Robert Feil. Er und sein Team vom Interfakultären Institut für Biochemie (IFIB) der Universität Tübingen führten die Studie gemeinsam mit dem Werner Siemens Imaging Center und den Abteilungen für Kardiologie, Pathologie und Physiologie des Universitätsklinikums Tübingen sowie der Nuklearmedizin des Universitätsklinikums Münster durch. Ihre Ergebnisse wurden nun in der Fachzeitschrift Nature Communications veröffentlicht.

Gewebe und Organe bestehen aus vielen verschiedenen Zelltypen, wie Blut-, Knochen-, Leber-, Muskel- oder Nervenzellen. Die Wanderung und/oder Veränderung der Anzahl bestimmter Zelltypen ist ein normaler Körperprozess, aber auch Merkmal zahlreicher Krankheiten. Zum Beispiel führt die Vermehrung und Migration von Immunzellen zu Entzündungen, unkontrolliertes Zellwachstum löst Krebs oder Arteriosklerose aus und der Verlust bestimmter Zellpopulationen ist die Ursache für Diabetes mellitus oder Alzheimer-Demenz. Diese Vorgänge beruhen auf komplexen Interaktionen verschiedenster Zelltypen. Um sie zu verstehen, muss der gesamte Organismus in den Blick genommen werden.

Die neue Methode „PET-basiertes Cell Tracking“ beruht auf einem künstlichen PET-Reporter-Enzym, das durch einen genetischen Trick in jedem Zelltyp der Maus gebildet werden kann (beispielsweise nur in T-Zellen des Immunsystems). Das Enzym bewirkt, dass sich in diesen spezifischen Zellen eine radioaktive Substanz, der sogenannte PET-Tracer, ansammelt. Die für das Tier ungefährliche radioaktive Strahlung wird in einem Positronen-Emissions-Tomografen erkannt und am Bildschirm sichtbar gemacht. Die PET wird schon lange auch bei Menschen eingesetzt. Als nichtinvasives Verfahren belastet sie den Organismus weniger als viele andere Untersuchungsmöglichkeiten.

Zur Analyse des Zellverhaltens in Mäusen wurden bisher meist Verfahren verwendet, die nur für wenige Zelltypen in Frage kamen, sehr belastende Untersuchungen nötig machten oder die Tötung der Versuchstiere erforderten. „Durch den Einsatz moderner Bildgebungsmethoden können wir eine Verringerung der Versuchstierzahl um bis zu 80 Prozent erreichen“, sagt Dr. Martin Thunemann, Erstautor der Studie, der mittlerweile an der University of California in San Diego forscht. „Die markierten Zellpopulationen können mit unserer Methode nichtinvasiv in lebenden Mäusen über viele Wochen verfolgt werden, sodass die gleiche Gruppe von Tieren wiederholt untersucht werden kann.“ In der Studie markierten die Autoren Blutplättchen, Herzmuskelzellen oder T-Zellen in Versuchsmäusen und verfolgten dann ihr Verhalten bei Herzinfarkt oder Entzündungsreaktionen.

Das neu entwickelte bildgebende Reportersystem könne zur Darstellung jedes beliebigen Zelltyps verwendet und mit beliebigen Krankheitsmodellen kombiniert werden, erklärt Feil. Es komme daher für viele Anwendungen in der biomedizinischen Grundlagenforschung sowie zur Untersuchung von Krankheiten in Frage. „Denkbar ist unter anderem die nichtinvasive Analyse von Herzkrankheiten, Diabetes, Entzündungen sowie Tumorbildung und Metastasierung. Außerdem könnte man in der regenerativen Medizin die Entwicklung transplantierter Zellen verfolgen. Auch für die Pharmaindustrie ist die Technik interessant, um neue Wirkstoffe und Behandlungsmethoden zu testen.“

