Die künstliche Plazenta im Labor

Presseaussendung der TU Wien vom 13.08.2018

Um wichtige Bio-Membranen besser zu verstehen, muss man zu neuen Methoden greifen: An der TU Wien stellte man mit 3D-Druck-Verfahren eine künstliche Plazentabarriere auf einem Chip her.

Die Plazenta hat eine wichtige und hochkomplizierte Aufgabe: Sie muss dafür sorgen, dass zwischen der Mutter und ihrem ungeborenen Kind wichtige Substanzen ausgetauscht werden und gleichzeitig anderen Substanzen der Durchgang versperrt wird. Längst hat man noch nicht vollständig verstanden, wovon die Durchlässigkeit der Plazenta abhängt – schließlich ist es kaum möglich, ihre Funktion am Menschen direkt zu untersuchen.

An der TU Wien stellte man daher nun ein künstliches Plazenta-Modell her, das dem natürlichen Vorbild sehr nahekommt: Mit speziell entwickelten lasergesteuerte 3D-Druck-Verfahren kann man aus Hydrogelen hochpräzise Formen herstellen, die dann mit Plazenta-Zellen besiedelt werden. Damit wird es nun möglich, wichtige Forschungsfragen zu klären, etwa über den Glucose-Austausch zwischen Mutter und Kind.

Komplexer Stoffaustausch zwischen Mutter und Kind

„Der Transport von Substanzen durch biologische Membranen spielt in verschiedenen Bereichen der Medizin eine wichtige Rolle“, sagt Prof. Aleksandr Ovsianikov vom Institut für Werkstoffwissenschaften und Werkstofftechnologie der TU Wien. „Etwa in der Blut-Hirn-Schranke, bei der Nahrungsaufnahme in Magen und Darm oder eben in der Plazenta.“

So gibt es etwa zahlreiche Studien darüber, dass sich Krankheiten der Mutter wie etwa Diabetes auf das ungeborene Kind auswirken können. Auch Bluthochdruck kann den Stofftransport zum Fetus beeinflussen. Auf welche Weise in solchen Fällen aber die vielen beteiligten Parameter zusammenspielen, konnte bisher kaum untersucht werden.

Spezialchip mit Bio-Trennwand aus dem 3D-Drucker

An der TU Wien arbeitet man daher daran, Organstrukturen auf kompakten Chips nachzubilden, um so wichtige Aspekte ihrer Funktion unter kontrollierten Bedingungen untersuchen zu können. „Unser Chip besteht aus zwei Bereichen – eine repräsentiert den Fötus, der andere die Mutter“, erklärt Denise Mandt, die im Rahmen ihrer Diplomarbeit an dem Projekt arbeitete. „Dazwischen stellen wir in einem speziellen 3D-Druck-Verfahren eine Trennwand her – die künstliche Plazentamembran.“

An solchen hochauflösenden 3D-Druck-Verfahren arbeitet man an der TU Wien seit Jahren mit großem Erfolg: Man verwendet Materialien, die mit Hilfe von Laserstrahlen zum Aushärten gebracht werden können. So kann man Punkt für Punkt mit einer Auflösung im Mikrometer-Bereich die gewünschten 3D-Strukturen herstellen. „In unserem Fall handelt es sich dabei um ein Hydrogel mit guter Bioverträglichkeit“, erklärt Aleksandr Ovsianikov. „Nach dem Vorbild der natürlichen Plazenta stellen wir eine Oberfläche mit kleinen, gewundenen Zotten her. Dort können sich dann Plazentazellen ansiedeln und eine Oberfläche erzeugen, die der natürlichen Plazenta sehr ähnlich ist.“

Das Organ auf dem Chip

„Die Organ-on-a-Chip Technologie ist ein revolutionärer Ansatz in der Biomedizin, der in den letzten Jahren großes Interesse in der klinischen Diagnostik, Biotechnologie und Pharmazie erzeugt hat“, sagt Prof. Peter Ertl, Leiter der Cell-Chip-Forschungsgruppe, die maßgeblich an dem Projekt beteiligt war. „Die Erzeugung von humanen Miniorganen am Chip soll dazu führen, dass patientenspezifische Therapieansätze entwickelt werden können, und stellt außerdem auch eine wichtige Methode für den Ersatz von Tierversuchen dar.“

Am Chip können wichtige biologische Parameter wie Druck, Temperatur, Geometrie und Nährstoffversorgung der Miniorgane sowie die Zugabe von Medikamenten genau kontrolliert werden. So wird es möglich, Krankheitsverläufe und Heilungsraten genau zu beobachten.

