Bioprinting: Lebende Zellen im 3D-Drucker

Presseaussendung der TU Wien vom 21.10.2019

Mit einem neuen Verfahren der TU Wien lassen sich lebende Zellen in feine Strukturen aus dem 3D-Drucker einbauen – extrem schnell und hochausflösend.

Wie sich Zellen verhalten und wie neues Gewebe entsteht, lässt sich besonders gut steuern und untersuchen, wenn man die Zellen in ein feines Gerüst einbettet. Das gelingt mit Hilfe von „Bioprinting“ – darunter versteht man spezielle additive 3D-Druckverfahren. Dabei stößt man allerdings auf eine Reihe von Herausforderungen: Manche Verfahren sind sehr unpräzise oder erlauben nur ein sehr enges Zeitfenster, in dem die Zellen verarbeitet werden können, ohne dass sie Schaden nehmen. Außerdem müssen die verwendeten Materialien während und auch nach dem 3D-Biopriting Prozess zellfreundlich sein – das schränkt die Auswahl möglicher Materialien empfindlich ein.

An der TU Wien wurde nun ein hochauflösender Bioprinting-Prozess mit völlig neuen Materialien entwickelt: Dank einer speziellen „Bio-Tinte“ für den 3D-Drucker lassen sich Zellen nun direkt während des Herstellungsvorgangs in eine mikrometergenau gedruckte 3D-Matrix einbetten – und das mit einer Druckgeschwindigkeit von einem Meter pro Sekunde, um Größenordnungen schneller als es bisher möglich war.

Auf die Umgebung kommt es an

„Wie sich eine Zelle verhält, hängt ganz entscheidend von den mechanischen und chemischen Eigenschaften sowie von der Geometrie ihrer Umgebung ab“, erklärt Prof. Aleksandr Ovsianikov, Leiter der Forschungsgruppe 3D Printing and Biofabrication am Institut für Werkstoffwissenschaften und Werkstofftechnologie der TU Wien. „Die Strukturen, in denen die Zellen eingebettet sind, müssen für Nährstoffe durchlässig sein, damit die Zellen überleben und sich vermehren können. Ganz wichtig ist aber auch, ob die Strukturen steif oder biegsam sind, ob sie stabil sind oder im Lauf der Zeit abgebaut werden.“

Eine Möglichkeit ist, zuerst passende Strukturen herzustellen und danach mit lebenden Zellen zu besiedeln – doch mit diesem Ansatz kann es schwierig werden die Zellen tief im Inneren des Gerüstes unterzubringen, und es ist kaum möglich, eine gleichmäßige Zellverteilung zu erreichen. Die deutlich bessere Variante ist es, die lebenden Zellen direkt bei der Herstellung der 3D-Struktur mit einzubetten – diese Technik wird als „Bioprinting“ bezeichnet.

Mikroskopisch feine 3D-Objekte zu drucken, ist heute grundsätzlich kein Problem mehr. Die Verwendung von lebenden Zellen stellt die Wissenschaft aber vor ganz neue Herausforderungen: „Es fehlte bisher einfach an den passenden chemischen Substanzen“, sagt Aleksandr Ovsianikov. „Man braucht Flüssigkeiten oder Gele, die punktgenau erstarren, wo man sie mit einem fokussierten Laserstrahl beleuchtet. Diese Materialien dürfen für die Zellen allerdings nicht schädlich sein, und das Ganze muss außerdem noch extrem schnell ablaufen.“

Zwei Photonen auf einmal

Um eine extrem hohe Auflösung zu erreichen, verwendet man an der TU Wien bereits seit Jahren die Methode der Zwei-Photonen-Polymerisation. Dabei nutzt man eine chemische Reaktion, die nur dann in Gang gesetzt wird, wenn ein Molekül des Materials zwei Photonen des Laserstrahls gleichzeitig absorbiert. Das ist nur dort möglich, wo der Laserstrahl eine besonders hohe Intensität hat. Genau dort härtet die Substanz aus, überall sonst bleibt sie flüssig. Daher ist diese Zwei-Photonen-Methode bestens geeignet, um mit hoher Präzision feinste Strukturen herzustellen.

