Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern

Medienmitteilung der Universität Basel vom 11.01.2021

Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern. Physiker haben nun ein neuartiges Qubit realisiert, das sich von einem stabilen Ruhezustand in einen schnellen Rechenmodus umschalten lässt. Das Konzept eignet sich auch, um viele Qubits zu einem leistungsstarken Quantenrechner zu verbinden, berichten Forscher der Universität Basel und der TU Eindhoven in der Fachzeitschrift «Nature Nanotechnology».

Im Vergleich zu konventionellen Bits sind Quantenbits (Qubits) viel anfälliger auf Störungen und können ihren Informationsgehalt sehr schnell verlieren. Das Rechnen mit Quanten steht deshalb vor der Schwierigkeit, die empfindlichen Qubits über längere Zeit stabil zu halten und gleichzeitig Wege zu finden, um schnelle Quantenoperationen durchführen zu können. Physiker der Universität Basel und der TU Eindhoven haben nun ein umschaltbares Qubit entwickelt, das beides ermöglichen soll.

Das neuartige Qubit verfügt über einen stabilen, aber langsamen Zustand, der für die Speicherung der Quanteninformation geeignet ist. Über die elektrische Spannung konnten die Forscher das Qubit aber in einen viel schnelleren, dafür weniger stabilen Manipulationsmodus schalten. In diesem Zustand lassen sich mit den Qubits Informationen zügig verarbeiten.

Gezielte Kopplung einzelner Spins

In ihrem Experiment haben die Wissenschaftler die Qubits in Form von sogenannten Lochspins realisiert. Dabei handelt es sich um eine Leerstelle, die entsteht, wenn ein Elektron gezielt aus einem Halbleiter entfernt wird. Das entstehende Elektronenloch besitzt einen Spin, der zwei Zustände annehmen kann: hoch und runter – analog zu den Werten 0 und 1 bei klassischen Bits. Über die Abstimmung von Resonanzfrequenzen können diese Spins im neuen Qubit-Typ selektiv gekoppelt werden – zum Beispiel via ein Photon an andere Spins.

Diese Eigenschaft ist von grosser Bedeutung, setzt der Bau von leistungsfähigen Quantencomputern doch voraus, viele einzelne Qubits gezielt steuern und miteinander verschalten zu können. Die Fähigkeit zur Skalierung ist insbesondere nötig, um die Fehlerrate bei Quantenberechnungen zu verkleinern.

Ultraschnelle Spin-Manipulation

Mit dem elektrischen Schalter konnten die Forscher die Spin-Qubits auch in rekordhafter Geschwindigkeit manipulieren: «Der Spin lässt sich in nur einer Nanosekunde kohärent von oben nach unten drehen», so Studienleiter Prof. Dr. Dominik Zumbühl vom Departement Physik der Universität Basel. «Das würde fast eine Milliarde Schaltungen in einer Sekunde erlauben. Damit nähert sich die Spin-Qubit-Technologie den Taktraten der heutigen konventionellen Computer.»

Die Forscher verwendeten für ihre Experimente einen Halbleiter-Nanodraht aus Silizium und Germanium, der an der TU Eindhoven hergestellt wurde und dessen Durchmesser nur etwa 20 Nanometer beträgt. Entsprechend klein ist auch die Grösse des Qubits, wodurch im Prinzip Millionen oder sogar Milliarden von solchen Qubits auf einem Chip integriert werden können.

Originalpublikation:
Florian N. M. Froning, Leon C. Camenzind, Orson A. H. van der Molen, Ang Li, Erik P. A. M. Bakkers, Dominik M. Zumbühl, and Floris R. Braakman
Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality
Nature Nanotechnology (2021); doi: 10.1038/s41565-020-00828-6

Externer Link: www.unibas.ch

Thermomagnetische Generatoren wandeln Abwärme auch bei kleinen Temperaturunterschieden in Strom

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 12.01.2021

Legierungsschichtdicke und Grundfläche beeinflussen elektrische Leistung – Publikation in Joule

