Weltrekord-Material macht aus Wärme Elektrizität

Presseaussendung der TU Wien vom 14.11.2019

Ein neuartiges Material erzeugt aus Temperaturunterschieden sehr effizient elektrischen Strom. Damit können sich Sensoren und kleine Prozessoren kabellos selbst mit Energie versorgen.

Thermoelektrische Materialien können Wärme direkt in elektrische Energie umwandeln. Das liegt am sogenannten Seebeck-Effekt: Wenn zwischen den beiden Enden eines solchen Materials ein Temperaturunterschied besteht, wird elektrische Spannung generiert und Strom kann fließen. Wie viel elektrische Energie bei einer gegebenen Temperaturdifferenz gewonnen werden kann, wird mit Hilfe des sogenannten ZT-Wertes gemessen: Je höher der ZT-Wert eines Materials ist, umso besser sind seine thermoelektrischen Eigenschaften. Beste bisherige Thermoelektrika kamen auf ZT-Werte von etwa 2,5 bis 2,8. Am Christian Doppler Labor für Thermoelektrische Materialien an der TU Wien gelang es nun, ein völlig neues Material zu entwickeln, mit einem ZT-Wert von 5 bis 6. Es handelt sich dabei um eine dünne Schicht aus Eisen, Vanadium, Wolfram und Aluminium, aufgetragen auf einem Silizium-Kristall.

Das neue Material ist so effektiv, dass man es in Zukunft verwenden könnte, um Sensoren oder auch kleine Computerprozessoren mit Energie zu versorgen. Anstatt kleine elektrische Geräte an Kabeln anzuschließen, könnten sie ihren eigenen Strom aus Temperaturdifferenzen generieren. Im Fachjournal „Nature“ wurde es nun erstmals präsentiert.

Elektrizität und Temperatur

„Ein gutes thermoelektrisches Material muss einen großen Seebeck-Effekt besitzen und daneben zwei Anforderungen erfüllen, die schwer miteinander vereinbar sind“, sagt Prof. Ernst Bauer vom Institut für Festkörperphysik der TU Wien. „Einerseits soll es elektrischen Strom möglichst gut leiten; andererseits soll aber Wärme möglichst schlecht transportiert werden.“ Das ist eine Herausforderung, denn gewöhnlich hängen elektrische Leitfähigkeit und Wärmeleitfähigkeit eng miteinander zusammen.

Am Christian-Doppler-Labor für Thermoelektrizität, das Ernst Bauer 2013 an der TU Wien eröffnete, wurde in den letzten Jahren intensiv an unterschiedlichen thermoelektrischen Materialien für unterschiedliche Einsatzzwecke gearbeitet. Und dabei stieß man nun auf ein ganz besonders bemerkenswertes Material – eine Kombination aus Eisen, Vanadium, Wolfram und Aluminium.

„Die Atome in diesem Material sind normalerweise streng regelmäßig angeordnet, in einem sogenannten flächenzentrierten kubischen Gitter“, sagt Ernst Bauer. „Der Abstand zwischen zwei Eisenatomen ist immer gleich groß, dasselbe gilt für die anderen Atomsorten. Der ganze Kristall ist daher völlig regelmäßig aufgebaut.“ Wenn man das Material allerdings als dünne Schicht auf Silizium aufträgt, passiert etwas Erstaunliches: Die Struktur verändert sich radikal. Zwar bilden die Atome auch auf Silizium immer noch ein kubisches Muster, allerdings mit raumzentrierter Anordnung. Daher ist die Verteilung der unterschiedlichen Atomsorten nun völlig zufällig. „Da können zwei Eisenatome nebeneinandersitzen, die Plätze daneben sind von Vanadium oder Aluminium besetzt, und es gibt keine Regel mehr, die vorschreibt, an welchen Orten im Kristall wieder das nächste Eisenatom zu finden ist“, erklärt Bauer.