Genau wegen der hohen Auflösung hat die Methode allerdings normalerweise den Nachteil, sehr langsam zu sein – oft musste man sich mit einer Schreibgeschwindigkeit im Bereich von Mikrometern oder wenigen Millimetern pro Sekunde genügen. An der TU Wien hingegen schafft man mit zellfreundlichen Materialien einen Meter pro Sekunde – ein entscheidender Fortschritt. Denn nur, wenn der ganze Prozess zumindest in wenigen Stunden abgeschlossen ist, kann man davon ausgehen, dass die Zellen tatsächlich überleben und sich weiterentwickeln.

Zahlreiche Anpassungsmöglichkeiten

„Unsere Methode liefert viele Möglichkeiten, die Umgebung der Zellen anzupassen“, sagt Aleksandr Ovsianikov. Je nachdem, wie man die Struktur baut, kann man sie steifer oder weicher machen, sogar feine, kontinuierliche Übergänge sind möglich. So kann man genau vorherbestimmen, wie die Struktur aussehen soll, um Zellwachstum zu erlauben und Migration zu leiten. Durch die Laser-Intensität kann man außerdem einstellen, wie leicht die Struktur im Lauf der Zeit abgebaut werden kann.

„Für die Zellforschung ist das ein wichtiger Schritt nach vorne“, ist Ovsianikov überzeugt. „Mit solchen 3D-Modellen kann man das Verhalten von Zellen mit einer bisher unerreichbaren Genauigkeit untersuchen. Man kann herausfinden, wie sich Krankheiten ausbreiten – und wenn man Stammzellen verwendet, könnte man auf diese Weise sogar maßgeschneidertes Gewebe herstellen.“

Das Forschungsprojekt ist eine internationale und interdisziplinäre Kooperation, an der drei verschiedene Institute der TU Wien beteiligt waren: Ovsianikovs Forschungsgruppe war für die Drucktechnik selbst zuständig, das Institut für Angewandte Synthesechemie entwickelte die nötigen schnell reagierenden und zellfreundlichen Fotoinitiatoren (die Substanzen, die bei Beleuchtung den Aushärtungsprozess in Gang setzen) und am Institut für Leichtbau und Struktur-Biomechanik wurden die mechanischen Eigenschaften der gedruckten Strukturen analysiert.

Die hochauflösende 3D-Drucktechnologie und die dafür nötigen Materialien werden nun auch von der Firma UPNano kommerzialisiert, einem jungen erfolgreichen Spin-off der TU Wien. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Wie Gehirntumore ihr eigenes Wachstum fördern

Medienmitteilung der Universität Basel vom 13.08.2019

Forschende der Universität Basel und des Universitätsspitals Basel haben einen Mechanismus aufgeklärt, mit dem Krebszellen bei Gehirntumoren ihr eigenes Wachstum fördern. Die Krebszellen legen dazu den Abbau von Wachstumsrezeptoren in Zellen des Gehirns lahm und verstärken so sie die Signalübermittlung der Rezeptoren. Die Resultate der Studie wurden kürzlich in der Fachzeitschrift «EBioMedicine» veröffentlicht.

Krebszellen zeichnen sich durch unkontrolliertes Wachstum und Zellteilung aus. Das Glioblastom ist eine besonders aggressive Krebsform im Gehirn, das durch ungebremstes Wachstum von sogenannten Gliazellen entsteht. Die Gliazellen umgeben und stützen die Neuronen und spielen eine wichtige Rolle in der Energieversorgung und Informationsweiterleitung.

Krebspatienten haben verändertes Proteininventar

Eine Arbeitsgruppe aus Forschenden des Biozentrums, des Departments Biomedizin und der Neurochirurgie der Universität Basel hat nun die Gesamtheit der Proteine, das sogenannte Proteom, von verschiedenen Glioblastomen untersucht. «Unser Ziel war es, die Veränderungen des Proteininventars in Biopsien von Gliomapatienten mithilfe der hochauflösenden Massenspektrometrie zu analysieren. Die Datenmenge, die sich während diesen Analysen ergaben, war riesig», erklärt Studienkoordinator Paul Jenö.