Die Verwertung von Abwärme trägt wesentlich zu einer nachhaltigen Energieversorgung bei. Wissenschaftlerinnen und Wissenschaftler des Karlsruher Institut für Technologie (KIT) und der Universität Tōhoku in Japan sind dem Ziel, Abwärme bei geringen Temperaturdifferenzen in Strom zu wandeln, nun wesentlich näher gekommen. Wie sie in der Zeitschrift Joule berichtet, haben sie bei thermomagnetischen Generatoren, die auf Dünnschichten einer Heusler-Legierung basieren, die elektrische Leistung im Verhältnis zur Grundfläche um den Faktor 3,4 gesteigert. (DOI: 10.1016/j.joule.2020.10.019)

Viele technische Prozesse nutzen die für sie eingesetzte Energie nur zum Teil; der Rest verlässt das System als Abwärme. Häufig entweicht diese Wärme ungenutzt in die Umgebung. Sie lässt sich jedoch auch zur Wärmebereitstellung oder zur Stromerzeugung verwenden. Je höher die Temperatur der Abwärme, desto einfacher und kostengünstiger ihre Verwertung. Eine Möglichkeit, niedrig temperierte Abwärme zu nutzen, bieten thermoelektrische Generatoren, welche die Wärme direkt in Strom wandeln. Bisher verwendete thermoelektrische Materialien sind allerdings teuer und teilweise toxisch. Thermoelektrische Generatoren erfordern zudem große Temperaturdifferenzen für Wirkungsgrade von nur wenigen Prozent.

Eine vielversprechende Alternative stellen thermomagnetische Generatoren dar. Sie basieren auf Legierungen, deren magnetische Eigenschaften stark temperaturabhängig sind. Die wechselnde Magnetisierung induziert in einer angelegten Spule eine elektrische Spannung. Bereits im 19. Jahrhundert stellten Forschende die ersten Konzepte für thermomagnetische Generatoren vor. Seitdem hat die Forschung mit verschiedenen Materialien experimentiert. Die elektrische Leistung ließ bisher allerdings zu wünschen übrig.

Wissenschaftlerinnen und Wissenschaftlern am Institut für Mikrostrukturtechnik (IMT) des KIT sowie an der Universität Tōhoku in Japan ist es nun gelungen, die elektrische Leistung von thermomagnetischen Generatoren im Verhältnis zur Grundfläche erheblich zu steigern. „Mit den Ergebnissen unserer Arbeit können thermomagnetische Generatoren erstmals mit etablierten thermoelektrischen Generatoren konkurrieren. Wir sind damit dem Ziel, Abwärme bei kleinen Temperaturunterschieden in Strom zu wandeln, wesentlich näher gekommen“, sagt Professor Manfred Kohl, Leiter der Forschungsgruppe Smart Materials and Devices am IMT des KIT. Die Arbeit des Teams ist Titelthema in der aktuellen Ausgabe der Energieforschungszeitschrift Joule.

Vision: Abwärmenutzung nahe Raumtemperatur

Sogenannte Heusler-Legierungen – magnetische intermetallische Verbindungen – ermöglichen als Dünnschichten in thermomagnetischen Generatoren eine große temperaturabhängige Änderung der Magnetisierung und eine schnelle Wärmeübertragung. Auf dieser Grundlage basiert das neuartige Konzept der resonanten Selbstaktuierung. Selbst bei geringen Temperaturunterschieden lassen sich die Bauelemente zu resonanten Schwingungen anregen, die effizient in Strom gewandelt werden können. Doch die elektrische Leistung einzelner Bauelemente ist gering, und bei der Hochskalierung kommt es vor allem auf Materialentwicklung und Bauweise an. Die Forschenden am KIT und an der Universität Tōhoku stellten in ihrer Arbeit anhand einer Nickel-Mangan-Gallium-Legierung fest, dass die Dicke der Legierungsschicht und die Grundfläche des Bauelements die elektrische Leistung in entgegengesetzter Richtung beeinflussen. Aufgrund dieser Erkenntnis gelang es ihnen, die elektrische Leistung im Verhältnis zur Grundfläche um den Faktor 3,4 zu steigern, indem sie die Dicke der Legierungsschicht von fünf auf 40 Mikrometer erhöhten. Die thermomagnetischen Generatoren erreichten eine maximale elektrische Leistung von 50 Mikrowatt pro Quadratzentimeter bei einer Temperaturänderung von nur drei Grad Celsius. „Diese Ergebnisse ebnen den Weg zur Entwicklung maßgeschneiderter parallel geschalteter thermomagnetischer Generatoren, die das Potenzial zur Abwärmenutzung nahe Raumtemperatur besitzen“, erklärt Kohl. (or)

