Ungewöhnlicher Zucker aus Cyanobakterien wirkt als natürliches Herbizid

Pressemitteilung der Universität Tübingen vom 01.02.2019

Chemiker und Mikrobiologen der Universität Tübingen entdecken Zuckermolekül, das Pflanzen und Mikroorganismen hemmt und für menschliche Zellen ungefährlich ist ‒ Eine Alternative für das umstrittene Glyphosat?

Forscherinnen und Forscher der Universität Tübingen haben einen Naturstoff entdeckt, der dem umstrittenen Unkrautvernichtungsmittel Glyphosat Konkurrenz machen könnte: Das neu gefundene Zuckermolekül aus Cyanobakterien hemmt das Wachstum verschiedener Mikroorganismen und Pflanzen, ist aber für Menschen und Tiere ungefährlich. Die gemeinsame Studie wurde unter Leitung von Dr. Klaus Brilisauer, Professorin Stephanie Grond (Institut für Organische Chemie) sowie Professor Karl Forchhammer (Interfakultäres Institut für Mikrobiologie und Infektionsmedizin) durchgeführt. Sie ist am Freitag im Fachjournal Nature Communications erschienen.

Wirkstoffe für den pharmazeutischen oder landwirtschaftlichen Gebrauch haben ihren Ursprung oft in Naturstoffen. Diese können aus komplexen chemischen Strukturen bestehen, aber auch verhältnismäßig einfach aufgebaut sein. Oft liegt die Genialität solcher Wirkstoffe in ihrer Einfachheit: Sogenannte „Antimetabolite“ (von Metabolimus=Stoffwechsel) treten in Wechselwirkung mit lebenswichtigen Prozessen in der Zelle, indem sie Stoffwechselprodukte nachahmen. Das Ergebnis ist eine Störung des betroffenen biologischen Prozesses, was zur Wachstumshemmung oder gar zum Tod der betroffenen Zelle führen kann.

Das Tübinger Forschungsteam aus der Chemie und Mikrobiologie stieß nun auf einen sehr ungewöhnlichen Antimetaboliten mit bestechend einfacher chemischer Struktur: Ein Zuckermolekül mit dem wissenschaftlichen Namen „7-desoxy-Sedoheptulose (7dSh)“. Anders als gewöhnliche Kohlenhydrate, die in der Regel als Energiequelle für Wachstum dienen, hemmt diese Substanz das Wachstum verschiedener Pflanzen und Mikroorganismen, wie zum Beispiel Bakterien und Hefen. Der Zucker blockiert dabei ein Enzym des sogenannten Shikimatwegs, eines Stoffwechselweges, der nur in Mikroorganismen und Pflanzen vorkommt. Aus diesem Grund stufen die Wissenschaftlerinnen und Wissenschaftler den Wirkstoff als unbedenklich für Menschen und Tiere ein und wiesen dies auch bereits in ersten Untersuchungen nach.

Der seltene Desoxy-Zucker wurde aus Kulturen des Süßwasser-Cyanobakteriums Synechococcus elongatus isoliert, das in der Lage ist, das Wachstum verwandter Bakterienstämme zu hemmen. Auf der Suche nach der Ursache für diese Wachstumshemmung gelang es den Forschern, die Struktur des Naturstoffes zu entschlüsseln. Dank einer neu entwickelten Methode zur Herstellung von 7dSh, einer sogenannten chemoenzymatischen Synthese, konnten umfangreiche Studien zur Aufklärung des molekularen Wirkprinzips durchgeführt werden.