Die Arbeit der Forscherinnen und Forscher zum „PET-basiertem Cell Tracking“ passt sich in die „Tübinger Grundsätze zu Tierschutz und Tierversuchen“ ein. In ihnen legt die Universität verbindliche Regeln und Zielvorgaben für einen verantwortungsvollen Umgang mit Tierversuchen fest und fördert die Forschung an neuen Methoden. Auch wenn die Alternativen inzwischen erheblich verbessert wurden, können die Lebenswissenschaften in absehbarer Zeit nicht vollständig auf Tierversuche verzichten. Für die Forschung am komplexen Zusammenspiel von Zellen, Geweben und Organen im Gesamtorganismus sowie an neuen Wirkstoffen und Behandlungsmethoden werden weiterhin Tierversuche notwendig sein. Daher ist es wichtig, die Untersuchungsmethoden so zu optimieren, dass die Anzahl und Belastung der Versuchstiere verringert wird. Es müssen Verfahren entwickelt werden, die die Quantität und Qualität der pro Tier erhobenen Daten erhöhen und deren Ergebnisse leicht auf den Menschen übertragbar sind.

Publikation:
Thunemann M, Schörg BF, Feil S, Lin Y, Voelkl J, Golla M, Vachaviolos A, Kohlhofer U, Quintanilla-Martinez L, Olbrich M, Ehrlichmann W, Reischl G, Griessinger CM, Langer HF, Gawaz M, Lang F, Schäfers M, Kneilling M, Pichler BJ, Feil R. Cre/lox-assisted non-invasive in vivo tracking of specific cell populations by positron emission tomography. Nature Communications. 2017; DOI: 10.1038/s41467-017-00482-y

Externer Link: www.uni-tuebingen.de

Hämorrhagische Fieber: Hemmung der Entzündung verhindert Kreislaufkollaps

Medienmitteilung der Universität Basel vom 17.08.2017

Hämorrhagische Fieber sind gefährliche Viruskrankheiten, die oft tödlich ausgehen. Forschende der Universität Basel haben nun Botenstoffe des Immunsystems identifiziert, welche bei infizierten Mäusen zu Schockzuständen führen. Diese Resultate eröffnen neue Möglichkeiten zur Entwicklung von lebensrettenden Therapien. Sie wurden in der Fachzeitschrift Cell Host & Microbe veröffentlicht.

Das Lassavirus aus der Familie der Arenaviren wird von Nagetieren in Westafrika auf den Menschen übertragen und verursacht jährlich mehrere zehntausend Todesfälle durch hämorrhagisches Fieber, ähnlich dem Ebolavirus. Im Endstadium kommt es dabei oft zu Schockzuständen. Die Mechanismen, welche zu tödlichem Kreislaufversagen führen, waren bislang aber nur unzureichend bekannt.

Wie eine Forschergruppe um Prof. Daniel Pinschewer vom Departement Biomedizin der Universität Basel nun berichtet, liegt eine wichtige Ursache des Kreislaufversagens nach Arenavirusinfektionen in der überschiessenden Entzündungsreaktion, welche durch das Virus hervorgerufen wird.

Entscheidende Botenstoffe identifiziert

Bei Virusinfektionen bilden T-Zellen eine zentrale Komponente unserer Körperabwehr. In früheren Arbeiten hatte die Gruppe um Prof. Pinschewer aber herausgefunden, dass die Immunzellen bei der Infektion mit dem Lassavirus paradoxerweise zur Krankheitsentstehung beitragen können. In der vorliegenden Studie wurden nun anhand eines verwandten Arenavirus die zugrundeliegenden Mechanismen entschlüsselt.

Übereifrige T-Zellen stimulieren offenbar Fresszellen dazu, dass sie grosse Mengen von Stickstoffmonoxid (NO) produzieren. Dies ist zwar ein wichtiger Abwehrmechanismus bei bakteriellen Infektionen, hilft aber nicht gegen Viren. Bei Tieren, die mit dem Arenavirus infiziert sind, erweiterte NO aber die Blutgefässe, führte zum Ausschwitzen von Flüssigkeit ins Gewebe und dadurch zur Verminderung des effektiven Blutvolumens und schliesslich zum Kreislaufkollaps.