Originalpublikation:
Joel Joseph, Makoto Ohtsuka, Hiroyuki Miki, and Manfred Kohl: Upscaling of Thermomagnetic Generators Based on Heusler Alloy Films. Joule, 2020. DOI: 10.1016/j.joule.2020.10.019

Externer Link: www.kit.edu

Wirkt sie oder wirkt sie nicht? Neue JKU Methoden erlauben einfache Prüfung der Wirksamkeit von Mund-Nasen-Masken

Presseaussendung der JKU Linz vom 04.01.2021

Er ist wahrscheinlich das Symbol für 2020: der Mund-Nasen-Schutz. Allgegenwärtig, wenngleich in seiner Wirkung nicht unumstritten. Ob eine „Maske“ tatsächlich Schutz vor Ansteckung bietet, muss mit einem speziellen Messgerät überprüft werden. Forscher*innen der Johannes Kepler Universität Linz haben nun eine Methode entwickelt, mit der die Wirkung der MNS-Masken ebenso genau überprüft werden kann – und das weitaus einfacher und kostengünstiger.

Gesichtsmasken gibt es mittlerweile in den unterschiedlichsten Formen und Farben. Vor allem für das Gesundheitspersonal und andere systemrelevante Mitarbeiter*innen ist es wichtig zu prüfen, ob eine Maskenlieferung den Anforderungen entspricht. Die Durchlässigkeit für Aerosole wird üblicherweise mit einem Penetrometer gemessen. In diesem Gerät werden Aerosoltröpfchen von öligen Flüssigkeiten erzeugt und der Prozentsatz jener Tröpfchen gemessen, der die Maske passieren kann. Diese Geräte sind aber teuer – und teilweise schwer erhältlich. Forscher der JKU vom Institut Medizin- und Biomechatronik und dem Kepler Universitätsklinikum haben daher im Rahmen eines EU-Projekts mit ihren Kooperationspartnern eine einfache und kostengünstige Methode entwickelt, die praktisch jedem zugänglich ist.

Zur Erzeugung des Prüfaerosols wird eine handelsübliche E-Zigarette verwendet. Die Tröpfchen, die E-Zigaretten herstellen, sind mit einem Durchmesser von 300 Nanometern genau so groß, dass sie möglichst gut durch Filter und andere Barrieren durchgehen. Die Menge an Aerosoltröpfchen, die durch eine Probe des zu untersuchenden Filtermaterials gelangt, wird dann gemessen. Das kann entweder mit einer Feinwaage geschehen oder mit einem Lichtstreuungsdetektor, der aus einfachen und kostengünstigen elektronischen Komponenten gebaut wurde. Dieser Lichtstreuungsdetektor wurde eigentlich als Erstsemester-Praktikumsprojekt für die Harnanalyse von einem JKU Studierenden des Medical Engineering Studiengangs entwickelt und gebaut. Irgendwann kam die Idee: Mit diesem Detektor könnte man doch auch Aerosoltröpfchen in der Luft zählen.

Und wie zuverlässig sind diese Methoden nun? „Wir haben zahlreiche Masken getestet – von FFP3-Masken bis zu einfachen Baumwoll- oder Kunstfasertüchern“, erklären die Forscher*innen. „Das deckt eine enorme Bandbreite ab mit Durchlässigkeiten von 1-60%, wobei Baumwolle im Gegensatz zu vielen Kunstfasern eigentlich recht gut schützt“, so Institutsvorstand Prof. Werner Baumgartner.

Das Wichtigste aber: Die JKU Methode liefert Ergebnisse, die denen hochpreisiger High-End-Penetrometer entspricht. „Damit geben unsere Ansätze dem medizinischen Personal die Möglichkeit, selbst rasch zu überprüfen, ob eine Maskenlieferung den Anforderungen entspricht. Zudem kann man die Effizienz auch über die Zeit auf eventuelle Veränderungen testen. So konnte festgestellt werden, dass manche Masken mit der Tragezeit sehr schnell schlechter werden, andere halten deutlich länger“, sagt Baumgartner.