Im Detail lieferte eine moderne Technik, die sogenannte gekoppelte hochauflösende Massenspekt-rometrie, genaue Einblicke in die Wirkweise des entdeckten Hemmstoffes (Inhibitors): 7dSh blockiert die DHQS (Dehydrochinatsynthase), ein Enzym des Shikimatwegs. Einer der bislang bekanntesten Inhibitoren dieses Stoffwechselwegs ist das umstrittene Unkrautvernichtungsmittel Glyphosat. „Anders als bei Glyphosat handelt es sich bei dem neu entdeckten Desoxy-Zucker um ein reines Naturprodukt. Wir erwarten für 7dSh eine gute Abbaubarkeit und eine geringe Ökotoxizität“, sagt Dr. Klaus Brilisauer. 7dSh hemme das Pflanzenwachstum vielversprechend. „Wir sehen hier eine hervorragende Chance, es als natürliches Herbizid einzusetzen.“

Langfristiges Ziel sei, umstrittene Herbizide und damit auch deren gesundheitlich bedenklichen Abbauprodukte langfristig ersetzen zu können, so die Wissenschaftlerinnen und Wissenschaftler. Die Wirksamkeit im Feld, Abbaubarkeit im Boden und Unbedenklichkeit gegenüber Nutztieren und Mensch müssten für 7dSh jedoch in umfassenden Langzeitstudien weiter erforscht werden.

Publikation:
Klaus Brilisauer, Johanna Rapp, Pascal Rath, Anna Schöllhorn, Lisa Bleul, Elisabeth Weiß, Mark Stahl, Stephanie Grond, Karl Forchhammer. Cyanobacterial antimetabolite 7-deoxy-sedoheptulose blocks the shikimate pathway to inhibit the growth of prototrophic organisms. Published in Nature Communications (February 1st, 2019). DOI: 10.1038/s41467-019-08476-8

Externer Link: www.uni-tuebingen.de

Supraleiter: Widerstand ist zwecklos

Presseaussendung der TU Wien vom 28.01.2019

Über Supraleitung muss ganz neu nachgedacht werden. Experimente an der TU Wien beweisen, dass unbewegliche Ladungsträger, die als „Klebstoff“ wirken, die Supraleitung erst ermöglichen.

Jedes gewöhnliche Kabel, jeder Draht, jeder elektronische Bauteil hat einen gewissen elektrischen Widerstand. Es gibt allerdings spezielle supraleitende Materialien mit der besonderen Fähigkeit, elektrischen Strom mit einem Widerstand von exakt null zu transportieren – zumindest bei sehr niedrigen Temperaturen. Ein Material zu finden, das sich auch bei Raumtemperatur immer noch als Supraleiter verhält, wäre ein wissenschaftlicher Durchbruch von herausragender Bedeutung, sowohl in theoretischer als auch in technologischer Hinsicht. Es würde eine Reihe ganz neuer Anwendungen ermöglichen, von schwebenden Hochgeschwindigkeitszügen bis hin zu neuen bildgebenden Verfahren für die Medizin.

Die Suche nach solchen Hochtemperatur-Supraleitern ist allerdings extrem schwierig, weil viele der Quanteneffekte, die mit der Supraleitung in Zusammenhang stehen, noch nicht gut verstanden sind. Professor Neven Barišić vom Institut für Festkörperphysik an der TU Wien experimentiert mit Cupraten, einer Materialklasse, die bei Normaldruck bis zu einer Temperatur von 140 Kelvin (-133° C) supraleitend bleiben, damit sind Cuprate bis heute die Rekordhalter. Barišić und seinem Team gelang es nun, bemerkenswerte neue Resultate zu erzielen und neue Ideen vorzustellen, durch die sich die Art, wie man über komplexe Materialien und Hochtemperatur-Supraleitung denkt, völlig verändern soll.

Die Suche nach dem Heiligen Gral

„Das Phänomen der Hochtemperatur-Supraleitung wird seit Jahrzehnten eingehend erforscht, aber bisher hat niemand das Rätsel wirklich gelöst“, sagt Neven Barišić. „Es gibt durchaus einige Materialien, die supraleitendes Verhalten bei Temperaturen in der Nähe des absoluten Nullpunktes zeigen, und bei manchen verstehen wir sogar, warum das so ist. Aber die wirkliche Herausforderung ist es, Supraleitung in Cupraten zu verstehen, wo sie bei viel höheren Temperaturen bestehen bleibt. Ein Material, das bei Raumtemperatur supraleitend bleibt, wäre gewissermaßen der Heilige Gral der Festkörperphysik, und dem kommen wir näher und näher.“

Barišić konnte mit seinem Team nun zeigen, dass es in Cupraten zwei fundamental unterschiedliche Ladungsträger gibt. Das subtile Wechselspiel zwischen ihnen ist entscheidend für die Supraleitung.