Durch diese Mischung aus Regelmäßigkeit und Unregelmäßigkeit der Atomanordnung verändert sich auch die elektronische Struktur, die bestimmt, wie sich Elektronen im Festkörper bewegen. „Die elektrische Ladung bewegt sich dann auf eine andere Weise durch das Material, sodass sie von Streuprozessen geschützt ist. Man spricht hier von sogenannten Weyl-Fermionen“, sagt Ernst Bauer. Auf diese Weise erreicht man einen sehr geringen elektrischen Widerstand. Gitterschwingungen hingegen, die die Wärme von Orten hoher zu Orten niedriger Temperatur transportieren, werden durch diese Unregelmäßigkeiten im Kristallaufbau gestört. Die Wärmeleitfähigkeit sinkt. Das ist wichtig, wenn aus einem Temperaturunterschied dauerhaft elektrische Energie gewonnen werden soll – denn wenn Temperaturunterschiede sehr schnell ausgeglichen werden könnten, hätte bald das gesamte Material überall dieselbe Temperatur und der thermoelektrische Effekt käme zum Erliegen.

Strom für das „Internet of Things“

„Eine derart dünne Schicht kann natürlich keine beliebig großen Energiemengen generieren – aber dafür ist sie extrem kompakt und anpassungsfähig“, sagt Ernst Bauer. „Wir wollen damit eine Energieversorgung für Sensoren und kleine elektronische Anwendungen ermöglichen.“ Der Bedarf dafür wird immer größer: Im „Internet of Things“ werden unterschiedlichste Geräte online miteinander verknüpft, damit sie ihr Verhalten automatisch aufeinander abstimmen. Besonders zukunftsträchtig ist das in großen Produktionsanlagen, wo eine Maschine dynamisch auf den Zustand der anderen reagieren soll.

„Wenn man in einer Fabrik eine große Anzahl an Sensoren benötigt, kann man die nicht alle verkabeln, das würde irgendwann ein unüberblickbares Chaos ergeben“, meint Bauer. „Viel klüger ist es, wenn sich die Sensoren ganz von selbst mit Energie versorgen, etwa über ein kleines, effizientes thermoelektrisches Element, dass die Abwärme einer Maschine nutzt. Damit kann auch gleich ein kleiner Prozessor betrieben werden, der die Daten auswertet und dann per WLAN zur zentralen Steuereinheit schickt.“

Genau diesen Markt soll das neue thermoelektrische Material nun voranbringen. Die Forschungsarbeiten finden im Rahmen des Christian-Doppler-Labors für Thermoelektrizität an der TU Wien statt. Unternehmenspartner ist die Firma AVL Graz, wissenschaftliche Partner das „National Institute of Material Science, NIMS“, Japan und der „Chinese Academy of Sciences“, China. Gemeinsam mit dem Unternehmenspartner wurden bereits zwei Patente eingereicht – mit Unterstützung der Forschungs- und Transfersupports der TU Wien. (Florian Aigner)

Originalpublikation:
B. Hinterleitner et al., Thermoelectric performance of a metastable thin-film Heusler alloy, Nature (2019)

Externer Link: www.tuwien.ac.at

Intelligente Kniebandage soll künftig bei Arthrose entlasten

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 07.11.2019

Sportwissenschaftler, Mediziner, Informatiker und Industriepartner entwickeln einen mit Sensoren bestückten Prototyp, der mit selbstlernenden Algorithmen Belastungen einschätzen soll

Die intelligente Kniebandage „Anthrokinemat“ soll Arthrose-Patientinnen und -Patienten künftig bei der richtigen Dosierung ihrer alltäglichen Bewegungen unterstützen. Dabei werden sämtliche relevanten Daten zur Belastung der Gelenke gesammelt und aufs Handy der Betroffenen übertragen. Die Grundlagen für die Entwicklung der Bandage haben in den vergangenen drei Jahren Sportwissenschaftler des Karlsruher Instituts für Technologie (KIT) mit Fördermitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) geschaffen. Partner sind die Universität Bremen sowie der Bandagen-Hersteller Bauerfeind und das Sensortechnikunternehmen ITP. In einem zweiten Forschungsprojekt soll nun ein Prototyp entwickelt werden.

„Bei der Prävention und der Behandlung einer Arthrose-Erkrankung spielt außer Gewicht und Ernährung vor allem das richtige Maß an Bewegung eine wichtige Rolle“, sagt Sportorthopäde Professor Stefan Sell vom Institut für Sport und Sportwissenschaft (IfSS) des KIT. Dieses richtige Maß zu finden, sei allerdings keine einfache Aufgabe und nur wenige Menschen und gut austrainierte Sportlerinnen und Sportler könnten die Signale ihres Körpers ohne fachliche Unterstützung richtig deuten. Der mit zahlreichen Sensoren ausgestattete Anthrokinemat soll Arthrose-Patientinnen und -Patienten deshalb vor dem Überschreiten der Belastungsgrenze per Warnsignal aufs Handy für mögliche Folgeschäden sensibilisieren. „Wer an Arthrose leidet, sollte sich am besten jeden Tag eine gewisse Zeit lang intensiv bewegen“, rät Sell. Eine übermäßige Belastung wie etwa eine mehrstündige Wanderung könne dagegen für Stress in den geschädigten Gelenken sorgen. Die Folge solcher Überbelastung seien oft wochenlange Schmerzen.