In ersten Tests konnte bereits gezeigt werden, dass sich die künstliche Plazenta am Chip tatsächlich ähnlich wie eine natürliche Plazenta verhält: Kleine Moleküle werden durchgelassen, große werden aufgehalten. Nun soll das Modell verwendet werden, um gezielt wichtige Aspekte des Nährstofftransports von der Mutter zum Fötus zu untersuchen. (Florian Aigner)

Originalpublikation:
D. Mandt et al., Fabrication of placental barrier structures within a microfluidic device utilizing two-photon polymerization, International Journal of Bioprinting, 4,2 (2018).

Externer Link: www.tuwien.ac.at

Ohne Fettzelle, mehr Fettzellen

Medienmitteilung der ETH Zürich vom 20.06.2018

Forschende der ETH Zürich und der EPFL haben einen neuen Fettzelltyp entdeckt, der das Wachstum neuer Fettzellen unterdrückt. Das eröffnet neue Ansatzpunkte, um Folgeerkrankungen von Fettleibigkeit zu verhindern.

Fettleibigkeit ist die Geissel des modernen Menschen. Wer übergewichtig ist, hat ein sehr viel höheres Risiko an Diabetes oder Krebs zu erkranken oder einen Herzinfarkt zu erleiden. Was die Wissenschaft schon lange weiss: Übergewicht ist nicht per se schädlich. So sind viele kleine Fettzellen für einen gesunden Stoffwechsel günstiger als wenige grosse. Weltweit wird daher nach Wegen gesucht, die Bildung neuer Fettzellen anzuregen – bislang aber mit wenig Erfolg.

Forschenden der ETH Zürich ist nun zusammen mit Kollegen der EPFL ein Durchbruch gelungen: Sie haben einen neuen Zelltyp im Fettgewebe von Säugern entdeckt, der die Bildung neuer Fettzellen unterbindet und so vorteilhaftes Fettgewebe verhindert. Über ihren Fund berichten die Wissenschaftler in der aktuellen Ausgabe von Nature.

Fettzellen regulieren Fettzellwachstum

Wie Fettzellen entstehen, konnte die Forschung bisher noch nicht restlos klären. Man weiss, dass Fettzellen aus Vorläuferzellen entstehen und sich im ausdifferenzierten Zustand wahrscheinlich nicht mehr teilen. «Nach solchen Vorläuferzellen suchten wir im Fettgewebe von Mäusen, als wir auf einen bislang unbekannten Fettzelltyp mit interessanten Eigenschaften stiessen», berichtet Christian Wolfrum, ETH-Professor für translationale Ernährungsbiologie.

Experimente im Mausmodell und mit menschlichem Fettgewebe zeigten, dass es sich um eine Art «regulatorische Fettzelle» handelt, die scheinbar permanent Botenstoffe ins umliegende Gewebe abgibt. «Wir fanden vorerst vier Proteine, die zusammen verhindern, dass sich Vorläuferzellen zu neuen Fettzellen ausbilden», sagt Hua Dong, Doktorandin in Wolfrums Gruppe und eine der Erstautorinnen der Studie.

Fett ist nicht gleich Fett

Der neue Zelltyp, Areg genannt, ist therapeutisch interessant. Legt unser Körper an Gewicht zu, kann das energiespeichernde weisse Fettgewebe auf zwei Arten wachsen: Bei den meisten Fettleibigen vergrössern sich die bestehenden Fettzellen. Irgendwann können sie das viele Fett nicht mehr speichern und geben es in den Blutkreislauf ab. Leber und Muskeln verfetten – das Risiko für Diabetes und andere Folgeerkrankungen steigt. Bei rund 20 Prozent der Übergewichtigen bildet das Fettgewebe jedoch neue Zellen aus. Dank den zusätzlichen «Gefässen» können diese Menschen das überschüssige Fett besser speichern und erkranken deshalb weniger.

Bislang haben sich Fettleibigkeitsforschung und Pharmafirmen vor allem darauf fokussiert, wie man die Vorläuferzellen aktivieren kann, um Fettzellen zu vermehren. «Doch niemand verstand so recht, warum sich selbst in Fettgewebe mit vielen Vorläuferzellen nur selten neue Zellen bilden», so Wolfrum. Die unterdrückenden Aregs liefern nun eine Erklärung dafür.

Die Entdeckung eröffnet vielversprechende Ansatzpunkte für künftige Therapien. So konnten die Forschenden zeigen, dass tatsächlich neue Fettzellen entstehen, wenn man die Aregs aus dem Fettgewebe entfernt. Zudem fanden sie Hinweise darauf, dass diese Fettregulatoren gerade bei übergewichtigen Mäusen mit grossen Fettzellen gehäuft vorkommen.

Mit den jüngsten Resultaten rückt das Fernziel, dicke Menschen mit einer Therapie vor Diabetes und Co. zu schützen, ein kleines Stück näher. Dabei geht es stets um die physiologische Gesundheit – und nicht ums Gewicht. Wer abnehmen wolle, dem helfe nach wie vor nur eins: Weniger Kalorien aufzunehmen als zu verbrauchen.

