Ein Ausknopf für den Schmerz

Presseinformation der LMU München vom 20.02.2012

Chemiker bauen Neuroblocker mit optischem Schalter

Den Schmerz einfach abschalten – eine schöne Vorstellung. In Laborversuchen ist es Chemikern der Ludwig-Maximilians-Universität (LMU) München zusammen mit Kollegen aus Berkeley und Bordeaux jetzt immerhin gelungen, Schmerzneuronen ruhigzustellen – mit einer chemischen Verbindung, die als lichtempfindlicher Schalter funktioniert. Die LMU-Forscher sehen die neue Methode vor allem als Werkzeug für die Schmerzforschung. (Nature Methods, 19.02.2012)

QAQ nennen die LMU-Forscher um Dirk Trauner, Professor für Chemische Biologie und Genetik, die Substanz aus dem molekularen Baukasten. Zwei spezielle Ammonium-Verbindungen sind darin mit einer Art Brückenelement zusammengekoppelt, das eine Doppelbindung zweier Stickstoffatome enthält. Genau an dieser Stelle kann sich das ganze Molekül strecken oder abknicken, abhängig von der Wellenlänge des monochromen Lichtes, mit dem es bestrahlt wird – fertig ist das optische Schaltelement.

QAQ hat darüber hinaus aber noch andere Eigenschaften: Es ähnelt in der Wirkung dem Lidocain, einem gängigen Lokalanästhetikum in der Zahnmedizin, und noch stärker einem seiner Abkömmlinge. QAQ greift selektiv nur genau an den charakteristischen Neurorezeptoren der Nervenzellen an, die den Schmerz etwa von der Haut bis ins Rückenmark weiterleiten.

Neurorezeptoren sind in die äußere Membran der Nervenzellen eingebaut, sie besitzen feine Kanäle, durch die sie positiv geladene Ionen wie Natrium in das Innere einschleusen – wenn sie beispielsweise durch Hitze „stimuliert“ werden. Damit verschiebt sich die Ladungsverteilung zwischen Innen und Außen. Das lässt den elektrischen Reiz, das Aktionspotenzial, entstehen, das Schmerzsignal wird weitergeleitet.

Interessanterweise gelangt auch das QAQ – mit einem experimentellen Trick – durch diese Rezeptorkanäle ins Innere des Neurons. Das muss es auch, um seine Wirkung entfalten zu können, denn es blockiert nur dort, sozusagen von der Rückseite, die Natrium- und Kaliumkanäle.

Allerdings kann nur das QAQ in seiner gestreckten Form die neuronale Aktivität und damit die Weitergabe also des Schmerzsignals blockieren. Legten die Forscher im Experiment mit Licht von 380 Nanometer Wellenlänge den Schalter um, war die Reizleitung innerhalb von Millisekunden wieder aktiviert. Denn die zusammengeklappte QAQ-Variante zeigt keine Wirkung auf den Rezeptor. Licht von 500 Nanometer lässt das Molekül wieder aufklappen. Dass die örtliche Betäubung des Schmerzempfindens mit QAQ im Prinzip funktioniert, konnten die Forscher schließlich auch am Tiermodell zeigen.

Trauners Team, das seit Längerem daran arbeitet, wichtige molekulare Maschinen wie Neurorezeptoren umzuprogrammieren und durch Licht steuerbar zu machen, sieht die neue Methode vor allem als ein Werkzeug in den Neuro- und speziell der Schmerzforschung. Bis zu einer möglichen therapeutischen Anwendung des Prinzips sei es aber „noch ein weiter Weg“, sagt Timm Fehrentz, Doktorand bei Dirk Trauner und einer der beiden Erstautoren der Arbeit. Um nur ein vergleichsweise naheliegendes Problem zu nennen: Das monochrome Licht, das den Schalter in den QAQ-Molekülen umlegt, kann menschliches Gewebe nicht weit genug durchdringen, um an sie am Wirkort zu erreichen. Die Forscher suchen deshalb schon nach Alternativen zu QAQ, die auf längerwelliges Rotlicht ansprechen. (math)

Publikation:
„Rapid optical control of nociception with an ion-channel photoswitch“;
A. Mourot, T. Fehrentz, Y. Le Feuvre, C.M. Smith, C. Herold, D. Dalkara, F. Nagy, D. Trauner & R.H. Kramer;
Nature Methods, 19.2.2012;
doi: 10.1038/nmeth.1897

Externer Link: www.uni-muenchen.de

Neue Art von Kunststoff?

