Ribosomen aktivieren Zellwachstum – und Krebs

Medienmitteilung der Universität Basel vom 04.03.2011

Der Proteinkomplex mTORC2 (Target of Rapamycin Complex) in Säugetieren hat eine zentrale Kontrollfunktion für das Zellwachstum und wird durch direkte Interaktion mit einem Ribosom aktiviert. Die Hauptfunktion der Ribosomen in der Zelle ist die Proteinbiosythese, kurz die Herstellung von Proteinen. Dass Ribosomen durch eine Aktivierung des Proteinkomplexes mTORC2 auch eine zentrale Rolle in Signalwegen des Zellwachstums und damit bei der Entstehung von Krebs spielen, hat die Forschungsgruppe von Prof. Mike Hall am Biozentrum der Universität Basel nun erstmals nachgewiesen. Die Ergebnisse sind jetzt im US-Journal Cell veröffentlicht.

TOR (Target of Rapamycin) ist ein zentrales Steuerungselement für das Zellwachstum und spielt damit eine entscheidende Rolle für die Entwicklung und Alterung eines Lebewesens. TOR kommt in allen Eukaryonten – von der Hefe bis zum Menschen – vor. Es ist in der Zelle Bestandteil von zwei grösseren Proteinkomplexen, TORC1 und TORC2 (mTORC1 und mTORC2 in Säugetieren), die sich in ihrer Struktur und Funktion unterscheiden. Aktivierte Komplexe mTORC1 und mTORC2 führen zu Zellwachstum, in der Regel von gesunden, manchmal jedoch auch von Krebszellen.

Man wusste bereits, dass der Proteinkomplex mTORC1 durch verschiedene Wachstumsfaktoren, Nährstoffe sowie den Energiestatus der Zelle aktiviert wird und kannte die zugehörigen Mechanismen. Über die Regulierung von mTORC2 hingegen konnte man bisher nur sagen, dass die Aktivierung des Komplexes ausschliesslich über Wachstumsfaktoren erfolgt. Wie das genau geschieht, war nicht bekannt. Die Erforschung des Mechanismus zur Aktivierung des mTORC2-Signalweges in gesunden oder Krebszellen ist daher eine zentrale Fragestellung für Halls Forschungsgruppe.

Ribosomen aktivieren mTORC2

Das Ribosom als Bestandteil aller Zellen in jedem Lebewesen ist bekannt als „Maschine“ zur Herstellung von Proteinen. Nun sind Ribosomen von Halls Forschungsgruppe als Aktivatoren von mTORC2 identifiziert worden: Die direkte Interaktion zwischen Ribosom und mTORC2 in einer Zelle führt zur Aktivierung des Proteinkomplexes und damit zu Zellwachstum, in gesunden oder auch in Krebszellen. Diese Interaktion wird durch den Botenstoff PI3K stimuliert. Da die Ribosomenkonzentration die Rate der Proteinbiosynthese und damit die Wachstumsfähigkeit einer Zelle bestimmt, wird mTORC2 nur in wachstumsfähigen Zellen aktiviert. So ist im Umkehrschluss sichergestellt, dass bei geringer Ribosomenkonzentration mTORC2 inaktiv bleibt und nicht in der Lage ist, zu einem ungeeigneten Zeitpunkt das Zellwachstum anzuregen. Auf diese Weise wird mTORC2 durch die Wachstumsfähigkeit der Zelle reguliert.

Halls Forschungsgruppe hat diesen Regulationsprozess im Zuge eines genetischen Screenings bei Hefezellen entdeckt und kann die neuen Erkenntnisse auch in Säugetierzellen nachweisen. Dies ist nur möglich, weil TOR und seine Regulierung in Laufe der Evolution stark konserviert worden sind, da sie bei allen Eukaryonten eine lebenswichtige Rolle spielen.