Maschinelles Lernen: Algorithmen trainieren mit Bewegungsdaten

Als größte Herausforderung bei der bisherigen Entwicklung der Bandage bezeichnet Professor Thorsten Stein, Leiter des BioMotion Centers am IfSS, die Suche nach einem passenden Algorithmus zum Quantifizieren der Kniebelastung. „Die Sensoren können lediglich Bewegung messen, nicht die Belastung an sich. Bei der Arthrose dürfen die Gelenke aber nicht allzu stark belastet werden – und deshalb müssen wir die Kräfte im Innern des Knies möglichst genau einschätzen können“, betont Stein. Zur Lösung dieses Problems sind Algorithmen des Maschinellen Lernens – künstliche neuronale Netze – im Einsatz. Dabei wird ein Algorithmus mit Bewegungsdaten trainiert: Der Algorithmus lernt im Laufe des Trainingsprozesses automatisch die mit einer Bewegung einhergehenden Kräfte im Knie zu schätzen. Teile dieser Forschungsergebnisse haben die Arbeitsgruppen von Sell und Stein bereits in der Fachzeitschrift Sensors publiziert.

„Die Arthrose ist eine echte Volkserkrankung“, sagt Stefan Sell. Laut den offiziellen Statistiken haben in Deutschland rund 35 Millionen Menschen radiologische Zeichen einer Arthrose und rund zehn Millionen davon sind manifest erkrankt. Weil der Gelenkverschleiß mit steigendem Alter zunimmt, leidet jeder vierte Bundesbürger über 50 Jahre und etwa 80 Prozent der über 75-Jährigen an einer Arthrose. Am häufigsten betroffen ist die Wirbelsäule, ebenfalls weit verbreitet sind Arthrosen an Knie- und Hüftgelenk. (eki)

Publikation:
Bernd J. Stetter, Steffen Ringhof, Frieder C. Krafft, Stefan Sell, Thorsten Stein: Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning. Sensors, 2019. DOI: 10.3390/s19173690.

Externer Link: www.kit.edu

Neues Verfahren zur schnelleren und einfacheren Herstellung lipidierter Proteine

Presseaussendung der TU Graz vom 11.10.2019

An der TU Graz und Uni Wien entwickelte Methode führt zu besserem Verständnis natürlicher Proteinveränderungen und zur Verbesserung von Proteintherapeutika.

Manche körpereigenen Proteine bestehen nicht nur aus Aminosäuren, sondern sind auch mit fettartigen Lipidketten dekoriert, die die biologischen Funktionen des Proteins maßgeblich beeinflussen. So ist das für die Entstehung vieler Krebsarten mitverantwortliche Protein Ras beispielsweise nur dann aktiv und krebsverursachend, wenn es sich durch einen „Fettanker“ an Membrane binden kann.

Grundlagenforschung als Basis für medizinischen Fortschritt

Ein besseres Verständnis dieser körpereigenen Prozesse kann die Entwicklung neuer Medikamente und Krebstherapien wesentlich beschleunigen. Bisherige Untersuchungsverfahren sind sehr aufwändig und kostenintensiv. Im Journal of the American Chemical Society (JACS) präsentieren Rolf Breinbauer vom Institut für Organische Chemie der TU Graz und Christian Becker vom Institut für Biologische Chemie der Universität Wien nun eine vielfach einfachere und direktere Methode, um Lipide in Proteine einzuführen.

Edelmetall für die Proteinmodifikation

Konkret nutzen die Forscher das Edelmetall Palladium als Katalysator, um Lipide an Proteine „anzuhängen“. Eine entscheidende Rolle dabei kommt dem Ligand Biphephos zu, wie Breinbauer erklärt: „Insgesamt haben wir fünfzig verschiedene Liganden getestet. Biphephos war sozusagen das Missing Link. Es verfügt über jene Selektivität, die es braucht, damit Palladium die Lipidierung der Schwefel-haltigen Aminosäure Cystein ermöglicht.“

Proteinchemiker Christian Becker übertrug die Ergebnisse auf Proteine und konnte die gleichen Erfolge vorweisen: „Die hervorragende Selektivität des neuen Katalysators und die robuste Reaktion ermöglichen die schnelle Modifikation einer Vielzahl von Cystein-haltigen Peptiden und Proteinen für die biomedizinische Forschung.”