„Der Mund-Nasen-Schutz wird uns als vorbeugende Maßnahme noch längere Zeit begleiten, daher ist es enorm bedeutsam, die Wirksamkeit zuverlässig und schnell durch vor Ort entwickelte Testsysteme überprüfen zu können. Die erfolgreiche Forschungsarbeit von Prof. Baumgartner und seinem Team zeigt beispielhaft, welches Potenzial in der Zusammenarbeit von Medizin und Mechatronik liegt“, sagt Bernd Lamprecht, Vorstand der Klinik für Lungenheilkunde am Kepler Universitätsklinikum und Vizestudiendekan der Medizinischen Fakultät der Johannes Kepler Universität Linz.

Mehrere Beispiele über die Verwendung von fehlerhaften Masken und die daraus resultierenden Gesundheitsrisiken zeigen, dass einfache, schnelle, preiswerte und breit verfügbare Methoden zur Filtercharakterisierung enorm nützlich sein können, auch wenn die Corona-Pandemie irgendwann kein Thema mehr sein sollte.

Eine Publikation, die diese Methode beschreibt, wurde als Preprint publiziert, ist bei einem renommierten Magazin eingereicht und befindet sich derzeit in Begutachtung. (Sonja Raus)

Externer Link: www.jku.at

RNA-Grundbaustein erstmalig biokatalytisch hergestellt

Presseaussendung der TU Graz vom 14.12.2020

Forschern von TU Graz und acib gelingt die erste enzymgetriebene biokatalytische Synthese von Nukleinsäure-Grundbausteinen. Das erleichtert die Entwicklung antiviraler Wirkstoffe und RNA-basierter Therapeutika.

Durch die COVID-19-Pandemie und die damit verbundene intensive Suche nach Therapeutika und Impfstoffen erfährt die chemische Substanzklasse der Nukleoside ein enorm verstärktes Interesse. Natürliche und synthetische Nukleoside haben eine antivirale Wirkung und können als Bausteine von Ribonukleinsäuren (RNA) fungieren. Eingebaut in RNA ergeben sich neuartige Wechselwirkungen innerhalb des Makromoleküls mit positiven Konsequenzen für die Stabilität und biologische Wirksamkeit.

In der medizinischen Chemie besonders gefragt ist die Molekülfamilie der Kohlenstoff-(C-)Nukleoside: Diese unterscheiden sich von den natürlich häufiger vorkommenden Stickstoff-(N-)Nukleosiden – den klassischen Bausteinen von RNA – durch die Art der Verknüpfung zwischen dem Zucker und der sogenannten Nukleinbase. Anstelle einer Kohlenstoff-Stickstoff-Bindung haben C-Nukleoside eine Kohlenstoff-Kohlenstoff-Bindung. Diese ist biochemisch deutlich stabiler und verleiht Wirkstoffen eine höhere biologische Halbwertszeit. Erstmals ist es nun zwei Forschern von der TU Graz und des Kompetenzzentrums acib gelungen, C-Nukleoside mithilfe von Enzymen biokatalytisch herzustellen. Die konkreten Ergebnisse legen sie aktuell in Nature Communications vor.

Ja zum Enzym „YeiN“

Bernd Nidetzky, Leiter des Instituts für Biotechnologie und Bioprozesstechnik der TU Graz und gleichzeitig Wissenschaftlicher Leiter des Austrian Centre of Industrial Biotechnology (acib) sowie Martin Pfeiffer vom acib entdeckten und charakterisierten in einer Studie das Enzym „YeiN“, das die beiden Nukleosid-Bausteine Ribose-5-phosphate und Uracil mittels einer spezifischen Kohlenstoff-Bindung verknüpfen kann. Als weltweit erste Forscher zeigen sie damit ein Enzym, das ein geeigneter Biokatalysator ist für die Herstellung von C-Nukleosiden.

