Toxoplasmose-Erreger mobiler als gedacht

Presseinformation der LMU München vom 03.07.2019

LMU-Mikrobiologen zeigen eine neue Art der Fortbewegung des Parasiten T.gondii auf.

Toxoplasma gondii, der Erreger der Toxoplasmose, verfügt über mehr Möglichkeiten, sich fortzubewegen, als bislang bekannt war. Der weltweit verbreitete Parasit löst beim Menschen eine in der Regel harmlose Infektion aus, kann aber während einer Schwangerschaft dem ungeborenen Kind schaden. „Bislang war das fest akzeptierte Dogma, dass sich der Parasit über das Aktomyosin-System fortbewegt, also das Zytoskelett und Motorproteine“, sagt Markus Meissner, Professor für Experimentelle Parasitologie an der LMU. In einer aktuellen Publikation im Fachjournal PLOS Biology zeigt Meissner zusammen mit Kollegen der Universität Glasgow, Schottland, einen neuen Mechanismus der Fortbewegung auf.

T.gondii ist bogenförmig, verändert aber seine Form, wenn er in die Wirtszelle eindringt, im Gewebe ist er eher oval geformt. Ausgangspunkt der neuen Studie war die Beobachtung, dass der Parasit auch dann noch beweglich ist und in Wirtszellen eindringt, wenn seine Motorproteine zerstört sind. Das Team konnte nachweisen, dass T.gondii Partikel aufnehmen kann. Diesen Mechanismus nutzten die Forscher, um die Fortbewegung des einzelligen Parasiten mithilfe fluoreszierender Moleküle zu beobachten. „T.gondii sekretiert vorne an der Zelle Vesikel und nimmt sie hinten wieder auf. Dadurch erzeugt der Parasit einen Membranfluss, den er in Kraft für Fortbewegung umwandeln kann. Der Aufnahmemechanismus scheint völlig anders zu sein als bei anderen Eukaryonten und auch bei den Wirtszellen“, sagt Meissner. In einem nächsten Schritt wollen die Forscher die Mechanismen dieser Fortbewegung genauer klären und dadurch mögliche neue Angriffspunkte für Therapien aufzeigen.

Publikation:
Simon Gras, Elena Jimenez-Ruiz, Christen M. Klinger, Katja Schneider, Andreas Klingl: Leandro Lemgruber, Markus Meissner: An endocytic-secretory cycle participates in Toxoplasma gondii in motility. In: PLOS Biology 2019

Externer Link: www.uni-muenchen.de

Exzellente Navigation mit wenig Information

Presseinformation der LMU München vom 17.05.2019

LMU-Forscher widerlegen bisherige Annahmen über die Echoortung: Fledermäuse haben deutlich weniger räumliche Daten zur Verfügung als bislang gedacht. Dennoch ist ihre Navigation exzellent.

Fledermäuse orientieren sich in der Dunkelheit mithilfe von Echos, wofür sie Ultraschall-Signale ausstoßen. LMU-Forscher widerlegen nun bisherige Annahmen über ihre Echoortung. „Bislang ging man davon aus, dass eine Art Hörbild mit räumlichen Informationen entsteht, wenn Fledermäuse Laute aussenden und sie auch die Lücken zwischen Objekten wahrnehmen können. Diese Vorstellung ist falsch. Unsere Experimente zeigen, dass Fledermäuse kein räumliches Auflösungsvermögen haben. Sie navigieren auf der Basis von extrem wenig räumlichen Informationen. Ihr Navigationssystem funktioniert völlig anders, als wir es kennen“, sagt Lutz Wiegrebe, Professor am Department Neurobiologie der LMU. Die Ergebnisse sind aktuell im Fachmagazin Current Biology veröffentlicht.