Medizinische Anwendung

Die Dekoration von Proteinen mit Medikamenten und anderen Molekülen, um diese gezielt in den Körper zu liefern und dort aktiv zu halten, ist ein heute in der Medizin häufig angewendetes Verfahren. Die von Breinbauer und Becker entwickelte Methode könnte nun dafür genutzt werden, solche Moleküle mit hoher Effizienz und gezielt in Proteine einzuführen. Breinbauer ist zuversichtlich, dass diese Methode bald angewendet werden wird, denn „die von uns verwendeten Reagenzien lassen sich sehr einfach herstellen oder sind käuflich erwerblich.“ (Christoph Pelzl)

Externer Link: www.tugraz.at

Zum Schutz der schwächsten Verkehrsteilnehmer – Sicheres Automatisiertes Fahren mit Künstlicher Intelligenz

Pressemitteilung der TH Ingolstadt vom 11.10.2019

Forschungs- und Testzentrum CARISSMA der Technischen Hochschule Ingolstadt stellt aktuelle Projekte zum Fußgängerschutz und die Testanlagen der Zukunft vor

Wer schon einmal scharf bremsen musste, weil ein spielendes Kind plötzlich auf die Straße gelaufen ist, der weiß, welch hohes Risiko eine verzögerte Reaktion bergen kann. Automatisierte Fahrzeuge erkennen gefährliche Situationen schneller und zuverlässiger als der Fahrer und reagieren rechtzeitig durch Bremsen oder Lenken. Das Forschungs- und Testzentrum CARISSMA der Technischen Hochschule Ingolstadt (THI) arbeitet daran, mithilfe Künstlicher Intelligenz kritische Verkehrssituationen zu erkennen und geeignete Maßnahmen einzuleiten.

Schutz von Fußgängern: Vorausschauende Gefahrenerkennung (Pre-Crash)

Eine besondere Berücksichtigung erfährt in der Forschung von CARISSMA der Schutz der Schwächsten, die sogenannten ungeschützten Verkehrsteilnehmer (Vulnerable Road User, VRU). So ermitteln die Wissenschaftler mit Einsatz von Künstlicher Intelligenz die Bewegungsintentionen von Fußgängern, damit automatisierte Fahrzeuge in kritischen Situationen schnell reagieren können. Damit sollen Unfälle vermieden oder die Unfallfolgen für die Beteiligten minimiert werden.

Mit eigens entwickelten Fußgänger-Dummys testen die Wissenschaftler kritische Verkehrssituationen unter reproduzierbaren Bedingungen. Dadurch kann Künstliche Intelligenz wiederum trainiert werden. Das realitätsgetreue Verhalten eines Dummys hinsichtlich Bewegung und sensoriellen Reflexionsverhaltens ist für die korrekte Interpretation kritischer Situationen und der Bewegungsprädiktion von elementarer Bedeutung. So entwickelten die Wissenschaftler in CARISSMA eine Dummy-Familie mit künstlichen Muskeln, die vollständig auf den Einsatz von metallischen Komponenten verzichtet und damit im Hinblick auf das Radar-Reflexionsverhalten dem eines echten Menschen entspricht.

Bei dem neu entwickelten Kinder-Dummy steht die Implementierung des realen kindlichen Bewegungsverhaltens im Vordergrund. Für den analog zum Erwachsenen-Dummy aufgebauten Kinder-Dummy analysierten und adaptierten sie das Bewegungsverhalten von Kindern: Mit speziellen Bewegungserfassungs-Sensoren (Engl.: Motion Capture Sensors), die während des Gehens an den Körpern der Kinder angebracht wurden, untersuchten sie das Bewegungsverhalten und schufen so eine Referenz für den Kinder-Dummy. So konnten sie ein kinderähnliches Bewegungsverhalten auf den Dummy übertragen. Der Kinder-Dummy erlaubt das Verhalten der Kinder in kritischen Situationen nachzustellen und für die Sicherheitssysteme berechenbar zu machen. So tragen intelligente Fahrzeuge dazu bei, dass sich Kinder im zukünftigen Straßenverkehr sicher bewegen – für uns alle ein gutes Gefühl.