Manche der elektrischen Ladungsträger im Material sind lokalisiert, jeder von ihnen sitzt an ganz bestimmten Atomen und kann sich nur wegbewegen, wenn das Material aufgeheizt wird. Andere Ladungsträger hingegen sind mobil und können von einem Atom zum anderen springen. Diese mobilen Ladungsträger sind es, die supraleitend werden, aber die Supraleitung lässt sich nur erklären, wenn man auch die immobilen Ladungsträger berücksichtigt.

„Es gibt eine Wechselwirkung zwischen den beweglichen und den unbeweglichen Ladungsträgern, durch die sich die Energie des Systems verändert“, sagt Barišić. „Die unbeweglichen Ladungsträger wirken als Klebstoff und binden Paare von mobilen Ladungsträgern aneinander, die sogenannte Cooper-Paare bilden. Die Bildung von Ladungsträger-Paaren ist die Grundidee hinter klassischen Supraleitern. Erst wenn die Ladungsträger gepaart werden, können sie supraleitend werden, und das Material transportiert die Ladung ohne jede Streuung und ohne jeden Widerstand.“

Das bedeutet, dass man die Zahl von mobilen und immobilen Ladungsträgern sorgfältig ausbalancieren muss, um Supraleitung zu erhalten. Gibt es zu wenige lokalisierte Ladungsträger, steht zu wenig „Klebstoff“ zum Koppeln der beweglichen Ladungsträger zur Verfügung. Gibt es hingegen zu wenige mobile Ladungsträger, dann gibt es nichts, was der Klebstoff koppeln könnte. In beiden Fällen wird die Supraleitung geschwächt oder bricht überhaupt zusammen. Dazwischen gibt es einen optimalen Bereich, in dem die Supraleitung bis hin zu bemerkenswert hohen Temperaturen erhalten bleibt. Die große Herausforderung war es, herauszufinden, wie sich diese Balance zwischen mobilen und immobilen Ladungsträgern kontinuierlich ändert, abhängig von der Temperatur oder der Dotierung des Materials mit anderen Atomen.

„Wir haben viele unterschiedliche Experimente mit Cupraten durchgeführt und riesengroße Datenmengen gesammelt. Nun können wir schließlich ein umfassendes phänomenologisches Bild der Supraleitung in Cupraten präsentieren“, sagt Neven Barišić. Fast gleichzeitig veröffentlichte er seine Ergebnisse nun in mehreren Fachjournalen, darunter „Science Advances“. Darin konnte nachgewiesen werden, dass Supraleitung graduell entstehen kann – ein wichtiger Schritt in Richtung des Ziels, Cuprate zu verstehen und noch bessere Supraleiter zu entwickeln.

Wenn es möglich wird, Materialien zu erzeugen, die auch bei Raumtemperatur noch supraleitend bleiben, hätte das weitreichende Konsequenzen für unsere Technologie. Man könnte elektronische Geräte bauen, die kaum noch elektrische Energie verbrauchen würden. Schwebende Züge könnten konstruiert werden, mit Hilfe von extrem starken supraleitenden Magneten, sodass billiger, ultraschneller Transport möglich werden würde. „Noch stehen wir nicht vor dem Ziel“, sagt Neven Barišić. „Aber ein tiefes Verständnis von Hochtemperatur-Supraleitung würde den Weg dorthin ebnen. Und ich glaube, dass wir nun gleich mehrere wichtige Schritte in diese Richtung genommen haben.“ (Florian Aigner)

Originalpublikation:
Pelc et al., Science Advances 25, Vol. 5, no. 1 (2019)

Externer Link: www.tuwien.ac.at

Umwandlung von Brustkrebszellen in Fettzellen hemmt Metastasenbildung

Medienmitteilung der Universität Basel vom 14.01.2019

Eine neuartige Kombinationstherapie kann bösartige Brustkrebszellen dazu zwingen, sich in Fettzellen umzuwandeln. Damit lässt sich bei Mäusen die Bildung von Metastasen verhindern. Dies berichten Forschende vom Departement Biomedizin der Universität Basel im Fachblatt «Cancer Cell».