TOR-Signalwege wichtig für Therapie von Krebs

Da die Entwicklung verschiedener Krankheiten wie Krebs, Herz-Kreislauf-Erkrankungen, Diabetes oder Adipositas mit Störungen des TOR-Signalweges in Verbindung stehen, sind Halls Forschungsergebnisse von grosser medizinischer Bedeutung. Für zukünftige Therapieansätze könnte ein medikamentöser Eingriff in die TORC2-Ribosomen-Interaktion ein vielversprechender Ansatzpunkt für die Behandlung dieser Krankheiten sein.

Prof. Hall entdeckte in den 1990er Jahren mit seiner Forschungsgruppe das Protein TOR und beschrieb dessen Rolle als zentrales Kontrollelement für das Zellwachstum. 2002 entdeckte er zudem die beiden TOR-Proteinkomplexe. Halls Gruppe erforscht derzeit, wie genau die Interaktion zwischen Ribosom und TORC2 in der Zelle abläuft und welche Rolle TORC1 und TORC2 bei der Entstehung schwerwiegender Krankheiten spielen.

Originalbeitrag:
Vittoria Zinzalla, Daniele Stracka, Wolfgang Oppliger, and Michael N. Hall
Activation of mTORC2 by Association with the Ribosome
CELL, Journal, Volume 144, Issue 5, DOI: 10.1016/; PII

Externer Link: www.unibas.ch

„Stop and go“

Presseinformation der LMU München vom 24.02.2011

Wie die Zelle Blockaden der Genabschrift auflöst

Die Gen-Transkription steht im Zentrum allen Lebens. Dabei wird – als erster Schritt auf dem Weg zur Proteinsynthese – genetische Information in ein Botenmolekül übertragen. Das Enzym Polymerase II, kurz Pol II, ist zuständig für die Abschrift. Kommt es zu Fehlern bei diesem hochsensiblen Vorgang, kann die gesamte Transkription zum Erliegen kommen. Der LMU-Biochemiker Professor Patrick Cramer, Leiter des Genzentrums, und sein Mitarbeiter Dr. Alan Cheung konnten nun im Detail zeigen und erstmals auch im Film festhalten, was bei dieser molekularen Blockade geschieht. Sie konnten sogar beobachten wie die Genabschrift reaktiviert wird. Die Reaktivierung der Transkription kommt in allen Zellen vor und ist deswegen von grundlegender Bedeutung. „In höheren Organismen wird auf diesem Weg auch die Genaktivität von Stammzellen und Krebszellen reguliert“, betont Cramer. (Nature online, 23. Februar 2011)

„Die DNA selbst ist träge“, betont Patrick Cramer. Erst die Polymerase II erweckt das fadenförmige Molekül zum Leben, wenn die in der DNA enthaltene genetische Information in das Botenmmolekül mRNA abgeschrieben wird, um als Vorlage für die Proteinsynthese zu dienen. Weil Proteine wiederum die wichtigsten Funktionsträger der Zelle sind, kann biologisches Leben ohne Transkription nicht funktionieren.

Die Abschrift der Gene ist ein komplexer und hochsensibler Vorgang. Nicht selten kommt es zum Einbau falscher Bausteine oder zu anderen Fehlern, die die gesamte Transkription blockieren. Häufig bewegt sich Pol II dann ein kurzes Stück in die Gegenrichtung entlang der DNA, so dass der Defekt korrigiert werden kann. Problem gelöst: Die Transkription läuft weiter. Manchmal aber bewegt sich das Enzym zu weit zurück, so dass sich die mRNA verkeilt.

In diesem Fall kommt die Transkription vollständig zum Stillstand und Pol II kann erst durch den Faktor TFIIS aus der Erstarrung gelöst werden. Dieser Faktor verändert das aktive Zentrum des Enzyms so, dass der hinderliche RNA-Abschnitt abgetrennt und anschließend die Transkription fortgesetzt werden kann. Cramer und Cheung konnten nun erstmals die molekularen Details der Blockade und ihrer Reaktivierung entschlüsseln – und eben dies auf Film festhalten.