Testverfahren mit authentischen Witterungsbedingungen

Ein besonderes Anliegen von CARISSMA ist es, dass diese Schutzsysteme zuverlässig und möglichst schnell in allen Fahrzeugen verfügbar sind und so viele Leben retten. Hierfür werden in der CARISSMA-Indoor-Versuchshalle für automatisierte Fahrversuche (100 m x 30 m) auf dem Campus der THI einzigartige Versuchsbedingungen geschaffen, die kritischen Situationen in der Realität sehr nahekommen. So wurde von den Wissenschaftlern eine Wetteranlage entwickelt, die es ermöglicht, realitätsgetreuen Nebel und Regen zu erzeugen und damit reproduzierbare Sensor- und Systemtests durchführen zu können – auch in Kombination mit unterschiedlichen Lichtverhältnissen. Dazu haben die Forscher in der Natur vorkommenden Nebel und Regen vermessen und mit den exakt gleichen Charakteristika (Tröpfchengröße, -dichte, -verteilung etc.) nachgebildet. So können bei den Indoor-Fahrversuchen mit Fußgängern authentische Witterungsbedingungen beliebig oft nachgestellt werden.

Einsatz Künstlicher Intelligenz in sicherheitskritischen Anwendungen

Ebenso wie der Mensch lernen automatisierte Fahrzeuge und Testsysteme, mit Hilfe künstlicher Intelligenz kritische Situationen zu erkennen und unfallvermeidende Maßnahmen einzuleiten. CARISSMA forscht gemeinsam mit dem Kompetenzzentrum für Künstliche Intelligenz AININ mit Sitz an der THI an neuartigen Algorithmen und Methoden für die effiziente Implementierung und Nachvollziehbarkeit selbstlernender Systeme. Der Entwurf und die Validierung von sicheren maschinellen Lernverfahren sind eine Voraussetzung für den Einsatz Künstlicher Intelligenz in sicherheitskritischen Anwendungen, wie dem autonomen Fahren.

Externer Link: www.thi.de

Bioprinting: Lebende Zellen im 3D-Drucker

Presseaussendung der TU Wien vom 21.10.2019

Mit einem neuen Verfahren der TU Wien lassen sich lebende Zellen in feine Strukturen aus dem 3D-Drucker einbauen – extrem schnell und hochausflösend.

Wie sich Zellen verhalten und wie neues Gewebe entsteht, lässt sich besonders gut steuern und untersuchen, wenn man die Zellen in ein feines Gerüst einbettet. Das gelingt mit Hilfe von „Bioprinting“ – darunter versteht man spezielle additive 3D-Druckverfahren. Dabei stößt man allerdings auf eine Reihe von Herausforderungen: Manche Verfahren sind sehr unpräzise oder erlauben nur ein sehr enges Zeitfenster, in dem die Zellen verarbeitet werden können, ohne dass sie Schaden nehmen. Außerdem müssen die verwendeten Materialien während und auch nach dem 3D-Biopriting Prozess zellfreundlich sein – das schränkt die Auswahl möglicher Materialien empfindlich ein.

An der TU Wien wurde nun ein hochauflösender Bioprinting-Prozess mit völlig neuen Materialien entwickelt: Dank einer speziellen „Bio-Tinte“ für den 3D-Drucker lassen sich Zellen nun direkt während des Herstellungsvorgangs in eine mikrometergenau gedruckte 3D-Matrix einbetten – und das mit einer Druckgeschwindigkeit von einem Meter pro Sekunde, um Größenordnungen schneller als es bisher möglich war.

Auf die Umgebung kommt es an

„Wie sich eine Zelle verhält, hängt ganz entscheidend von den mechanischen und chemischen Eigenschaften sowie von der Geometrie ihrer Umgebung ab“, erklärt Prof. Aleksandr Ovsianikov, Leiter der Forschungsgruppe 3D Printing and Biofabrication am Institut für Werkstoffwissenschaften und Werkstofftechnologie der TU Wien. „Die Strukturen, in denen die Zellen eingebettet sind, müssen für Nährstoffe durchlässig sein, damit die Zellen überleben und sich vermehren können. Ganz wichtig ist aber auch, ob die Strukturen steif oder biegsam sind, ob sie stabil sind oder im Lauf der Zeit abgebaut werden.“

Eine Möglichkeit ist, zuerst passende Strukturen herzustellen und danach mit lebenden Zellen zu besiedeln – doch mit diesem Ansatz kann es schwierig werden die Zellen tief im Inneren des Gerüstes unterzubringen, und es ist kaum möglich, eine gleichmäßige Zellverteilung zu erreichen. Die deutlich bessere Variante ist es, die lebenden Zellen direkt bei der Herstellung der 3D-Struktur mit einzubetten – diese Technik wird als „Bioprinting“ bezeichnet.