Tumorzellen sind in der Lage, sich dynamisch an veränderte Bedingungen anzupassen. Dabei hilft ihnen, dass sie einen zellulären Prozess reaktivieren können, der während der embryonalen Entwicklung eine zentrale Rolle spielt. Dieser ermöglicht es den Zellen, ihre molekularen Eigenschaften zu verändern und neue Fähigkeiten zu erlangen.

Durch diesen Prozess können sesshafte Zellen die Eigenschaften anderer Zelltypen annehmen und sich aus ihrem Zellverband lösen. Als mobile Zellen wandern sie anschliessend über den Blutkreislauf in andere Körperregionen, wo sie sich erneut verändern, sich festsetzen und neue Gewebestrukturen bilden.

Wandlungsfähige Krebszellen

Im Embryo ermöglicht diese sogenannte epithelial-mesenchymale Transition (EMT) die Entwicklung von Organen. Tumorzellen hingegen machen sich den Prozess zunutze, um den primären Tumor zu verlassen, sodass sie sich im Körper verteilen und in entfernten Organen Metastasen bilden können.

Die Forschungsgruppe von Prof. Gerhard Christofori am Departement Biomedizin der Universität Basel erforscht die molekularen Abläufe, die das zelluläre Programm EMT regulieren. Ziel ist, neue Ansätze gegen die Entwicklung von Tumoren und die Bildung von Metastasen aufzuzeigen – zum Beispiel bei Brustkrebs, einer der häufigsten und bösartigsten Erkrankungen bei Frauen.

Veränderbarkeit ausnutzen

Bösartige Krebszellen verfügen über eine hohe Wandlungsfähigkeit – man spricht von Plastizität –, während sie das zelluläre Programm EMT durchlaufen. Diese Eigenschaft haben die Forscher nun genutzt, um einen neuartigen therapeutischen Ansatz zu entwickeln.

In Versuchen mit Mäusen ist es ihnen gelungen, durch die Kombination von zwei Wirkstoffen Brustkrebszellen, die sich sehr schnell teilen und Metastasen bilden, in Fettzellen umzuwandeln, die sich nicht mehr teilen können und von normalen Fettzellen kaum zu unterscheiden sind. Dadurch wird die Tumorinvasion in das umliegende Gewebe und in Blutgefässe unterbunden, und es können sich keine Metastasen mehr bilden.

Diese neuartige Umwandlungstherapie basiert auf der Kombination von zwei Medikamenten: Rosiglitazon, das bei vielen Patienten zur Behandlung von Diabetes eingesetzt wird, und Trametinib, welches das Wachstum und die Ausbreitung von Krebszellen hemmt.

«Dieser neuartige Therapieansatz könnte zukünftig genutzt werden, um in Kombination mit konventioneller Chemotherapie das primäre Tumorwachstum und gleichzeitig auch die Bildung von tödlichen Metastasen zu unterdrücken», so Prof. Gerhard Christofori. Die Forschungsergebnisse zeigen weiter, dass bösartige Krebszellen – ähnlich wie Stammzellen – eine hohe Zellplastizität aufweisen, die therapeutisch ausgenutzt werden kann.