Gehemmter Abbau von Wachstumsrezeptoren fördert ungebremstes Zellwachstum

Für ihre Studie verwendeten die Forscherinnen und Forscher Biopsien von Krebspatienten mit unterschiedlichem Glioblastom-Grad. Die Daten zeigten, dass eine bestimmte Gruppe von Proteinen bei Gliomapatienten in deutlich verringerter Konzentration vorliegt. «Diese Proteine regulieren auch den Abbau des Wachstumsrezeptors EGFR. Liegt wie bei den untersuchten Patienten das Protein in zu geringer Konzentration vor, wird Rezeptoraufnahme in die Zelle reduziert, aber die intrazelluläre Signalaktivität erhöht. Die Folge ist ein ungebremstes Zellwachstum», so Studienautor Dominik Buser.

Zusammenfassend zeigte sich, dass Glioma die Endozytose herunterfahren und damit die Verweildauer von Rezeptoren an der Zelloberfläche verlängern. Die Wachstumsrezeptoren können so länger wirken und das ungebremste Zellwachstum beginnt. «Das Glioblastom nutzt also den gehemmten Abbau von Wachstumsrezeptoren, um selbst schnell und aggressiv zu wachsen», so Jenö. Die Studie zeigt einmal mehr, mit welchen Strategien Krebszellen molekulare Vorgänge ausschalten, um ihr eigenes Wachstum voranzutreiben. Die Ergebnisse tragen somit zum Verständnis für die molekularen Prozesse beim Krebswachstum bei und könnten neue Anhaltspunkte für Therapien liefern.

Originalbeitrag:
Dominik P. Buser, Marie-Françoise Ritz, Suzette Moes, Cristobal Tostado, Stephan Frank, Martin Spiess, Luigi Mariani, Paul Jenö, Jean-Louis Boulay and Gregor Hutter
Quantitative proteomics reveals reduction of endocytic machinery components in gliomas
EBioMedicine (2019), 10.1016/j.ebiom.2019.07.039

Externer Link: www.unibas.ch

Toxoplasmose-Erreger mobiler als gedacht

Presseinformation der LMU München vom 03.07.2019

LMU-Mikrobiologen zeigen eine neue Art der Fortbewegung des Parasiten T.gondii auf.

Toxoplasma gondii, der Erreger der Toxoplasmose, verfügt über mehr Möglichkeiten, sich fortzubewegen, als bislang bekannt war. Der weltweit verbreitete Parasit löst beim Menschen eine in der Regel harmlose Infektion aus, kann aber während einer Schwangerschaft dem ungeborenen Kind schaden. „Bislang war das fest akzeptierte Dogma, dass sich der Parasit über das Aktomyosin-System fortbewegt, also das Zytoskelett und Motorproteine“, sagt Markus Meissner, Professor für Experimentelle Parasitologie an der LMU. In einer aktuellen Publikation im Fachjournal PLOS Biology zeigt Meissner zusammen mit Kollegen der Universität Glasgow, Schottland, einen neuen Mechanismus der Fortbewegung auf.

T.gondii ist bogenförmig, verändert aber seine Form, wenn er in die Wirtszelle eindringt, im Gewebe ist er eher oval geformt. Ausgangspunkt der neuen Studie war die Beobachtung, dass der Parasit auch dann noch beweglich ist und in Wirtszellen eindringt, wenn seine Motorproteine zerstört sind. Das Team konnte nachweisen, dass T.gondii Partikel aufnehmen kann. Diesen Mechanismus nutzten die Forscher, um die Fortbewegung des einzelligen Parasiten mithilfe fluoreszierender Moleküle zu beobachten. „T.gondii sekretiert vorne an der Zelle Vesikel und nimmt sie hinten wieder auf. Dadurch erzeugt der Parasit einen Membranfluss, den er in Kraft für Fortbewegung umwandeln kann. Der Aufnahmemechanismus scheint völlig anders zu sein als bei anderen Eukaryonten und auch bei den Wirtszellen“, sagt Meissner. In einem nächsten Schritt wollen die Forscher die Mechanismen dieser Fortbewegung genauer klären und dadurch mögliche neue Angriffspunkte für Therapien aufzeigen.

Publikation:
Simon Gras, Elena Jimenez-Ruiz, Christen M. Klinger, Katja Schneider, Andreas Klingl: Leandro Lemgruber, Markus Meissner: An endocytic-secretory cycle participates in Toxoplasma gondii in motility. In: PLOS Biology 2019

Externer Link: www.uni-muenchen.de

Exzellente Navigation mit wenig Information

Presseinformation der LMU München vom 17.05.2019

LMU-Forscher widerlegen bisherige Annahmen über die Echoortung: Fledermäuse haben deutlich weniger räumliche Daten zur Verfügung als bislang gedacht. Dennoch ist ihre Navigation exzellent.