Literaturhinweis:
Schwalie PC, Dong H, Zachara M, Russeil J, Alpern D, Akchiche N, Caprara C, Sun W, Schlaudraff K-W, Soldati G, Wolfrum C, Deplancke B: A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature, 20. Juni 2018, doi: 10.1038/s41586-018-0226-8

Externer Link: www.ethz.ch

Angriff an zwei Fronten

Presseinformation der LMU München vom 16.05.2018

LMU-Forscher zeigen, warum die bisherige Therapie beim Kolonkarzinom verpufft, und schlagen einen neuen Therapieansatz vor.

Dickdarm-Krebs lässt sich im frühen Stadium operativ entfernen. Doch wenn der Krebs bereits weiter fortgeschritten ist, müssen auch bestimmte Signalwege in den Krebszellen blockiert werden, damit sich der Tumor nicht weiter ausbreitet. Warum das bislang das Fortschreiten des Krebses nur um wenige Monate verzögern kann, zeigt eine neue Studie, die ein Team am Institut für Pathologie der LMU um Eva Marina Schmidt und Professor David Horst (inzwischen Charité Berlin) soeben in der Fachzeitschrift Journal of Experimental Medicine veröffentlicht hat. Demnach weicht der Tumor auf einen anderen Zelltyp aus, sobald ein bestimmter Signalweg unterdrückt wird.

Wie die LMU-Forscher zeigen, setzen sich die Tumoren beim Dickdarm-Krebs aus zwei verschiedenen Zelltypen zusammen, die einander ersetzen können. Die bisherige Therapie, bei der ein bestimmter Signalweg unterdrückt wird, führt daher nur dazu, dass der andere Zelltyp des Tumors das Wachstum übernimmt. Als neuen Therapieansatz schlagen die Forscher daher vor, die Signalwege beider Zelltypen zugleich anzugreifen, um den Tumor zu stoppen.

Für die Studie wurden Proben von 300 Patienten untersucht. Zudem zeigte sich im Mausmodell, dass das Wachstum des Tumors gestoppt werden konnte, sobald die Signalwege beider Zelltypen blockiert wurden.

Veröffentlichung:
Journal of Experimental Medicine 2018

Externer Link: www.uni-muenchen.de

Immunzellen erkennen Stoffwechselprodukte von Darmbakterien

Medienmitteilung der Universität Basel vom 09.05.2018

Eine noch wenig erforschte Gruppe von Immunzellen spielt in der Regulation von Darmbakterien eine wichtige Rolle. Veränderte Stoffwechselbedingungen für die Mikroben wirken sich bei den Abwehrzellen in unterschiedlichen Stadien der Wachsamkeit aus, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel in der Fachzeitschrift «Mucosal Immunology» berichten.

Bekannt ist, dass die Stoffwechselprodukte von Bakterien die Zusammensetzung und Funktion von Immunzellen im Darm beeinflussen. Zu diesen Abwehrzellen gehören die MAIT-Zellen (Mukosa-assoziierte invariante T-Zellen), die erst vor einigen Jahren entdeckt wurden und natürlicherweise gehäuft in der Schleimhaut des Darms, in der Haut, der Leber und im Blut vorkommen. Diese Zellen sind darauf spezialisiert, die in jedem Menschen lebenden Mikroorganismen zu erkennen und deren Aktivitäten zu überwachen.

Verschiedene Populationen

Wie die MAIT-Zellen im Dickdarm durch die Stoffwechselprodukte von Bakterien aktiviert und in Funktion gesetzt werden, hat eine Gruppe um Prof. Dr. Gennaro De Libero von der Universität Basel und PD Dr. Petr Hruz vom Universitätsspital Basel untersucht. Sie konnte zeigen, dass in der menschlichen Darmschleimhaut verschiedene Populationen von MAIT-Zellen angesiedelt sind. Identifiziert wurden diese Stämme in Darmbiopsien mit hoch innovativen Methoden und Analysen der Bioinformatik.

Ergebnis: MAIT-Zellen befinden sich abhängig vom Zustand des Stoffwechsels der mikrobiellen Darmflora in unterschiedlichen Stadien von Wachsamkeit. Stimuliert werden die Abwehrzellen am häufigsten von Bakterien, die wenig Sauerstoff vorfinden und sich langsam vermehren – Bedingungen, wie sie im Dickdarm auftreten. Die MAIT-Zellen können dann eine lokale Entzündung, die Heilung von Gewebe und die allgemeine Fitness der Darmzellen beeinflussen, indem sie verschiedene Botenstoffe produzieren.