Effiziente und umweltschonende Herstellung

Die Grazer konnten mithilfe der katalytischen Kraft von „YeiN“ mehrere Derivate des wichtigen C-Nukleoids Pseudouridin herstellen. Sie konnten zudem zeigen, dass eines dieser Derivate in RNA eingebaut werden kann und damit eine Modifizierung der RNA ermöglicht. Das ist für die Herstellung von RNA-basierten Therapeutika besonders relevant, da der Einbau von Pseudouridin in die RNA die Stabilität und Halbwertszeit erhöht und damit die Effektivität therapeutischer RNA, wie zum Beispiel eines Impfstoffes, verbessert. „In unserer Studie zeigen wir, dass Pseudouridin biokatalytisch hergestellt werden kann. Im Vergleich zur rein chemischen Synthese ist das ein weit effizienterer Weg, da weniger Reaktionsschritte und keine toxischen Chemikalien nötig sind. Die biokatalytische Herstellung von C-Nukleosiden ist also eine sehr starke, elegante Alternative zur klassischen chemischen Synthese und dieser in Sachen Effizienz sogar überlegen“, sagt Bernd Nidetzky. Aufbauend auf den in Nature Communications veröffentlichten Erkenntnissen kann nun an der Erweiterung des Substratspektrums von „YeiN“ geforscht werden. Das Ziel: die biokatalytische Synthese weiterer relevanter C-Nukleoside.

RNA-Impfstoffe

Seit wenigen Tagen laufen in Großbritannien die ersten flächendeckenden Impfungen gegen COVID-19 mit RNA-Impfstoffen. Diese völlig neuartigen Impfstoffe enthalten Erbinformationen des Erregers und bringen Zellen dazu, ein Virusprotein zu erzeugen, das anschließend dem Immunsystem präsentiert wird. Die darauffolgende Immunreaktion schützt den Körper vor einer tatsächlichen Virusinfektion. Ist man bereits mit dem Virus infiziert, können antivirale Medikamente eine Virusvermehrung verhindern.

Der C-Nukleosid-basierte Wirkstoff Remdesivir hat diese notwendigen antiviralen Eigenschaften und wirkt gegen eine Reihe von RNA-Viren, darunter Corona- und Ebolaviren. Der Wirkstoff hat in der EU eine bedingte Zulassung zur Behandlung von COVID-19-Erkrankten erhalten. Die biokatalytische Herstellung von C-Nukleosiden könnte diesem Hoffnungsträger sowie RNA-Impfstoffen auf Basis von C-Nukleosiden weiteren Rückenwind verschaffen. (Susanne Eigner)

Originalpublikation:
Martin Pfeiffer, Bernd Nidetzky.
Reverse C-glycosidase reaction provides C-nucleotide building blocks of xenobiotic nucleic acids.
Nature Communications, December 2020. DOI: 10.1038/s41467-020-20035-0

Externer Link: www.tugraz.at

Die Evolution im Reagenzglas

Presseaussendung der TU Wien vom 15.12.2020

An der TU Wien werden kostengünstige Erkennungsmoleküle zum Aufspüren gefährlicher Bakterien entwickelt – mit einer Methode, die von der natürlichen Evolution inspiriert ist.

Ist die Wasserprobe trinkbar, oder ist sie mit gefährlichen Bakterien verseucht? Um solche Fragen schnell und zuverlässig beantworten zu können, ist ein Blick durchs Mikroskop nicht ausreichend. Es gibt zwar Verfahren, relativ rasch die Zahl von Bakterien in einer Probe zu messen, doch das sagt noch nichts darüber aus, ob es sich um gefährliche oder ungefährliche Bakterien handelt. Dafür braucht man spezielle Methoden – gewissermaßen einen „künstlichen Spürhund“, der sich auf Bakteriensuche begeben kann.

Spezielle Moleküle, die genau dafür eingesetzt werden können, wurden nun an der TU Wien im Rahmen des Interuniversitären Kooperationszentrums Wasser und Gesundheit (ICC Water & Health) entwickelt: Es handelt sich dabei um sogenannte Aptamere, das sind maßgeschneiderte Erkennungsmoleküle auf DNA-Basis, die genau an einen bestimmten Zelltyp ankoppeln. Erstmals ist es nun gelungen, DNA Aptamere für Fäkalbakterien in Wasser herzustellen. Die neue Aptamer-Entwicklungstechnologie wurde nun im Fachjournal „Scientific Reports“ publiziert.