Medienmitteilung der ETH Zürich vom 13.02.2012

Für eine kleine Sensation in der Synthese-Chemie sorgen Wissenschaftler unter Leitung der ETH Zürich. Erstmals ist es gelungen, flächige Polymere herzustellen, die regelmässig angeordnet eine Art „molekularen Teppich“ im Nanometermassstab bilden.

Der Chemiker Hermann Staudinger postulierte 1920 an der ETH Zürich die Existenz von Makromolekülen, bei denen die gleichen Bausteine kettenförmig aneinandergereiht sind. Er erntete für die Idee dieser Polymeren – wie diese Art von Makromolekülen genannt wird – in Fachkreisen vorerst Hohn und Unverständnis. Und viele fragten sich, wofür man diese wohl brauchen könne. Doch Staudinger sollte Recht bekommen: Heute, mehr als neunzig Jahre nach Staudingers Entdeckung, werden jährlich etwa 150 Millionen Tonnen Kunststoff – wie die Polymere landläufig genannt werden – hergestellt. Einer Forschungsgruppe unter Leitung von A. Dieter Schlüter, Professor, und Junji Sakamoto, Privatdozent am Institut für Polymere an der ETH Zürich, gelang nun ein entscheidender Durchbruch in der Synthese-Chemie der Polymere: Sie erzeugten erstmals flächige Polymere. Und wieder gilt es, nicht sofort nach dem Nutzen zu fragen, sondern die Entdeckung grundsätzlich zu erforschen.

Einen molekularen Teppich herstellen

Polymere entstehen, indem sich kleine einzelne Moleküle, sogenannte Monomere, durch chemische Reaktionen zu grossen Makromolekülen kettenförmig verbinden. Schlüter trieb schon seit seiner Habilitation die Frage um, ob Polymere ausschliesslich linear sein müssen oder ob man auch zweidimensionale Moleküle erzeugen könnte. Das heisst, die Moleküle wären dann nicht in einer Kette angeordnet, sondern würden eine Art Teppich bilden. In der Natur kommt ein zweidimensionales Polymer in Form von Graphen vor. Kohlenstoffatome gehen da jeweils drei Bindungen ein und bilden so ein wabenförmiges Muster. Das Problem: Graphen kann nicht kontrolliert synthetisiert werden. Als Schlüter und Sakamoto vor einigen Jahren an der ETH Zürich aufeinander trafen, suchten sie gemeinsam nach einer Antwort, wie man ein zweidimensionales Polymer herstellen könnte.

Wie Graphen müsste ein derartiges Polymer drei oder mehr Bindungen zwischen den sich regelmässig wiederholenden Molekülen haben. Die Wissenschaftler mussten herausfinden, welche Verbindungschemie und Umgebung sich für die Herstellung eines „molekularen Teppichs“ am besten eignet. Nach intensiven Analysen bisheriger Studien und Möglichkeiten entschieden sie sich dafür, einen Einkristall, das heisst einen Kristall mit einem homogenen Schichtgitter, zu verwenden.

Erst kristallisieren, dann kochen

Dem Doktoranden Patrick Kissel gelang es, spezielle Monomere herzustellen und diese in einem Einkristall zu kristallisieren. Er generierte hierfür photochemisch empfindliche Moleküle, für die eine solche Anordnung energetisch optimal ist. Diese wurden mit Licht mit einer Wellenlänge von 470 Nanometern bestrahlt und so wurde jede Schicht zum Polymeren. Danach kochten die Forschenden den Kristall in einem geeigneten Lösungsmittel, um die einzelnen Schichten voneinander abzutrennen. Mit jeder Schicht erhielten die Forschenden das gewünschte zweidimensionale Polymer. Dass es dem Team tatsächlich gelungen war, flächige Polymere mit regelmässigen Strukturen herzustellen, zeigten spezielle Untersuchungen am Elektronenmikroskop, die Empa-Forscher Rolf Erni und Marta Rossell von der ETH Zürich an der Empa durchführten.