So zeigte sich unter anderem, dass TFIIS die Bindung der mRNA an Pol II löst und beim Abschneiden des eingeklemmten mRNA-Stücks hilft. „Dieser Prozess findet in allen Zellen ständig statt und ist essentiell für ihr Überleben“, sagt Cramer. „Darüber hinaus wird dieser Prozess in höheren Lebewesen auch zur Regulation der Genaktivität genutzt, gerade auch in Stamm- und Krebszellen. Insgesamt übt Pol II eine zentrale Aufgabe in der Zelle aus und steht deshalb im Mittelpunkt meiner Forschung, die zunehmend in einem systembiologischen Ansatz das transkriptionelle Netzwerk der Zelle aufklären und molekular-mechanistisch beschreiben soll.“ (göd/suwe)

Publikation:
Structural basis of RNA polymerase II backtracking, arrest, and reactivation;
Alan C.M. Cheung und Patrick Cramer
Nature online, 23. Februar 2011

Externer Link: www.uni-muenchen.de

Personalisierte Medizin für präzise Diagnosen

Medienmitteilung der ETH Zürich vom 18.02.2011

Die Identifikation von Biomarkern ist ein wichtiger Schritt auf dem Weg zur personalisierten Krebstherapie. Wissenschaftler der ETH Zürich, Pathologen des Universitätsspitals Zürich und Onkologen des Kantonsspitals St.Gallen haben ein neues Verfahren entwickelt, das bestimmte Muster von Biomarkern nachweist und Krebserkrankungen verlässlicher diagnostiziert als bisher.

Mit einem kleinen Piks in den Finger kann man vielleicht schon bald verschiedenste Arten von Krebs zuverlässig diagnostizieren und charakterisieren. Verfahren, die Tumor-Antigene im Blut nachweisen, liefern heute oft falsche Resultate. Die Patienten müssen sich deshalb teuren und manchmal schmerzhaften Biopsien unterziehen. Einem interdisziplinären Forschungsteam um Wilhelm Krek, Professor für Zellbiologie an der ETH Zürich, ist es gemeinsam mit Pathologen des Universitätsspitals Zürich und Onkologen des Kantonsspitals St.Gallen gelungen, eine hochpräzise Diagnosemethode für Prostatakrebs zu entwickeln. Das Verfahren, das auf der Identifikation von Biomarkern basiert, könnte bald auch der Frühdiagnose anderer Krebsarten dienen, wie die Wissenschaftler in der aktuellen Ausgabe des Fachmagazins PNAS berichten.

Vier Proteine in 20’000 Modellen

Ausgangspunkt der Forschungsarbeit war das Gen „Pten“, das in 60 Prozent aller Prostatakrebs-Patienten inaktiv ist und zu unkontrolliertem Zellwachstum führt. In einem ersten Schritt deaktivierten die Wissenschaftler dieses „Pten“-Gen in der Prostata von gesunden Mäusen. Anschliessend identifizierten sie Hunderte von Prostata-Oberflächenproteinen von unbehandelten Mäusen, aber auch von solchen, die aufgrund des inaktiven Gens Prostatakrebs entwickelt hatten. Aus dem Vergleich der beiden Proteinsätze ermittelten die Forscher ein Proteinmuster, das typisch ist für die mutierte Version von „Pten“ und somit für den Prostatakrebs.

In einem zweiten Schritt untersuchten die Forschenden, ob die Erkenntnisse aus dem Mausmodell auch auf menschliche Patienten anwendbar sind. Dazu untersuchten sie Gewebe- und Serumproben von 39 Prostatakrebs-Patienten und einer Kontrollgruppe. Anhand des Mausmodells hatten die Wissenschaftler eine Liste mit spezifischen Proteinen erstellt. Aus dieser identifizierten sie nun jene 39 Proteine im Menschen, die auf Prostatakrebs hinweisen. Informatiker der ETH Zürich berechneten über 20’000 Modelle und fanden jene vier Proteine, mit denen die zuverlässigste Diagnose gestellt werden kann.