Maßgeschneiderte Erkennungsmoleküle aus DNA-Bausteinen

„Aptamere sind kurze, synthetisch erzeugte DNA- oder RNA-Moleküle, die aufgrund ihrer dreidimensionalen Struktur ganz bestimmte Zielmoleküle erkennen und spezifisch binden“, erklärt Claudia Kolm (ICC Water & Health/TU Wien), die Erstautorin der Studie. „Ähnlich wie bei Antikörpern erfolgt die Bindung auch hier nach dem Schlüssel-Schloss-Prinzip. So binden Aptamere an ganz bestimmte Proteine und komplexe Oberflächenstrukturen von Zellen. Aber auch für kleine Moleküle, wie etwa Antibiotika oder unterschiedliche Gifte lassen sich spezifische Aptamere generieren.“

Sowohl in der Forschung als auch in der Industrie gewinnen Aptamere in letzter Zeit an Bedeutung: Man kann sie rein synthetisch herstellen, man ist daher nicht abhängig davon, bestimmte Tiere oder Zelllinien zu züchten, um am Ende die gewünschten Moleküle zu erhalten. „Die Aptamere werden in vitro generiert und lassen sich für verschiedene diagnostische Endanwendungen anpassen“, sagt Georg Reischer (ICC/TU Wien). „Ein solches Molekül direkt herzustellen ist in mehrfacher Hinsicht einfacher als eine Zelllinie zu produzieren, die dann im Bioreaktor bestimmte Antikörper erzeugt: Unsere Aptamere sind robuster und ihre Herstellung ist viel besser reproduzierbar.“

Die Nadel im Heuhaufen

Die entscheidende Herausforderung bei der Herstellung von Aptameren ist es, aus der unüberblickbaren Vielzahl möglicher DNA-Strukturen genau diejenige herauszufinden, die an eine ganz bestimmte Zelle bindet. „Wir gehen von einer großen DNA-Bibliothek aus, mit ungefähr einer Billiarde unterschiedlicher DNA-Moleküle“, sagt Claudia Kolm. „Um diesen riesigen DNA-Pool nach passenden Kandidaten zu durchforsten und die Nadel im Heuhaufen zu finden, bedient man sich eines Prozesses, der der natürlichen Evolution ähnelt.“ Dabei werden DNA-Moleküle, die an das Zielbakterium binden, selektiert und gezielt vermehrt.

„Über mehrere Runden mit zunehmenden Selektionsdruck trennt man die Spreu vom Weizen. In Kombination mit modernen Sequenziermethoden und eigens dafür entwickelten bioinformatischen Datenanalyse-Tools konnten wir ein Aptamer anreichern und identifizieren, das an Enterococcus faecalis bindet – ein Bakterium, das in Gewässern mit fäkaler Verunreinigung zu finden ist“, erklärt Claudia Kolm. Diese Bindung ist sehr spezifisch: Man führte auch Tests mit anderen, eng verwandten Bakterienspezies durch – bei ihnen zeigte das Aptamer keine Auswirkung.

„Welche Struktur an der Zelloberfläche es ist, an die das Aptamere so spezifisch bindet, ist nicht bekannt – aber das ist auch gar nicht entscheidend“, sagt Georg Reischer. „Unsere von der Evolution inspirierte Methode, in der wir Generation für Generation passgenauere Aptamere erhalten, funktioniert auch ohne die genauen Strukturen zu kennen.“ Die Aptamere kann man zusätzlich mit fluoreszierenden Farbstoffen versehen, um sie nach dem Binden an die gesuchte Zelle zuverlässig nachweisen zu können.

Die Technik zur Aptamer-Entwicklung bietet ein großes Potenzial für weitere Forschung und Entwicklung. So wird etwa bereits an DNA Aptameren für Vibrio cholerae gearbeitet – den Erreger der Cholera. (Florian Aigner)

Originalpublikation:
Kolm C., Cervenka I., Aschl U.J. et al. DNA aptamers against bacterial cells can be efficiently selected by a SELEX process using state-of-the art qPCR and ultra-deep sequencing. Sci Rep 10, 20917 (2020).

Externer Link: www.tuwien.at