Die Forscher haben die komplette strukturelle Kontrolle über die Monomere, wie es beispielsweise bei Graphen nie möglich wäre, da dort mit enorm hohen Temperaturen gearbeitet werden müsste. «Unsere synthetisch hergestellten Polymere sind zwar nicht leitfähig wie Graphen, dafür könnten wir sie aber beispielsweise zum Filtern kleinster Moleküle nutzen», sagt Sakamoto. In den regelmässig angeordneten Polymeren könnten winzige Hexagone entfernt werden, so dass dadurch eine Art Sieb entstehen würde. Zuerst müssen die Forscher jedoch einen Weg finden, grössere Mengen von noch grösseren Flächen des neuen Polymers herzustellen. Die Kristalle haben derzeit eine Grösse von 50 Mikrometern.

Unerforschte Physik

Bevor sich die Forscher jedoch über konkrete Anwendungen Gedanken machen können, gilt es nun, die Materialeigenschaften des neuen Polymers zu charakterisieren. Physiker sollen klären, wie sich ein zweidimensionales Polymer im Vergleich zu einem linearen Polymer verhält. Schlüter geht davon aus, dass zweidimensionale Polymere eine andere Physik und damit andere Eigenschaften haben könnten. Als Beispiel nennt er die Eigenschaft „Elastizität“: Ineinander verschlungene lineare Polymere ermöglichen, dass ein gespanntes Gummiband zurückschnappt, sobald es losgelassen wird. Beim flächigen Polymer dürfte das nicht funktionieren. Dafür könnte dieses andere Merkmale haben und es könnten sich damit neue Anwendungsbereiche auftun. «Wir haben mit der Herstellung des Polymers einen grossen Schritt in der Forschung gemacht, ganz unabhängig davon, was dieses neue Polymer alles kann. Wir lassen uns aber gerne überraschen», so Schlüter.

Publikation:
Kissel P, Erni R, Schweizer WB, Rossell MD, King BT, Bauer T, Götzinger S, Schlüter AD & Sakamoto J: A two-dimensional polymer prepared by organic synthesis, Nature Chemistry (2012), advanced online publication, doi: 10.1038/nchem.1265

Externer Link: www.ethz.ch

Medikamente aus Krabbenschalen

Presseaussendung der TU Wien vom 13.02.2012

An der TU Wien wurden Pilze mit zusätzlichen Fremd-Genen erzeugt: Sie produzieren nun pharmakologische Substanzen aus Krabbenschalen.

Schimmelpilze sind normalerweise eher kein Grund zur Freude – doch nun können sie als „chemische Fabriken“ eingesetzt werden: An der Technischen Universität Wien gelang es, Gene von Bakterien in Pilze der Gattung Trichoderma einzubringen, sodass die Pilze nun in der Lage sind, wichtige Chemikalien für die Arzneimittelerzeugung herzustellen. Der Rohstoff, den die Pilze dafür brauchen, ist reichlich vorhanden: Chitin, aus dem zum Beispiel die Panzer von Krustentieren aufgebaut sind. Die neue Methode konnte bereits zum Patent angemeldet werden.

Fünfzig mal teurer als Gold

Bei viralen Infekten wie etwa der Influenza werden häufig Virustatika eingesetzt, die eine Verbreitung des Virus im Organismus verhindern sollen. Diese Medikamente sind oft Derivate der N-Acetylneuraminsäure (kurz: NANA), die heute aus natürlichen Ressourcen gewonnen oder chemisch hergestellt wird – allerdings ist NANA fünfzig mal teurer als Gold: Die Chemikalie kostet etwa 2000 Euro pro Gramm. Ein Forschungsteam der TU Wien, geleitet von der Biotechnologin Astrid Mach-Aigner, setzte sich daher das Ziel, eine neue umweltfreundliche Herstellungsmethode für NANA zu finden, und diese Ziel wurde nun erreicht.