Wie die Forscher weiter herausfanden, bedarf die NO-Produktion durch Fresszellen des Botenstoffes Interferon-gamma, wie er von T-Zellen produziert wird. Wenn dieser Botenstoff medikamentös blockiert wurde, blieben die Mäuse zwar anfällig für die Virusinfektion, doch erlitten sie keinen Kreislaufkollaps und überlebten weitgehend unbeschadet.

Hoffnung auf neue Therapieansätze

Die Therapiemöglichkeiten bei einer Lassavirus-Infektion und anderen viralen hämorrhagischen Fiebern bleiben unzulänglich. Medikamente zur Blockierung von Interferon-gamma beziehungsweise seiner Wirkung werden im Menschen bereits angewandt. Prof. Pinschewer hofft, dass die Resultate der vorliegenden Studie dazu beitragen werden, diese Medikamente allenfalls erfolgreich zur Behandlung von hämorrhagischem Fieber einzusetzen.

Originalbeitrag:
Melissa M. Remy, Mehmet Sahin, Lukas Flatz, Tommy Regen, Lifen Xu, Mario Kreutzfeldt, Benedict Fallet, Camille Doras, Toni Rieger, Lukas Bestmann, Uwe-Karsten Hanisch, Beat A. Kaufmann, Doron Merkler, Daniel D. Pinschewer
Interferon-γ-Driven iNOS: A Molecular Pathway to Terminal Shock in Arenavirus Hemorrhagic Fever
Cell Host & Microbe (2017), doi: 10.1016/j.chom.2017.07.008

Externer Link: www.unibas.ch

Im Strom der Bläschen

Presseinformation der LMU München vom 21.07.2017

In Zellvesikeln spielen Ionenkanäle bei zahlreichen Transportvorgängen eine entscheidende Rolle. LMU-Wissenschaftler haben nun eine Methode entwickelt, mit der sie diese molekularen Schleusen spezifischer als bisher untersuchen können.

In Tierzellen bilden kleine Bläschen membranumgebene Vesikel, die als Endo- und Lysosomen bezeichnet werden und an zahlreichen Transportprozessen beteiligt sind. Ionenkanäle, durch die geladene Teilchen durch die Vesikelmembran geschleust werden, nehmen dabei eine Schlüsselposition ein. Defekte in diesem System spielen für die Entstehung zahlreicher Stoffwechselkrankheiten eine wichtige Rolle. Deshalb ist die Entschlüsselung ihrer Funktion auch therapeutisch bedeutsam. PD Christian Grimm und Professor Christian Wahl-Schott vom Department Pharmazie der LMU gehören zu den europaweit führenden Experten für die Untersuchung von endolysosomalen Ionenkanälen mithilfe der sogenannten Patch-Clamp-Technik, die sie in der aktuellen Ausgabe des Fachmagazins Nature Protocols beschreiben. Dem LMU Team ist es am von Professor Martin Biel geleiteten Lehrstuhl für Pharmakologie nun gelungen, die Methode so weiter zu entwickeln, dass spezifisch bestimmte Vesikel analysiert werden können. Dies eröffnet ganz neue Perspektiven, gezielt einzelne Ionenkanäle anzusteuern und zu modifizieren. Über die Weiterentwicklung der Methode berichten die Wissenschaftler in der aktuellen Ausgabe des Journals Cell Chemical Biology.