ETH-Spin-off entwickelt Diagnose-Kit

Die Verlässlichkeit des Biomarker-Musters haben die Wissenschaftler schliesslich an einer neuen Patientengruppe getestet. «Wir konnten mit hoher Wahrscheinlichkeit bestimmen, ob eine Person an Prostatakrebs erkrankt war und die Testergebnisse reproduzieren», erklärt Wilhelm Krek. Er ist deshalb davon überzeugt, dass das Verfahren in einigen Jahren in der Praxis eingesetzt werden kann. Die Weiterentwicklung der vielversprechenden Methode hat bereits der ETH-Spin-off Proteomedix AG übernommen, der zurzeit ein Diagnose-Kit vorbereitet.

Proteinmuster als zuverlässiger Biomarker

Der Biomarker-Strategie liegt das Konzept zugrunde, dass eine Mutation – wie beispielsweise die Deaktivierung eines Gens – die Entstehung von Krebs auslöst und das Proteinmuster des betroffenen Organs verändert. Ungefähr 20 Prozent der Oberflächenproteine von bestimmten Geweben wie zum Beispiel der Prostata werden abgespalten und können im Serum nachgewiesen werden. Die Bestimmung der Proteinmuster ist deshalb sehr erfolgsversprechend.

Wissenschaftler versuchen schon seit Jahren mit verschiedenen Hightech-Methoden, Biomarker zu identifizieren – bislang jedoch ohne Erfolg. «Die Analysen waren bisher nicht sehr zielgerichtet und die ermittelten Proteinmuster widerspiegelten womöglich die Essgewohnheiten von Patienten, eigneten sich aber nicht dazu eine Krebserkrankung zu erkennen», erklärt Wilhelm Krek. Dass dies nun gelungen ist, führt Krek auf den interdisziplinären Ansatz des Forschungsprojekts zurück. «In der Wissenschaft erreicht man ein Ziel oft erst, wenn Forscher aus unterschiedlichsten Gebieten zusammenarbeiten – in diesem Fall waren es Zellbiologen, Proteomikexperten, Pathologen, klinische Onkologen und Informatiker.»

Originalpublikation:
Cima I., Schiess R., Wild P., Kaelin M., Schüffler P., Lange V., Picotti P., Ossola R., Templeton A., Schubert O., Fuchs T., Leippold T., Wyler S., Zehetner J., Jochum W., Buhmann J., Cerny T., Moch H., Gillessen S., Aebersold R., Krek W.
Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer. Published online before Print. PNAS, February 7, 2011.
doi: 10.1073/pnas.1013699108

Externer Link: www.ethz.ch

Die Darwin-Finken der bakteriellen Welt

Medienmitteilung der Universität Basel vom 11.02.2011

Organismen mit besonderer Anpassungsfähigkeit an ihre Umwelt können unter bestimmten Voraussetzungen eine explosionsartig verlaufende Artbildung in Gang setzen. Dieser für die Biodiversität entscheidende Prozess der «adaptiven Radiation» wurde erstmals von Charles Darwin für die vielgestaltigen Finken der Galápagos-Inseln (Darwin-Finken) beschrieben und seither auch bei der Artbildung einer Vielzahl anderer Tiere und Pflanzen beobachtet. Dass auch Bakterien durch den Erwerb neuer Eigenschaften eine adaptive Radiation auslösen können, wurde nun erstmals von einem internationalen Forscherteam unter Leitung von Prof. Christoph Dehio am Biozentrum der Universität Basel nachgewiesen. Am Beispiel des Krankheitserregers Bartonella konnten die Forscher zeigen, dass sich Bakterien durch den Erwerb einer molekularen Injektionsnadel zum Einspritzen bakterieller Proteine in Wirtszellen sehr viel effizienter an neue Wirtsorganismen wie den Menschen anpassen können. Die gewonnenen Erkenntnisse sind von grundlegender Bedeutung für das Verständnis der Evolution neuartiger Krankheitserreger des Menschen. Die Forschungsergebnisse sind in der aktuellen Ausgabe des US-Fachmagazin PLoS Genetics publiziert.