Entscheidend dafür war das umfangreiche Wissen über die Genetik der Trichoderma-Pilze, das man am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften der TU Wien schon seit Jahren gesammelt hatte. Neben einem Team dieses Instituts (R. Gorsche, A. Mach-Aigner, R. Mach, M. Steiger) war auch das Institut für Angewandte Synthesechemie (M. Mihovilovic) und das Institut für Chemische Technologien und Analytik (E. Rosenberg) an dem durch den FWF geförderten Projekt beteiligt.

Bakterien-Gene für den Schimmelpilz

Der Schimmelpilz Trichoderma ist weit verbreitet: Er kommt in Böden, Wald und Wiesen vor. „Wir wussten, dass Trichoderma Chitin abbauen kann – genau das macht der Pilz im Boden mit Chitin“, erklärt Astrid Mach-Aigner. Dadurch war Trichoderma ein vielversprechender Kandidat für das Forschungsprojekt. Um den Pilz allerdings dazu zu bringen, das gewünschte chemische Endprodukt zu erzeugen, musste man ihm noch Gene einbauen, die in Bakterien vorkommen. „Normalerweise baut Trichoderma das Chitin zu monomeren Aminozuckern ab“, sagt Mach-Aigner. Durch die neuen Gene kommt es nun zu zwei weiteren chemischen Reaktionsschritten – und am Ende entsteht der gewünschte Arzneimittelrohstoff N-Acetylneuraminsäure.

Chitin als Bio-Rohstoff

Chitin ist nach Zellulose der zweithäufigste Bio-Polymer der Erde. Er kommt in Panzern von Krebsen und Insekten, aber auch in Schnecken und Kopffüßern sowie in der Zellwand von Pilzen vor. Man schätzt, dass allein im Meer jährlich zehn Milliarden Tonnen Chitin gebildet werden – einige hundert mal mehr als das Körpergewicht der gesamten Menschheit. Chitin ist also ein nachhaltiger nachwachsender Rohstoff für chemische Syntheseprozesse.

Der neu entwickelte Trichoderma-Stamm kann nun in Bio-Reaktoren kultiviert werden und dort Chitin in die wertvolle Säure umwandeln. Das Verfahren wurde von der TU Wien bereits patentiert und soll nun für eine billigere und umweltfreundliche Produktion von pharmakologischen Substanzen im industriellen Maßstab eingesetzt werden. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Krebs mit doppelfunktionalem Molekül aushungern

Medienmitteilung der ETH Zürich vom 19.12.2011

Forschende der ETH Zürich haben einen neuen Ansatz entwickelt, um Krebs zu bekämpfen. Mit einem doppelfunktionalen Molekül werden Blutgefässe im Umfeld eines Tumors zum Absterben gebracht, wodurch der Tumor «ausgehungert» wird. Die neue Methode hat gegenüber bestehenden eine Reihe von Vorteilen.

Moderne Krebsmedikamente, die biotechnologisch hergestellt werden, basieren häufig auf Antikörpern. «Meistens kommen diese Antikörper unverändert zum Einsatz, was allerdings – mit wenigen Ausnahmen – nicht sehr effizient ist», sagt Dario Neri, Professor für Biomakromoleküle am Institut für Pharmazeutische Wissenschaften der ETH Zürich. Ein bedeutender Trend in der Entwicklung von neuen Chemotherapeutika ist daher, die Antikörper zu «bewaffnen», beispielsweise indem man sie an einen zelltötenden Wirkstoff koppelt, um deren Effizienz zu erhöhen.

ETH-Wissenschaftler unter der Leitung von Prof. Neri haben in Zusammenarbeit mit Philochem, einer Start-up Firma der ETH Zürich einen solchen bewaffneten Antikörper entwickelt. In Laborversuchen konnten sie zeigen, dass damit behandelte krebskranke Mäuse rund doppelt solange überlebten als ohne Behandlung. Die Forscher veröffentlichten ihre Arbeit am 15. Dezember 2011 in der renommierten Fachzeitschrift «Angewandte Chemie International Edition».