Mikroskopisch feine 3D-Objekte zu drucken, ist heute grundsätzlich kein Problem mehr. Die Verwendung von lebenden Zellen stellt die Wissenschaft aber vor ganz neue Herausforderungen: „Es fehlte bisher einfach an den passenden chemischen Substanzen“, sagt Aleksandr Ovsianikov. „Man braucht Flüssigkeiten oder Gele, die punktgenau erstarren, wo man sie mit einem fokussierten Laserstrahl beleuchtet. Diese Materialien dürfen für die Zellen allerdings nicht schädlich sein, und das Ganze muss außerdem noch extrem schnell ablaufen.“

Zwei Photonen auf einmal

Um eine extrem hohe Auflösung zu erreichen, verwendet man an der TU Wien bereits seit Jahren die Methode der Zwei-Photonen-Polymerisation. Dabei nutzt man eine chemische Reaktion, die nur dann in Gang gesetzt wird, wenn ein Molekül des Materials zwei Photonen des Laserstrahls gleichzeitig absorbiert. Das ist nur dort möglich, wo der Laserstrahl eine besonders hohe Intensität hat. Genau dort härtet die Substanz aus, überall sonst bleibt sie flüssig. Daher ist diese Zwei-Photonen-Methode bestens geeignet, um mit hoher Präzision feinste Strukturen herzustellen.

Genau wegen der hohen Auflösung hat die Methode allerdings normalerweise den Nachteil, sehr langsam zu sein – oft musste man sich mit einer Schreibgeschwindigkeit im Bereich von Mikrometern oder wenigen Millimetern pro Sekunde genügen. An der TU Wien hingegen schafft man mit zellfreundlichen Materialien einen Meter pro Sekunde – ein entscheidender Fortschritt. Denn nur, wenn der ganze Prozess zumindest in wenigen Stunden abgeschlossen ist, kann man davon ausgehen, dass die Zellen tatsächlich überleben und sich weiterentwickeln.

Zahlreiche Anpassungsmöglichkeiten

„Unsere Methode liefert viele Möglichkeiten, die Umgebung der Zellen anzupassen“, sagt Aleksandr Ovsianikov. Je nachdem, wie man die Struktur baut, kann man sie steifer oder weicher machen, sogar feine, kontinuierliche Übergänge sind möglich. So kann man genau vorherbestimmen, wie die Struktur aussehen soll, um Zellwachstum zu erlauben und Migration zu leiten. Durch die Laser-Intensität kann man außerdem einstellen, wie leicht die Struktur im Lauf der Zeit abgebaut werden kann.

„Für die Zellforschung ist das ein wichtiger Schritt nach vorne“, ist Ovsianikov überzeugt. „Mit solchen 3D-Modellen kann man das Verhalten von Zellen mit einer bisher unerreichbaren Genauigkeit untersuchen. Man kann herausfinden, wie sich Krankheiten ausbreiten – und wenn man Stammzellen verwendet, könnte man auf diese Weise sogar maßgeschneidertes Gewebe herstellen.“

Das Forschungsprojekt ist eine internationale und interdisziplinäre Kooperation, an der drei verschiedene Institute der TU Wien beteiligt waren: Ovsianikovs Forschungsgruppe war für die Drucktechnik selbst zuständig, das Institut für Angewandte Synthesechemie entwickelte die nötigen schnell reagierenden und zellfreundlichen Fotoinitiatoren (die Substanzen, die bei Beleuchtung den Aushärtungsprozess in Gang setzen) und am Institut für Leichtbau und Struktur-Biomechanik wurden die mechanischen Eigenschaften der gedruckten Strukturen analysiert.

Die hochauflösende 3D-Drucktechnologie und die dafür nötigen Materialien werden nun auch von der Firma UPNano kommerzialisiert, einem jungen erfolgreichen Spin-off der TU Wien. (Florian Aigner)

Externer Link: www.tuwien.ac.at