Der Begriff «adaptive Radiation» beschreibt die rasche Entstehung einer Vielzahl von Arten aus einer Gründerpopulation als Folge der spezifischen Anpassung an verschiedene ökologische Nischen. Dieser fundamentale Prozess der Evolution trägt entscheidend zur Entstehung von Biodiversität bei. Adaptive Radiationen erfolgen immer dann, wenn ein Organismus entweder ein adaptives Merkmal («evolutionary key innovation») neu erwirbt, mit dessen Hilfe er sich schnell an neuartige Nischen anpassen kann, oder wenn ein Organismus mit bestehendem adaptivem Merkmal auf eine fremde Umwelt mit unbesetzten Nischen trifft («ecological opportunity»).

Darwin-Finken: Paradigma der adaptiven Radiation

Das Lehrbuchbeispiel einer solchen explosiv verlaufenden Artbildung sind die Darwin-Finken auf den Galápagos-Inseln. Durch mannigfaltige Anpassung der Schnabelform haben sich bislang 14 bekannte Arten entwickelt, die so unterschiedlichste Nahrungsquellen nutzen können. Weitere Beispiele für adaptive Radiationen finden sich bei den Reptilien, Fischen, Insekten und Pflanzen. Allerdings weiss man bislang vergleichsweise wenig über diesen grundlegenden Artbildungsprozess bei den allgegenwärtigen Bakterien.

Adaptive Raditionen auch in Bakterien

An der Universität Basel haben nun Forschende um den Infektionsbiologen Prof. Dr. Christoph Dehio vom Biozentrum in Zusammenarbeit mit dem Evolutionsbiologen Prof. Dr. Walter Salzburger vom Zoologischen Institut und weiteren internationalen Kollaborationspartnern erstmals ein gut belegtes Beispiel einer adaptiven Radiation bei Bakterien beschrieben und dessen molekulare Grundlage entschlüsselt. Untersucht wurde die Artbildung des bakteriellen Krankheitserregers Bartonella, bei dem jede seiner vielen nah verwandten Spezies jeweils spezifisch an einen bestimmten Säugerwirt und damit an eine ökologische Nische angepasst ist.

Parallele Evolution ermöglicht neue Erkenntnisse zur Entstehung neuer Krankheitserreger

Die detaillierte Untersuchung der Verwandtschaftsverhältnisse der Bartonella-Spezies führte überraschenderweise zum Nachweis von zwei parallel verlaufenden adaptiven Radiationen, wobei sich Abkömmlinge jeweils beider Radiationen an denselben Säugerwirt angepasst haben. Beispiele paralleler Evolution erleichtern die Untersuchung molekularer Evolutionsmechanismen. Die parallel verlaufenden adaptiven Radiationen der Bartonellen konnten auf den unabhängigen Erwerb desselben adaptiven Merkmals zur Wirtsanpassung zurückgeführt werden. Bei diesem Merkmal handelt es sich um eine molekulare Injektionsnadel («Typ-IV-Sekretionssystem»), die einen auf den entsprechenden Säugerwirt angepassten Cocktail aus bakteriellen Wirkproteinen in die infizierten Wirtszellen einspritzt. Da sich Bartonellen auch mehrfach spezifisch an den Menschen als Wirtsorganismus angepasst haben, sind die Forschungsergebnisse in zweifacher Hinsicht von grosser Bedeutung: Einerseits für das grundlegende Verständnis der Evolution neuartiger Krankheitserreger des Menschen, andererseits im Hinblick auf die Erforschung neuer Ansätze zur Bekämpfung dieses Krankheitserregers.

Originalpublikation:
Philipp Engel, Walter Salzburger, Marius Liesch, Chao-Chin Chang, Soichi Maruyama, Christa Lanz, Alexandra Calteau, Aurélie Lajus, Claudine Médigue, Stephan C. Schuster & Christoph Dehio
Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.
PLoS Genetics. PLoS Genet 7(2): e1001296. doi:10.1371/journal.pgen.1001296

Externer Link: www.unibas.ch

Ein Leben in der Matrix

Presseinformation der Ruhr-Universität Bochum vom 08.02.2011

Zuckerreste regulieren Wachstum und Überleben von Nervenzellen

RUB-Forscher untersuchen Interaktion von Zellen und extrazellulärer Matrix

Bochumer Forscher haben herausgefunden, dass bestimmte Zuckerreste im Rückenmark das Wachstum und Überleben von Nervenzellen steuern, die die Bewegung von Muskeln kontrollieren. „Wir hoffen, dass diese Erkenntnisse die regenerative Behandlung bei Nervenverletzungen verbessern können“, erklärt Prof. Dr. Stefan Wiese aus der Arbeitsgruppe für Molekulare Zellbiologie (Fakultät für Biologie und Biotechnologie). Über diese Zuckerreste in der Umgebung der Zellen, die extrazelluläre Matrix genannt wird, berichten die Forscher im Journal of Neuroscience Research.