Geringeres Risiko für Resistenzen

Prof. Neris vielversprechender Ansatz unterscheidet sich in mehreren Punkten von anderen sich in Entwicklung befindenden bewaffneten Antikörpern. Die Makromoleküle der ETH-Forscher richten sich nicht gegen Krebszellen direkt, sondern gegen neugebildete Blutgefässzellen im Umfeld des Tumors. Dadurch wird die Nährstoffzufuhr des Tumors unterbunden und dessen Wachstum gehemmt. Dieser Ansatz hat den Vorteil, dass sich damit nicht nur eine bestimmte Krebsart, sondern im Grundsatz alle Krebsarten bekämpfen lassen. Zudem erwarten die Forscher, dass die Krebszellen dadurch weniger schnell Resistenzen gegen Chemotherapeutika bilden.

Weitere Forschungsarbeit nötig

Zum Dritten sind in Prof. Neris neuem Ansatz Antikörper und pharmazeutischer Wirkstoff nicht über ein Bindemolekül verbunden, sondern über eine direkte chemische Bindung. «Dadurch wird die Synthese der Makromoleküle einfacher und besser kontrollierbar», sagt der Erstautor der Studie, ETH-Wissenschaftler Gonçalo Bernardes. Zudem entfielen dadurch eine Reihe von Problemen, die solche Bindemoleküle potenziell verursachen können.

«Mit der neuen Studie konnten wir zeigen, dass der neue Ansatz funktioniert», sagt Prof. Neri. In Mäusen angewandt, hatte das neue Makromolekül eine messbare krebshemmende Wirkung. Von Krebs geheilt wurden die Tiere allerdings nicht. «Bevor das neue Molekül in klinischen Versuchen bei Menschen getestet werden könne, ist daher noch weitere Forschungsarbeit nötig.»

Publikation:
Bernardes GJL, Casi G, Trüssel S, Hartmann I, Schwager K, Scheuermann J, Neri D: A Traceless Vascular Targeting Antibody-drug Conjugate for Cancer Therapy, Angewandte Chemie International Edition (2011) doi: 10.1002/anie.201106527

Externer Link: www.ethz.ch

Forscher entschlüsseln die atomare Struktur wichtiger Wirkstoffproduzenten

Pressemitteilung der Universität des Saarlandes vom 05.12.2011

Von tödlichen Giften bis zu heilenden Antibiotika: Eine Vielzahl von Substanzen, die sich in Pflanzen, Pilzen, Bakterien und anderen Organismen finden, gehören zur Klasse der Polyketide. Dieser heterogenen Gruppe von Naturstoffen gemeinsam ist die Art ihrer Herstellung. Dem Verständnis der Biosynthese von Polyketiden sind jetzt Forscher des Braunschweiger Helmholtz-Zentrums für Infektionsforschung (HZI), des Helmholtz-Instituts für Pharmazeutische Forschung Saarland (HIPS) und der Universität des Saarlandes einen entscheidenden Schritt näher gekommen. Dabei untersuchten sie eine bestimmte Klasse von Proteinen, die sogenannten CCR-Proteine. Diese Enzyme binden jeweils bestimmte Bausteine aus der Umgebung an sich und bereiten sie anschließend für den Einbau in das schrittweise wachsende Polyketid-Molekül vor. Dabei klärten sie erstmals auf, wie ein spezielles CCR-Protein den spezifischen Baustein erkennt, ihn bindet und für einen Einsatz aktiviert. Die Ergebnisse veröffentlicht das renommierte Wissenschaftsmagazin „Nature Chemical Biology“ in seiner aktuellen Ausgabe. Für die Zukunft erhoffen sich die Forscher, die Polyketid-Synthese in der Zelle „umprogrammieren“ zu können – und so zu neuen Wirkstoffen zu gelangen.

Die Polyketide bilden eine der größten Naturstoffklassen; viele von ihnen wurden bei der Suche nach neuen biologischen Wirkstoffen gefunden und aus Mikroorganismen oder Pflanzen isoliert. Ihre Funktionen sind äußerst vielfältig: Sie dienen als Signalmoleküle, als Farbstoffe und als Verteidigungswaffen gegen Fressfeinde oder Konkurrenten. Das Antibiotikum Erythromycin, die Krebsmedikamente Doxorubicin und Epothilon sowie das Antiparasiten-Mittel Avermectin sind prominente Vertreter dieser vielfältigen Stoffklasse. So unterschiedlich ihre Struktur und biologische Rolle sein mögen: Die Polyketide werden bei verschiedenen Organismen immer auf die gleiche Weise hergestellt.