Fledermäuse orientieren sich in der Dunkelheit mithilfe von Echos, wofür sie Ultraschall-Signale ausstoßen. LMU-Forscher widerlegen nun bisherige Annahmen über ihre Echoortung. „Bislang ging man davon aus, dass eine Art Hörbild mit räumlichen Informationen entsteht, wenn Fledermäuse Laute aussenden und sie auch die Lücken zwischen Objekten wahrnehmen können. Diese Vorstellung ist falsch. Unsere Experimente zeigen, dass Fledermäuse kein räumliches Auflösungsvermögen haben. Sie navigieren auf der Basis von extrem wenig räumlichen Informationen. Ihr Navigationssystem funktioniert völlig anders, als wir es kennen“, sagt Lutz Wiegrebe, Professor am Department Neurobiologie der LMU. Die Ergebnisse sind aktuell im Fachmagazin Current Biology veröffentlicht.

Für die Studie haben die Forscher mit Fledermäusen gearbeitet, die darauf dressiert waren, zu signalisieren, wenn sie Reflexionen von Objekten erkennen. Im Versuchsaufbau kamen von rechts und links Störreflexe, während die Tiere zugleich ein Objekt direkt vor ihnen erkennen sollten. „Die Fledermäuse waren von den Störreflexen extrem irritiert. Erst wenn die seitlichen Objekte relativ weit weg waren, haben sie das Objekt vor sich erkannt.“

Als visuelles Experiment wäre die Aufgabe sehr einfach. Das visuelle System liefert über die Sehzellen in der Retina sofort eine sehr gute räumliche Auflösung. „Echoortung funktioniert völlig anders als die visuelle Abbildung“, erklärt Lutz Wiegrebe. „Die Sinneszellen in den Ohren kodieren nicht Raumachsen, sondern Frequenz und Zeit. Rauminformation muss daraus erst neuronal berechnet werden. Unsere Experimente zeigen, dass das räumliche Auflösungsvermögen von Fledermäusen um ein Vielfaches (um drei Größenordnungen) schlechter ist als die Auflösung des visuellen Systems des Menschen. Fledermäuse „sehen“ per Echoortung sozusagen ein extrem verschwommenes Bild. Eine visuell einfache Aufgabe wie: „Sage mir, wie viele Finger einer Hand ich hochhalte“, ist biosonar sehr schwer zu lösen. Trotzdem navigieren Fledermäuse sehr erfolgreich“, sagt Wiegrebe. Die Forscher nehmen an, dass die Fledermäuse diese schlechte Wahrnehmung ausgleichen, indem sie während des Fluges fortlaufend die räumlichen Informationen über Entfernung und Richtung auswerten und sich dabei auf die Position nächstliegender Objekte konzentrieren.

Ihre Ergebnisse könnten Implikationen für technische Anwendungen haben. „Beim autonomen Fahren werden laufend Informationen mit der Kamera erfasst, um das Auto zu steuern. Womöglich werden dabei viel mehr Information erfasst als nötig. Fledermäuse verfügen über ein viel einfacheres Navigationsschema und navigieren dennoch exzellent. Sie verfügen nicht über ein 3-D-Bild wie es bei der visuellen Wahrnehmung entsteht“, sagt Lutz Wiegrebe.

In einer ebenfalls kürzlich veröffentlichten Arbeit im Fachmagazin iScience hatten Leonie Baier aus der Arbeitsgruppe von Lutz Wiegrebe und Dr. Holger Goerlitz vom Max-Planck-Institut für Ornithologie gezeigt, dass Fledermäuse sehr sensitiv für verschiedene Raumfrequenzen sind. Dadurch gelingt es ihnen zum Beispiel ein Insekt über einer Wasseroberfläche zu erkennen. „Aus unserer neuen Arbeit wissen wir nun, dass die Fledermäuse diese Informationen aber nicht räumlich auflösen können“, sagt Wiegrebe. In dem Moment, wo neben dem Insekt etwa auch Pflanzen auf der Wasseroberfläche schwimmen, können die Tiere ihre Beute nicht erkennen.