Für die Studie haben die Forscher mit Fledermäusen gearbeitet, die darauf dressiert waren, zu signalisieren, wenn sie Reflexionen von Objekten erkennen. Im Versuchsaufbau kamen von rechts und links Störreflexe, während die Tiere zugleich ein Objekt direkt vor ihnen erkennen sollten. „Die Fledermäuse waren von den Störreflexen extrem irritiert. Erst wenn die seitlichen Objekte relativ weit weg waren, haben sie das Objekt vor sich erkannt.“

Als visuelles Experiment wäre die Aufgabe sehr einfach. Das visuelle System liefert über die Sehzellen in der Retina sofort eine sehr gute räumliche Auflösung. „Echoortung funktioniert völlig anders als die visuelle Abbildung“, erklärt Lutz Wiegrebe. „Die Sinneszellen in den Ohren kodieren nicht Raumachsen, sondern Frequenz und Zeit. Rauminformation muss daraus erst neuronal berechnet werden. Unsere Experimente zeigen, dass das räumliche Auflösungsvermögen von Fledermäusen um ein Vielfaches (um drei Größenordnungen) schlechter ist als die Auflösung des visuellen Systems des Menschen. Fledermäuse „sehen“ per Echoortung sozusagen ein extrem verschwommenes Bild. Eine visuell einfache Aufgabe wie: „Sage mir, wie viele Finger einer Hand ich hochhalte“, ist biosonar sehr schwer zu lösen. Trotzdem navigieren Fledermäuse sehr erfolgreich“, sagt Wiegrebe. Die Forscher nehmen an, dass die Fledermäuse diese schlechte Wahrnehmung ausgleichen, indem sie während des Fluges fortlaufend die räumlichen Informationen über Entfernung und Richtung auswerten und sich dabei auf die Position nächstliegender Objekte konzentrieren.

Ihre Ergebnisse könnten Implikationen für technische Anwendungen haben. „Beim autonomen Fahren werden laufend Informationen mit der Kamera erfasst, um das Auto zu steuern. Womöglich werden dabei viel mehr Information erfasst als nötig. Fledermäuse verfügen über ein viel einfacheres Navigationsschema und navigieren dennoch exzellent. Sie verfügen nicht über ein 3-D-Bild wie es bei der visuellen Wahrnehmung entsteht“, sagt Lutz Wiegrebe.

In einer ebenfalls kürzlich veröffentlichten Arbeit im Fachmagazin iScience hatten Leonie Baier aus der Arbeitsgruppe von Lutz Wiegrebe und Dr. Holger Goerlitz vom Max-Planck-Institut für Ornithologie gezeigt, dass Fledermäuse sehr sensitiv für verschiedene Raumfrequenzen sind. Dadurch gelingt es ihnen zum Beispiel ein Insekt über einer Wasseroberfläche zu erkennen. „Aus unserer neuen Arbeit wissen wir nun, dass die Fledermäuse diese Informationen aber nicht räumlich auflösen können“, sagt Wiegrebe. In dem Moment, wo neben dem Insekt etwa auch Pflanzen auf der Wasseroberfläche schwimmen, können die Tiere ihre Beute nicht erkennen.

Publikationen:

Cornelia Geberl, Kathrin Kugler, Lutz Wiegrebe: The spatial resolution of bat biosonar quantified with a visual resolution paradigm. In: Current Biology 2019

A. Leonie Baier, Lutz Wiegrebe, Holger R. Görlitz: Echo-Imaging Exploits an Environmental High-Pass Filter to Access Spatial Information with a Non-Spatial Sensor. In: iScience 2019

Externer Link: www.uni-muenchen.de

Relaisstation im Gehirn steuert unsere Bewegungen

Medienmitteilung der Universität Basel vom 14.05.2019

Die Relaisstation des Gehirns, die Substantia nigra, beherbergt verschiedene Arten von Nervenzellen und ist für die Ausführung von Bewegungen zuständig. Forschende am Biozentrum der Universität Basel haben nun zwei dieser Zellpopulationen genauer charakterisiert und konnten ihnen jeweils eine genaue Funktion zuordnen. Die Ergebnisse der Untersuchung sind jetzt in «Cell Reports» veröffentlicht.

Egal ob wir unsere Arme, Beine oder den gesamten Körper bewegen, alles wird zentral von unserem Gehirn gesteuert. Dabei spielen verschiedene Hirnregionen und ihre Netzwerke eine wichtige Rolle. So auch die Substantia nigra, eine bislang wenig erforschte Gehirnregion. Wie eine Relaisstation empfängt und verteilt sie Signale, um eine gewünschte Bewegung zu koordinieren und auszuführen. Im Mausmodell hat die Forschungsgruppe von Prof. Kelly Tan am Biozentrum der Universität Basel nun zwei Zellpopulationen in dieser Hirnregion identifiziert, die für verschiedene Aspekte einer Bewegung verantwortlich sind.