Originalbeitrag:
Dana Ishay Ronen, Maren Diepenbruck, Ravi Kiran Reddy Kalathur, Nami Sugiyama, Stefanie Tiede, Robert Ivanek, Glenn Bantug, Marco Francesco Morini, Junrong Wang, Christoph Hess, and Gerhard Christofori
Gain Fat—Lose Metastasis: Converting Invasive Breast Cancer Cells into Adipocytes Inhibits Cancer Metastasis
Cancer Cell (2019), doi: 10.1016/j.ccell.2018.12.002

Externer Link: www.unibas.ch

Chemiker der Saar-Uni entwickeln neues Material, das Seltene Erden bei LED-Lampen spart

Pressemitteilung der Universität des Saarlandes vom 18.01.2019

Die LED-Technologie ist derzeit die Beleuchtungstechnik mit dem größten Potenzial für die Zukunft. Mit dem technischen Fortschritt steigt allerdings auch die Belastung für die Materialien, die in einer LED-Lampe verbaut sind. Die transparente Kapsel, die die Leuchtdiode umhüllt, muss zum Beispiel immer höhere Temperaturen aushalten können, gleichzeitig soll die Technologie mit viel weniger der so genannten Seltenen Erden auskommen. Chemiker der Saar-Uni um Professor Guido Kickelbick haben nun mit Partnern aus der Industrie (Osram, BASF) ein Verkapselungsmaterial entwickelt, das LEDs ohne Seltene Erden langlebiger und günstiger machen könnte. Dazu haben sie auch Patente angemeldet. Das Material ist im Rahmen des noch laufenden Forschungsprojektes „Organische und Seltenerd-reduzierte Konversionsmaterialien für LED- basierte Beleuchtung“ (ORCA) entstanden, das vom Bund mit 1,9 Millionen Euro gefördert wird.

Bereits heute ist abzusehen, dass die klassische Beleuchtungstechnik wie etwa Glühlampen, Energiesparlampen und Leuchtstoffröhren komplett durch die LED-Technologie abgelöst wird. An die Lampen werden immer neue Anforderungen gestellt, was die Langlebigkeit, die Lichtqualität, aber auch die Rohstoffverwertung und den Preis angeht. In konventionellen LEDs werden beispielsweise Bauteile mit einem hohen Anteil der so genannten Seltenen Erden verbaut.

Diese Metalle, zum Beispiel Yttrium und Lutetium, werden nur in wenigen Ländern, beispielsweise China, abgebaut. Diese Staaten nutzen ihre Monopolstellung und legen die Preise nach Belieben fest. Die Elektronikindustrie sucht daher nach Wegen, den Anteil der Seltenen Erden zu reduzieren, auch in den LED-Lampen.

Die Seltenen Erden sind zu einem großen Teil in den so genannten Konverterelementen verbaut, die aus dem ursprünglich blauen Licht des Halbleiters weißes Licht erzeugen. Man kann die Konverterfarbstoffe bereits heute durch organische Alternativen ersetzen, welche in der Herstellung deutlich preisgünstiger sind und keine Seltenen Erden enthalten. Diese sind jedoch empfindlich gegenüber den hohen Lichtleistungen, Temperaturen und Sauerstoff und müssen daher verkapselt werden.

„Am Beginn des Projektes haben wir versucht bestehende Verkapselungstechnologien zu verbessern. Uns wurde jedoch schnell klar, dass wir einen völlig neuen Ansatz benötigen“, so der Professor für Anorganische Festkörperchemie an der Saar-Uni, Guido Kickelbick, einer der Projektleiter in dieser interdisziplinären Studie. Nach zweijähriger Arbeit ist es seinem Team nun gelungen, ein komplett neues Verkapselungsmaterial zu entwickeln, welches alle wesentlichen Anforderungen für die Verwendung organischer Farbstoffe in der LED erfüllt.

Das Material basiert auf einem speziellen Silikon, dessen Eigenschaften sich durch die chemische Synthese nahezu beliebig festlegen lassen, je nach Anforderungen. Die wichtigsten Parameter sind erfüllt: Das Material ist thermisch sehr beständig, weist eine hohe Transparenz auf und ist leicht zu verarbeiten. Nebenbei spart das Material auch noch weitere Ressourcen. Bei konventionellen Materialien wird Platin als Katalysator für die Vernetzung der flüssigen Vorstufen eingesetzt, in dem neu entwickelten Material kann darauf komplett verzichtet werden.