Das endolysosomale System der Zelle besteht aus sogenannten frühen und späten Endosomen, sowie Recycling-Endosomen und Lysosomen. Die verschiedenen Vesikel-Typen erfüllen unterschiedliche Aufgaben: Frühe Endosomen nehmen in der Nähe der Zellmembran Partikel auf, die dann entweder über die Recycling-Endosomen zurück an die Zellmembran gelangen, oder zu den späten Endosomen und dann zu den Lysosomen transportiert werden, wo sie mithilfe von Enzymen zerlegt werden. Dieses System ist an zahlreichen Stoffwechselprozessen beteiligt und spielt auch bei der Regulierung des Schwermetallhaushalts oder für die korrekte Lokalisation bestimmter Membranrezeptoren eine wichtige Rolle. Dabei sind eine Vielzahl verschiedener Ionenkanäle involviert: „Laut Proteomstudien gibt es bis zu 70 verschiedene Ionenkanal-Transportproteine im Lysosom und Endosom“, sagt Grimm.

Mit der Patch-Clamp-Technik können die Wissenschaftler den Stromfluss durch einzelne Ionenkanäle messen und so feststellen, ob der Kanal aktiv oder inaktiv ist. Dazu saugen die Forscher einen kleinen Membranbereich mit einer Mikropipette leicht an. Mit einer Mikroelektrode legen sie anschließend eine Prüfspannung an und schicken einen Strom durch die Saugelektrode. „Allerdings sind die Vesikel in ihrem ursprünglichen Zustand zu klein, um von der Patch-Pipette erfasst zu werden, deshalb müssen sie vor der Messung vergrößert werden“, sagt Grimm. Die bisherigen pharmakologischen Tools hierfür vergrößerten allerdings unspezifisch alle endolysosomalen Vesikel-Typen. Auf der Suche nach besseren Wirkstoffen screenten die Wissenschaftler verschiedene Substanzen und entdeckten, dass eine bestimmte Kombination zweier Bio-Toxine sehr selektiv nur frühe Endosomen vergrößert, indem diese Vesikel zur Fusion angeregt werden. Außerdem konnten sie zeigen, dass ein weiteres Molekül selektiv nur späte Endosomen und Lysosomen vergrößert, während Recycling-Endosomen von keinem dieser Stoffe beeinflusst werden.

„Das ist ein großer Fortschritt, weil wir nun zwei Toolsets für eine spezifischere Herangehensweise haben und gezielt untersuchen können, welcher Kanal in welchem Vesikel aktiv ist“, sagt Grimm. Mit ihrem neuen Ansatz konnten die Wissenschaftler nachweisen, dass sogenannte TRPML3-Ionenkanäle, die den Kationenhaushalt und den pH-Wert regulieren, sowohl in frühen als auch in späten Endosomen und Lysosomen aktiv sind, während der verwandte TRPML1-Ionenkanal nur in späten Endosomen und Lysosomen, nicht jedoch in frühen Endosomen vorkommt. TRPML-Kanäle spielen bei der Entstehung zahlreicher Krankheiten eine Rolle, etwa bei der Mukolipidose, einer seltenen Stoffwechselkrankheit, die das Nervensystem beeinträchtigt. „Mit unserer weiterentwickelten Technik haben wir erstmals einen selektiven Zugang zu diesen Ionenkanälen. Das ist auch wichtig für mögliche therapeutische Anwendungen, mit denen gezielt bestimmte Kanäle gehemmt werden sollen“, sagt Grimm.

Publikationen:
Nature Protocols 2017
Cell Chemical Biology 2017

Externer Link: www.uni-muenchen.de

Virologen der Saar-Uni entdecken neuen Mechanismus, der die Hautkrebs-Entstehung begünstigt

Pressemitteilung der Universität des Saarlandes vom 23.06.2017

Wer ohne Sonnenschutz im Sommer unterwegs ist, setzt seine Haut mitunter zu viel UV-Strahlung aus, die Hautkrebs verursachen kann. Forschern der Saar-Uni um Professorin Sigrun Smola ist es nun gelungen, einen bisher unbekannten Mechanismus zu entschlüsseln, der Hautkrebs fördern kann. Dabei spielen Haut-Papillomviren eine zentrale Rolle. Sie unterbrechen den natürlichen Schutzmechanismus der Haut. Beobachten konnten sie dies bei Patienten, die an einer seltenen Hautkrankheit „Epidermodysplasia verruciformis“ leiden und besonders anfällig sind, an sonnenbestrahlten Stellen Hautkrebs zu bekommen. Der Gendefekt führt dazu, dass sich in den betroffenen Hautpartien bestimmte Papillomviren vermehren können. Die Ergebnisse wurden gestern im Fachmagazin „PLOS Pathogens” veröffentlicht.