Korrekte Bewegung dank Teamwork von Neuronenpopulationen

Das Forschungsteam hat dazu die Substantia nigra anatomisch, genetisch und funktionell untersucht. Es zeigte sich, dass diese Region aus mehreren unterschiedlichen Typen von Nervenzellen besteht. Für zwei der Populationen haben die Forscher nun die genaue Funktion aufgeklärt: Während die eine Population für die Ingangsetzung einer gewünschten Bewegung verantwortlich ist, sorgt die zweite für deren Fortführung.

«Die Heterogenität von Nervenzellpopulationen im Gehirn, auch in der Substantia nigra, ist ein bekanntes Konzept. Mit unserer Studie konnten wir nun nicht nur die Funktion von zwei Gruppen von Nervenzellen entschlüsseln, sondern auch zeigen, dass diese beiden Populationen zusammenarbeiten, um eine Bewegung korrekt auszuführen», sagt Giorgio Rizzi, Erstautor der Studie.

Signale zur Bewegungssteuerung laufen bei Parkinson ins Leere

Die Erkenntnisse der Studie sind auch im Hinblick auf das Parkinson-Syndrom von Bedeutung. Die Betroffenen leiden unter motorischen Störungen, da bestimmte Nervenzellen bei ihnen absterben. «Interessanterweise interagieren diese Zellen mit der von uns identifizierten Zellpopulation, welche Bewegungen initiiert. Der Verlust dieser bestimmten Nervenzelltypen bei Parkinson bedeutet, dass Signale nicht mehr weitergeleitet bzw. empfangen werden. Diese Fehlfunktion könnte der Grund für die bei Parkinsonpatienten beobachtete gestörte Bewegungsinitiierung sein», sagt Kelly Tan.

Zukünftig möchte das Forschungsteam weitere Zellpopulationen in der Substantia nigra identifizieren und ihre motorischen Funktionen aufklären. «In Bezug auf Parkinson möchten wir untersuchen, wie sich die Netzwerke in Folge der Erkrankung verändern und wie sich dies auf die Bewegungsabläufe auswirkt. Wenn wir die Veränderungen der Netzwerke verstehen, finden wir vielleicht auch Wege, diese neurodegenerative Erkrankung besser zu handhaben und die Symptome von Parkinson-Patienten zu lindern», so Kelly Tan.

Originalbeitrag:
Giorgio Rizzi and Kelly R. Tan
Synergistic Nigral Output Pathways Shape Movement
Cell Reports (2019), doi: 10.1016/j.celrep.2019.04.068

Externer Link: www.unibas.ch

Symbionten als Lebensretter

Pressemeldung der Universität Wien vom 14.05.2019

ForscherInnen entdecken neuen Faktor bei der Verbreitung von Legionellen

Wenn Menschen an einer bakteriellen Infektion erkranken, steht zunächst die Behandlung der Erkrankung im Vordergrund. Aber woher kommen diese Krankheitserreger eigentlich und wo leben sie, wenn Sie nicht im Zusammenhang mit einer Infektion in Erscheinung treten? Ein internationales Team um Matthias Horn vom Zentrum für Mikrobiologie und Umweltsystemwissenschaft der Universität Wien hat dies am Beispiel eines Erregers von Lungenerkrankungen untersucht. Die Ergebnisse ihrer Studie erscheinen aktuell in der Fachzeitschrift mBio.

Legionella pneumophila heißt der Erreger der Legionärskrankheit (Legionellose), einer atypischen Lungenentzündung, der für gesunde Menschen eher harmlos ist, bei Menschen mit geschwächtem Immunsystem aber lebensbedrohlich sein kann. Die Anzahl an Erkrankungen durch Legionellen ist in den 2000er Jahren weltweit stetig gestiegen, mit zuletzt 228 registrierten Fällen und 10 Todesfällen in 2017 in Österreich. Der letzte große Ausbruch in Europa ereignete sich im September 2018 in der italienischen Stadt Brescia. Über 400 Patienten erkrankten an Lungenentzündung und wurden im Spital behandelt.