Publikationen:

Cornelia Geberl, Kathrin Kugler, Lutz Wiegrebe: The spatial resolution of bat biosonar quantified with a visual resolution paradigm. In: Current Biology 2019

A. Leonie Baier, Lutz Wiegrebe, Holger R. Görlitz: Echo-Imaging Exploits an Environmental High-Pass Filter to Access Spatial Information with a Non-Spatial Sensor. In: iScience 2019

Externer Link: www.uni-muenchen.de

Relaisstation im Gehirn steuert unsere Bewegungen

Medienmitteilung der Universität Basel vom 14.05.2019

Die Relaisstation des Gehirns, die Substantia nigra, beherbergt verschiedene Arten von Nervenzellen und ist für die Ausführung von Bewegungen zuständig. Forschende am Biozentrum der Universität Basel haben nun zwei dieser Zellpopulationen genauer charakterisiert und konnten ihnen jeweils eine genaue Funktion zuordnen. Die Ergebnisse der Untersuchung sind jetzt in «Cell Reports» veröffentlicht.

Egal ob wir unsere Arme, Beine oder den gesamten Körper bewegen, alles wird zentral von unserem Gehirn gesteuert. Dabei spielen verschiedene Hirnregionen und ihre Netzwerke eine wichtige Rolle. So auch die Substantia nigra, eine bislang wenig erforschte Gehirnregion. Wie eine Relaisstation empfängt und verteilt sie Signale, um eine gewünschte Bewegung zu koordinieren und auszuführen. Im Mausmodell hat die Forschungsgruppe von Prof. Kelly Tan am Biozentrum der Universität Basel nun zwei Zellpopulationen in dieser Hirnregion identifiziert, die für verschiedene Aspekte einer Bewegung verantwortlich sind.

Korrekte Bewegung dank Teamwork von Neuronenpopulationen

Das Forschungsteam hat dazu die Substantia nigra anatomisch, genetisch und funktionell untersucht. Es zeigte sich, dass diese Region aus mehreren unterschiedlichen Typen von Nervenzellen besteht. Für zwei der Populationen haben die Forscher nun die genaue Funktion aufgeklärt: Während die eine Population für die Ingangsetzung einer gewünschten Bewegung verantwortlich ist, sorgt die zweite für deren Fortführung.

«Die Heterogenität von Nervenzellpopulationen im Gehirn, auch in der Substantia nigra, ist ein bekanntes Konzept. Mit unserer Studie konnten wir nun nicht nur die Funktion von zwei Gruppen von Nervenzellen entschlüsseln, sondern auch zeigen, dass diese beiden Populationen zusammenarbeiten, um eine Bewegung korrekt auszuführen», sagt Giorgio Rizzi, Erstautor der Studie.

Signale zur Bewegungssteuerung laufen bei Parkinson ins Leere

Die Erkenntnisse der Studie sind auch im Hinblick auf das Parkinson-Syndrom von Bedeutung. Die Betroffenen leiden unter motorischen Störungen, da bestimmte Nervenzellen bei ihnen absterben. «Interessanterweise interagieren diese Zellen mit der von uns identifizierten Zellpopulation, welche Bewegungen initiiert. Der Verlust dieser bestimmten Nervenzelltypen bei Parkinson bedeutet, dass Signale nicht mehr weitergeleitet bzw. empfangen werden. Diese Fehlfunktion könnte der Grund für die bei Parkinsonpatienten beobachtete gestörte Bewegungsinitiierung sein», sagt Kelly Tan.

Zukünftig möchte das Forschungsteam weitere Zellpopulationen in der Substantia nigra identifizieren und ihre motorischen Funktionen aufklären. «In Bezug auf Parkinson möchten wir untersuchen, wie sich die Netzwerke in Folge der Erkrankung verändern und wie sich dies auf die Bewegungsabläufe auswirkt. Wenn wir die Veränderungen der Netzwerke verstehen, finden wir vielleicht auch Wege, diese neurodegenerative Erkrankung besser zu handhaben und die Symptome von Parkinson-Patienten zu lindern», so Kelly Tan.

Originalbeitrag:
Giorgio Rizzi and Kelly R. Tan
Synergistic Nigral Output Pathways Shape Movement
Cell Reports (2019), doi: 10.1016/j.celrep.2019.04.068

Externer Link: www.unibas.ch