«Feines Gleichgewicht»

«Unsere Resultate verdeutlichen, das im Darm ein feines Gleichgewicht zwischen den mikrobiellen Wachstumsbedingungen, der Produktion von stimulierenden Stoffwechselprodukten und der Antwort der MAIT-Abwehrzellen herrscht», kommentieren die Forschenden. Der Stoffwechsel von Mikroben im Darm passt sich ständig an veränderte Wirtsbedingungen an. Indem die MAIT-Zellen den Stoffwechselzustand von Darmbakterien erfassen, können sie ihre Funktion in der Immunüberwachung der Darmschleimhaut verstärken.

Originalbeitrag:
Mathias Schmaler et al.
Modulation of bacterial metabolism by the microenvironment controls MAIT cell stimulation
Mucosal Immunology (2018), doi: 10.1038/s41385-018-0020-9

Externer Link: www.unibas.ch

Abwehrzellen genetisch effizient verändern

Medienmitteilung der Universität Basel vom 05.04.2018

Eine neue Methode ermöglicht es, Gene in lebenden T-Zellen von Mäusen schnell und effizient zu modifizieren. Als Werkzeug kommen Plasmide zum Einsatz, die sich in der Gentechnik seit Langem bewährt haben. Das berichten Forscher vom Departement Biomedizin der Universität Basel und des Universitätsspitals Basel im «Journal of Immunology».

Mit molekularbiologischen Verfahren wie der als Genschere bekannten Methode Crispr-Cas9 lassen sich Gene in lebenden Zellen gezielt verändern. Nun haben Wissenschaftler das Verfahren so angepasst, dass sie damit die für die Immunabwehr wichtigen T-Zellen von Mäusen effizient genetisch verändern konnten. Diese direkte Manipulation von Immunzellen eröffnet neue Möglichkeiten für die Forschung und könnte die aufwändige Züchtung von gentechnisch veränderten Mäusen reduzieren.

Von der Maus in die Maus

Für ihre Studie entnahmen die Forscher um Prof. Dr. Lukas Jeker von Universität und Universitätsspital Basel T-Zellen von einer Maus und kultivierten sie im Labor. Verpackt in ein Plasmid – ein bewährtes Transportvehikel, um fremde Gene in Zellen einzuschleusen – brachten sie anschliessend per Stromstoss zwei Elemente in die Zellen ein: RNA-Moleküle, die an einen bestimmten Abschnitt der doppelsträngigen DNA andocken, und das Protein Cas9, das die DNA an dieser Stelle schneidet.

Durch die einsetzende, oft fehlerhafte Reparatur wird das betreffende Gen ausgeschaltet; möglich ist auch, einzelne DNA-Bausteine im Erbgut umzuschreiben. Dies ist jedoch deutlich schwieriger und weniger effizient. Zwei Tage nach der Entnahme wurden die Zellen wieder in Mäuse transferiert.

Voll funktionsfähig

Die veränderten T-Zellen überlebten in der Empfängermaus und waren voll funktionsfähig: Sie vermehrten sich, wanderten in Lymphknoten und Milz und verhielten sich während einer Infektion wie erwartet. Damit erfüllten sie die Voraussetzungen, die für einen allfälligen therapeutischen Einsatz genetisch veränderter T-Zellen erforderlich sind.

Mittels eigens entwickelten Tests konnten die Forscher die Effizienz von kleinsten, präzisen Mutationen weiter steigern. Zudem gelang es ihnen, mit der Methode eine Mutation im Foxp3-Gen zu reparieren, die in Mäusen schwere Autoimmunerkrankungen verursacht. Da sich das Verfahren einfacher Mittel bedient, ist seine Verwendung auch für Forschungsgruppen mit limitiertem Budget interessant.

«Unsere Methode erlaubt die gezielte Genchirurgie in T-Zellen und eröffnet neue Perspektiven für die Erforschung des Immunsystems sowie möglicherweise auch für die Entwicklung neuer T-Zell-basierter Therapien», sagt Lukas Jeker, Professor für Experimentelle Transplantationsimmunologie und Nephrologie an der Universität Basel.

T-Zell-Therapien feiern zurzeit grosse Erfolge in der Bekämpfung von Krebs. Es besteht deshalb die Hoffnung, dass die genetische Umprogrammierung von menschlichen T-Zellen in Zukunft für die Behandlung von Krebs aber auch von Autoimmunkrankheiten, schweren Infektionen oder in der Transplantationsmedizin zur Anwendung kommen könnte. Die Forschungsgruppe arbeitet deshalb daran, die Technik zu verfeinern und auf menschliche T-Zellen zu übertragen.

Originalbeitrag:
Mara Kornete, Romina Marone and Lukas T. Jeker
Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells
The Journal of Immunology (2018), doi: 10.4049/jimmunol.1701121

Externer Link: www.unibas.ch