Spezielle Enzymkomplexe, sogenannte Polyketid-Synthasen, bilden sie in Mikroorganismen schrittweise durch die Verknüpfung einzelner Bausteine. „Der Zusammenbau von Polyketiden ist reine Fließbandarbeit“, erklärt Professor Rolf Müller, Direktor und Abteilungsleiter am HIPS sowie Professor für Pharmazeutische Biotechnologie an der Universität des Saarlandes. „Man könnte die Polyketid-Synthase mit einer Fertigungsstraße in einer Fabrik vergleichen. Sie erhält ein Bauteil von einer bestimmten Zuliefer-Einheit, das nächste von einer anderen. So wie bei der Produktion eines Autos eine bestimmte maschinelle Einheit nur die Türen bereitstellt, die nächste nur Motorhauben und so weiter. Die Polyketid-Synthase verknüpft dann die Bauteile chemisch miteinander. So entsteht schließlich ein fertiges Polyketid.“

Die Forscher haben sich nun die Zulieferer der einzelnen Bausteine am Beispiel des Bakteriums Streptomyces genauer angesehen. Die Zulieferer sind eine Klasse von Proteinen mit dem komplexen Namen „Crotonyl-CoA-Carboxylase/Reduktase“, kurz CCR. Ihre Aufgabe ist es, die Bausteine für die Synthasen bereit zu stellen. Dabei liefert jede CCR nur einen ganz bestimmten Baustein. Wie die CCRs die erstaunliche Vielfalt von Polyketid-Strukturen gewährleisten können, war bisher nicht bekannt.

Um diese Frage zu beleuchten, analysierten die Forscher jetzt erstmals die biochemische Funktion und die atomare Struktur einer bestimmten CCR. Sie wählten dafür das Enzym 2-Oktenoyl-CoA Synthase, kurz CinF. „Wir konnten erstmals in atomarer Auflösung sehen, wie CinF sein Substrat bindet“, sagt Dr. Nick Quade, Wissenschaftler in der Abteilung Molekulare Strukturbiologie am HZI. Eine Tasche im Protein ermöglicht es dem Bindungspartner, direkt mit CinF in Wechselwirkung zu treten. Schließlich verglichen die Forscher am Computer die Struktur der Bindungstasche von CinF mit derjenigen von weiteren CCRs, die andere Substrate bereitstellen. Deren Bindungstasche ist genau an das jeweilige Substrat angepasst, ähnlich dem Schlüssel-Schloss-Prinzip. Die Forscher stellten fest: Je nach der Größe ihrer Bindungstasche sind manche CCRs auf kurzkettige Moleküle als Substrat spezialisiert, andere „fischen“ sich bevorzugt langkettige Bausteine aus der Umgebung und bereiten sie für den Einbau in das Polyketid vor.

Weil Polyketide oft medizinisch interessante Wirkungen haben, erhoffen sich die Wissenschaftler vom Verständnis ihrer Synthese wichtige Hinweise für die Arzneimittelentwicklung. „Wir wollen verstehen, wie CCRs arbeiten und die einzelnen Bausteine bereitstellen“, erklärt Professor Dirk Heinz, Wissenschaftlicher Geschäftsführer des HZI und Koautor der Veröffentlichung. „In Zukunft könnte es so möglich sein, Medikamente maßgeschneidert herzustellen und bestimmte Bausteine gezielt einzubauen oder zu verändern.“

Originalpublikation:
Unusual Carbon Fixation Giving Rise to Diverse Polyketide Extender Units. Nick Quade, Liujie Huo, Shwan Rachid, Dirk W. Heinz, Rolf Müller.
Nature Chemical Biology,
Advanced Online Publication, DOI: 10.1038/NChemBio.734

Externer Link: www.uni-saarland.de