Die Rolle humaner Papillomviren ist bei der Entstehung von Gebärmutterhalskrebs gut erforscht. Auch bei Hautkrebs wird schon seit längerem vermutet, dass bestimmte Haut-Papillomviren eine Rolle spielen und die krebsfördernde Wirkung von UV-Licht begünstigen können. Anna Marthaler, weitere Mitarbeiter aus dem Team von Sigrun Smola und ihre Projektpartner aus dem Universitätsklinikum des Saarlandes bringen mit ihren Forschungsergebnissen nun Licht ins Dunkel.

Bei gesunden Menschen dämmen bestimmte Moleküle, wie der Faktor C/EBPα, die schädliche Wirkung von UV-Licht auf die Haut ein. Die Wissenschaftler stellten fest, dass die Papillomviren in den befallenen Hautpartien diesen Schutzmechanismus unterbrechen können. Hierfür reichte in ihren Experimenten mit organotypischen Hautkulturen ein einziges virales Protein, das so genannte HPV8 E6 Onkoprotein, aus. Als Folge wird die Arbeit einer bestimmten microRNA-203 gestört, die Stammzellen in Schach hält. Der Einfluss des viralen Onkoproteins führte daher dazu, dass diese „Bremse“ gelöst wird und sich Hautzellen mit Stammzellcharakter besser vermehren können. Viele Tumorarten haben ihren Ursprung in Stammzellen, die sich dann – wie im Falle des Hautkrebses durch zu viel UV-Licht – in Tumore verändern können.

Beobachten konnten die Wissenschaftler um Professorin Smola diese Ereigniskette an Patienten, die an der seltenen Erkrankung „Epidermodysplasia verruciformis“ leiden. Menschen, die diesen Gendefekt tragen, sind an den betroffenen Hautpartien sehr anfällig für bestimmte Haut-Papillomviren und erkranken infolgedessen vermehrt an Hautkrebs. Die saarländischen Forscher arbeiteten mit Gewebeproben der Erkrankten und konnten an diesen den unterbrochenen Wirkmechanismus nachweisen.

„Dieser Zusammenhang war bisher nicht bekannt. Interessant wird es sein, ob dieser Mechanismus auch für die Entstehung von Tumoren in anderen Gewebearten verantwortlich sein kann“, erklärt Sigrun Smola. „Außerdem eröffnet unsere Studie neue Möglichkeiten für die pharmazeutische Forschung an Medikamenten, die diesen Mechanismus wieder herstellen können.“

Publikation:
Die Studie „Identification of C/EBPα as a novel target of the HPV8 E6 protein regulating miR-203 in human keratinocytes“ ist am 22. Juni im Fachmagazin PLOS Pathogens erschienen und wurde durch die Staatskanzlei Saarland unterstützt.

Externer Link: www.uni-saarland.de

Afrikanische Genvariante verändert Blutzellen

Presseinformation der LMU München vom 01.06.2017

Eine vor allem bei Menschen afrikanischer Herkunft weit verbreitete Genvariante schützt vor Malaria. LMU-Forscher zeigen erstmals, wie sie auch die Eigenschaften wichtiger Abwehrzellen des Immunsystems beeinflusst.