Der natürliche Lebensraum der Legionellen sind Sedimente von Seen und Flüssen, sie kommen aber auch in Wasserleitungssystemen vor. „Dort vermehren sie sich in Einzellern, die sie anschließend zerstören. Genau diese Eigenschaft erlaubt Legionellen auch die Infektion des Menschen. Zur Erkrankung kommt es in der Regel erst nachdem sich Legionellen in Einzellern vermehrt haben“, erklärt Matthias Horn vom neu gegründeten Zentrum für Mikrobiologie und Umweltsystemwissenschaft, der gemeinsam mit seinem Team und WissenschafterInnen des renommierten Institut Pasteur und der University of Michigan das Leben der Legionellen in Einzellern untersucht hat.

Schutz vor Krankheitserregern

Mit der Fähigkeit in Einzellern zu überleben sind Legionellen nicht allein. Einzeller beherbergen häufig andere Bakterien, die ihnen jedoch nicht schaden, sogenannte Endosymbionten. Das ForscherInnenteam hat nun herausgefunden, dass diese Bakterien maßgeblich die Vermehrung und Verbreitung von Legionellen beeinflussen. In zahlreichen Experimenten konnten Sie nachweisen, dass Legionellen sich weniger gut in Amöben vermehren können, wenn diese Endosymbionten enthalten. Erstaunlicherweise überleben dabei die meisten Amöben mit Endosymbionten die ansonsten letale Infektion mit Legionellen. „Jene Bakterien, die sich vorher in Amöben mit Endosymbionten vermehrt hatten, waren deutlich weniger infektiös, konnten also weit weniger effizient neue Amöben attackieren“, berichtet Lena König, Erstautorin der Studie und Doktorandin am Zentrum für Mikrobiologie und Umweltsystemwissenschaft.

Dem molekularen Mechanismus auf der Spur

Um besser zu verstehen, was innerhalb von Amöben passiert, die zeitgleich Endosymbionten beherbergen und von Legionellen infiziert werden, haben sich die WissenschafterInnen die Genexpression beider Bakterien genauer angesehen. „Die RNA-Sequenzierung erlaubt Rückschlüsse auf biologische Ereignisse, die sich innerhalb der Einzeller abspielen“, erklärt Cecilia Wentrup, die als Postdoktorandin maßgeblich am Projekt beteiligt war. König ergänzt: „Dabei haben wir eine Erklärung für die Reduktion der Infektiosität der Legionellen gefunden. Diese scheinen nämlich den natürlichen Endosymbionten der Amöben in der Konkurrenz um Nährstoffe zu unterliegen, die beide von den Einzellern benötigen.“ Die Folge: Legionellen vermehren sich langsamer und können für die Infektion von Amöbe und Mensch notwendige Faktoren nicht produzieren. Die Krankheitserreger sind beispielsweise nicht beweglich und es fehlen ihnen wichtige Speicherstoffe.

Vom Labor in die Umwelt

Eine weitere Beobachtung ließ die ForscherInnen aufhorchen. Der Wachstumsstopp funktionierte nicht nur mit den üblicherweise verwendeten Laborstämmen, sondern auch mit frisch aus der Umwelt gewonnenen Amöben, sowie mit kürzlich isolierten Legionellen. Endosymbionten von Amöben sind also nicht nur unter Laborbedingungen, sondern vermutlich auch in der Umwelt ein wichtiger Faktor bei der Vermehrung und Verbreitung von Legionellen. Dies erscheint insbesondere deshalb interessant, da die meisten Einzeller unter natürlichen Bedingungen bakterielle Symbionten tragen. Die aktuelle Studie leistet damit einen wichtigen Beitrag zu einem besseren Verständnis der Lebensweise dieser bakteriellen Krankheitserreger in der Umwelt.

Das Projekt wurde an der Universität Wien im Rahmen des FWF-Projekts „Eukaryotic genes in vacuolar pathogens and symbionts (EUGENPATH)“ und eines Marie Skłodowska-Curie Individual Fellowship-Stipendiums durchgeführt.