Publikation:
Nils Steinbrück, Svenja Pohl, Guido Kickelbick: Platinum Free Thermally Curable Siloxanes for Optoelectronic Application – Synthesis and Properties, RSC Adv., 2019, 9, 2205-2216

Externer Link: www.uni-saarland.de

JKU Medizinforschung: Spritze gegen Herzinfarkt

Presseaussendung der JKU Linz vom 07.01.2019

Herzinfarkt ist mit 41 Prozent der Todesfälle die häufigste Todesursache in Österreich. 41.000 mal tritt pro Jahr der Fall der Fälle ein – rasches Handeln ist in der Folge lebensrettend. ForscherInnen der Johannes Kepler Universität Linz entwickeln nun eine Spritze, mit der NotärztInnen vor Ort rund 20 Prozent des Herzmuskels vor dem Absterben retten können. Im Laborversuch ist das neue Mittel bereits erfolgreich getestet worden.

Zum Leben zu wenig, zum Sterben zu viel: Beim Infarkt wird ein Teil des Herzens von der Sauerstoffversorgung abgeschnitten. Das umliegende Herzgewebe wird zwar nicht mehr voll versorgt, stirbt aber erst nach einiger Zeit endgültig ab. Dieses Gewebe kann die Neuentwicklung von Univ.-Prof. David Bernhard, Leiter des Zentrums für Medizinische Forschung der JKU, retten. Mit seinem Team hat er den Wirkstoff 5`-Methoxyleoligin entwickelt. Das Besondere: Er schützt nicht nur das mangelversorgte Herzgewebe vor den Auswirkungen des Infarkts, sondern kann auch intravenös verabreicht werden. Eine Spritze vor Ort durch den Notarzt reicht also aus – bisher konnte eine Behandlung des Herzens erst operativ im Krankenhaus erfolgen.

Edelweiß-Wurzel

Der eigentliche Entwickler des Wirkstoffs ist die Natur: Methoxyleoligin stammt aus der Wurzel des Edelweiß‘. „Mittlerweile können wir es aber synthetisch herstellen“, so Bernhard. Die Bedeutung des Wirkstoffs geht noch weiter. Im Falle eines Infarkts versuchen die Zellen, Sauerstoff besonders effizient zu nutzen. Das Problem: Sauerstoff ist eigentlich ein Gift. Wird nun ein Herzkatheder gelegt, gelangt ein Übermaß an Sauerstoff in den Herzmuskel, was durch die besonders effiziente Verarbeitung zusätzlichen Schaden verursacht. Das JKU-Mittel reduziert diesen Effekt deutlich und mildert den Sauerstoff-Schaden deutlich ab.

Der Körper – ein komplexes Ding

Wie schwierig medizinische Forschung ist, hat Bernhard bei diesem Projekt erfahren. Unglaublich viele Wechselwirkungen müssen bedacht werden. So ist bekannt, dass Vitamin A vor Herz-Kreislauferkrankungen schützt. Mittlerweile zeigte sich, dass ein Abkömmling dieses Vitamins im Falle eines Herzinfarkts ins Gegenteil umschlägt und so das Zellsterben beschleunigt. Auch dieser Effekt wird durch das Multitalent Methoxyleoligin verhindert. „Der neue Wirkstoff verhindert, dass der gefährliche Vitamin A Abkömmling von Herzmuskelzellen aufgenommen wird“, erklärt Bernhard.

Diese Forschungsergebnisse wurden nun der Fachwelt vorgestellt. Insgesamt haben ExpertInnen von sechs österreichischen Universitäten unter Führung der JKU mehrere Jahre an dem Projekt gearbeitet. Das Folgeprojekt ist bereits angelaufen: „Als nächstes wollen wir die neue Akut-Therapie des Herzinfarktes durch Notärzte und Kardiologen zur Verfügung haben“, stellt Bernhard ambitionierte Ziele. Bis das Mittel tatsächlich im Einsatz ist, dauert es aber noch. „Wir müssen weiter testen. Am Menschen können wir das Mittel gemäß Gesetz frühestens in drei Jahren erproben“, so der JKU-Forscher. (Sebastian Luger)

Externer Link: www.jku.at