Im Erbmaterial nahezu der gesamten Bevölkerung Afrikas südlich der Sahara und auch bei 70 Prozent der Afroamerikaner findet sich eine Genvariante, die als „Duffy-negativ“ bezeichnet wird. Es ist bekannt, dass die Menschen, die sie in ihren Zellen tragen, seltener an Malaria erkranken. Seit Kurzem wird diese Variante auch mit einer gutartigen Verminderung der weißen Blutkörperchen – einer sogenannten benignen Neutropenie – in Verbindung gebracht. Obwohl weiße Blutkörperchen bei der angeborenen Immunabwehr eine wichtige Rolle spielen, neigen die Träger der Genvariante nicht zu vermehrten Infektionen. Im Rahmen einer von den LMU-Forschern Dr. Johan Duchêne, Professor Christian Weber und Professor Antal Rot (York, England) geleiteten Studie hat ein Wissenschaftler-Team aus Deutschland, Großbritannien, Spanien, Österreich und den USA nun aufgeklärt, auf welche Weise die Genvariante die Blutbildung beeinflusst und warum sie zu einer Neutropenie führt. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Nature Immunology.

Der überwiegende Teil der Blutbildung findet im Knochenmark statt. Dabei differenzieren sogenannte multipotente hämatopoetische Stamm- und Vorläuferzellen zu verschiedenen reifen Blutzellen, unter anderem zu neutrophilen Granulozyten, einer Untergruppe der weißen Blutzellen, und zu Erythrozyten, den roten Blutzellen. Duffy-negativen Menschen fehlt ein bestimmtes Eiweiß auf den roten Blutzellen, der „Atypical Chemokine Receptor 1“, kurz ACKR1, der mit chemischen Botenstoffen im Körper interagiert. Da auch einige Malaria-Erreger an ACKR1 andocken, sind Menschen ohne dieses Eiweiß besser vor einigen Formen der Erkrankung geschützt. „Auf welche Weise das Fehlen von ACKR1 auf den roten Blutzellen aber die weißen Blutzellen beeinflusst, war bisher völlig unbekannt“, sagt Duchêne.

Mithilfe von Untersuchungen am Mausmodell konnten die Wissenschaftler nun zeigen, dass dieser Zusammenhang auf Mechanismen bei der Differenzierung der blutbildenden Stamm- und Vorläuferzellen beruht: Spezielle Vorläufer-Erythrozyten bilden im Knochenmark eine „Nische“, in der sich die hämatopoetischen Stammzellen befinden – und die Expression von ACKR1 auf diesen Vorläufer-Erythrozyten entscheidet über das weitere Schicksal der Stammzellen. „Wenn die Vorläufer-Erythrozyten kein ACKR1 bilden, differenzieren die Stammzellen zu neutrophilen Granulozyten, die sich molekular und funktional von denen unterscheiden, die nach Kontakt mit ACKR1 gebildet werden“, sagt Rot. „Unsere Ergebnisse legen nahe, dass diese veränderten Neutrophilen den Blutkreislauf leicht verlassen und in Gewebe, vor allem in die Milz, einwandern.“ Dadurch sinkt die Anzahl an Neutrophilen im Blut und die typische Neutropenie entsteht. Ob die in die Milz gewanderten Neutrophilen dort überdauern und zur Immunabwehr beitragen, ist noch unklar.

Nach Ansicht der Wissenschaftler könnten die veränderten Eigenschaften der Neutrophilen bei Duffy-negativen Personen die Abwehr von Krankheitserregern positiv beeinflussen und daher einen Selektionsvorteil darstellen. „Aber eine stärkere Immunantwort kann natürlich auch kontraproduktiv sein, etwa wenn die Immunreaktion ohnehin überschießt und zu chronischen Entzündungen und Autoimmunkrankheiten führt“, sagt Weber. Als nächsten Schritt wollen die Wissenschaftler daher untersuchen, wie die alternative Blutbildung ohne ACKR1 die Abwehr von Infektionskrankheiten sowie Entzündungen, Atherosklerose, Gefäßerkrankungen und Krebs beeinflusst. Dies könnte helfen, neue gezielte Behandlungsstrategien für Duffy-negative Patienten zu entwickeln.

Publikation:
Nature Immunology 2017

Externer Link: www.uni-muenchen.de