Publikation:
Lena König, Cecilia Wentrup, Frederik Schulz, Florian Wascher, Sarah Escola, Michele S. Swanson, Carmen Buchrieser, Matthias Horn. mBio. 2019. Symbiont-mediated defense against Legionella pneumophila in amoebae.
DOI: 10.1128/mBio.00333-19

Externer Link: www.univie.ac.at

Stabil geteilt

Presseinformation der LMU München vom 12.04.2019

LMU-Forscher haben ein neues Protein entdeckt, das bei der korrekten Zellteilung eine entscheidende Rolle spielt.

Die Zellteilung ist ein elementarer Prozess des Lebens, bei dem aus einer Mutterzelle zwei Tochterzellen entstehen. Dabei werden die Chomosomen der Mutterzelle von einem Spindelapparat getrennt, der in tierischen Zellen von zwei Spindelpolen, den Zentrosomen, aufgebaut wird. Fehlerhafte Teilungen haben gravierende Konsequenzen und verursachen schwere Erkrankungen. Wie die Zellteilung auf Ebene der Zentrosomen reguliert wird, steht im Mittelpunkt der Forschung von Dr. Tamara Mikeladze-Dvali vom Biozentrum der LMU. Mit ihrem Team hat die Biologin nun ein Protein identifiziert, das für den korrekten Aufbau des Spindelapparats eine essenzielle Bedeutung hat. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Current Biology.

Ein Zentrosom besteht aus einem Paar zylinderförmiger Zentriolen, die in eine Proteinmatrix eingebettet sind. In der Mutterzelle befindet sich das Zentrosom meist mittig in der Nähe des Zellkerns. Vor der Teilung wird es dupliziert, anschließend werden Spindelfasern gebildet, welche die zwei Zentrosomen in entgegengesetzte Bereiche der Zelle schieben – als Pole der Spindel. Anschließend werden die Chromosomen von den Spindelfasern, die aus den Polen ausstrahlen, auseinandergezogen. Um den dabei wirkenden Zellteilungskräften Widerstand leisten zu können, müssen die Zentrosomen extrem robust sein.

Welche Faktoren dabei eine wichtige Rolle spielen, hat Tamara Mikeladze-Dvali mit ihrem Team anhand von Mutanten des Fadenwurms Caenorhabditis elegans untersucht, in deren DNA nach dem Zufallsprinzip eine Veränderung eingefügt wurde. „Diese Veränderungen können uns zeigen, welche Faktoren eine wichtige Rolle in der Zellteilung spielen“, sagt Mikeladze-Dvali. „Dabei sind wir auf ein bis jetzt unbekanntes Protein gestoßen, das wir als PCMD-1 bezeichnen.“ In weiteren Experimenten markierten die Wissenschaftler dieses Protein in der Zelle und schalteten es mithilfe der Genschere CRISPR/Cas9 gezielt aus. Auf diese Weise konnten sie nachweisen, dass das neue Protein für den korrekten Aufbau des Zentrosoms unentbehrlich ist. Insbesondere ist es wichtig für den Aufbau der aus sogenannten SPD-5-Proteinen bestehenden Proteinmatrix, die die Robustheit und Integrität der Zentrosomen gewährleistet. „Fehlt PCMD-1, hat das verheerende Auswirkungen auf den Aufbau des Spindelapparats und die Zellteilung. Die Zelle kann sich dadurch nicht mehr korrekt teilen“, sagt Mikeladze-Dvali.

Da PCMD-1 eine solch zentrale Funktion hat, haben diese Ergebnisse nach Ansicht der Wissenschaftler große Bedeutung für das generelle Verständnis der Regulierung von Zentrosomen. Fast alle Proteine, die in C. elegans entdeckt wurden, sind auch in höheren Organismen vorhanden. Auch das Matrixprotein SPD-5 hat ein solches Ortholog. Mutationen in diesem Protein sind eine Ursache für genetisch vererbte primäre Mikrozephalie beim Menschen. „Für das Verständnis dieser Entwicklungsstörung ist es wichtig zu wissen, wie das Protein auf der zellulären Ebene reguliert wird“, sagt Mikeladze-Dvali.

Publikation:
Current Biology 2019

Externer Link: www.uni-muenchen.de