Nerven heilen als Vision

Gehirn und Rückenmark bestehen aus mehr als nur aus Nervenzellen. Die extrazelluläre Matrix, ein komplexes Gerüst aus Eiweißen mit Zuckerresten, umgibt die Zellen und beeinflusst deren Wohlergehen. Das Team von Prof. Wiese interessiert sich für die Interaktion der Matrix mit einer bestimmten Art von Nervenzellen, die Signale vom Gehirn an Muskeln weiterleiten (Motoneurone). Verletzte Motoneurone führen zu Lähmungen, so dass Ärzte großes Interesse daran haben, das Wachstum dieser Zellen beeinflussen zu können. „Wenn wir die Möglichkeit hätten, die extrazelluläre Matrix über Medikamente so zu verändern, dass sie das Wachstum und Überleben von Nervenzellen begünstigt, dann wäre das ein großer Schritt bei der Behandlung von Nervenverletzungen nach Unfällen oder auch für die Behandlung von Krankheiten wie etwa Multiple Sklerose“, so Prof. Wiese.

Muskelsteuernde Nervenzellen wachsen lassen

In Zusammenarbeit mit Prof. Dr. Andreas Faissner (Lehrstuhl für Zellmorphologie & Molekulare Neurobiologie, Fakultät für Biologie und Biotechnologie) kultivierte Dr. Alice Klausmeyer aus dem Team von Prof. Wiese Motoneurone aus dem Rückenmark von Mäusen auf verschiedenen Arten der extrazellulären Matrix, von denen die Forscher experimentell bestimmte Zuckerreste (Chondroitinsulfate) entfernten. Durch einen Vergleich der Zellkulturen mit und ohne Zuckerreste konnten sie zeigen, dass diese das Wachstum und Überleben der Motoneurone steuern.

Färben, zählen und messen

Um das Wachstum der Zellen in greifbaren Zahlen auszudrücken, zählten die Bochumer Zellbiologen unter dem Mikroskop, wie viele Fortsätze die Motoneurone gebildet hatten, und maßen den längsten Fortsatz. Mit Hilfe der Fortsätze kommunizieren die Zellen und leiten Signale über große Strecken weiter. Einige der untersuchten Chondroitinsulfat-Zuckerreste wirkten sich positiv auf Länge und Anzahl der Fortsätze aus, andere hatten einen hemmenden Einfluss. Ob das Wachstum der Nervenzellen gefördert oder gehemmt wurde, hing außerdem davon ab, mit welcher Art von extrazellulärer Matrix ein bestimmter Zuckerrest kombiniert war. Des Weiteren färbten die Forscher ein Enzym in den Motoneuronen an, das ein Marker für das Absterben von Zellen ist. Aus dieser Analyse ergab sich, dass die untersuchten Chondroitinsulfat-Zuckerreste nicht nur das Wachstum der Motoneurone regulieren, sondern auch deren Leben verlängern. Die Experimente von Dr. Klausmeyer und ihren Kollegen wurden unter anderem vom RUB-Rektoratsprogramm zur Anschubfinanzierung von Forschungsprojekten des wissenschaftlichen Nachwuchses unterstützt. (Julia Weiler)

Titelaufnahme:
Klausmeyer, A., Conrad, R., Faissner, A., Wiese, S.: Influence of glial-derived matrix molecules, especially chondroitin sulfates, on neurite growth and survival of cultured mouse embryonic motoneurons. In: J. Neurosci. Res. 89:127-41 (2011). DOI: 10.1002/jnr.22531

Externer Link: www.ruhr-uni-bochum.de