Mit nachgebauten Naturstoffen gegen Bakterien

Medieninformation der Universität Innsbruck vom 20.12.2017

Mit chemisch nachgebauten Naturstoffen will Thomas Magauer von der Universität Innsbruck Mittel gegen die weltweit zunehmenden Antibiotikaresistenzen finden. Biologische Analysen einer Gruppe von erstmals systematisch hergestellten Molekülen zeigen eine vielversprechende Wirkung zum Beispiel gegen multiresistente MRSA-Keime. Die synthetisch erzeugten Wirkstoffe lassen sich zudem chemisch weiter optimieren.

Durch den ungehemmten Einsatz von Antibiotika entwickeln Krankheitskeime immer häufiger Resistenzen. Seit der Entdeckung von Penicillin haben Antibiotika die Therapie von bakteriellen Erkrankungen revolutioniert, doch diese medizinischen Waffen könnte bald stumpf werden. Die Wissenschaft ist deshalb schon seit Jahren auf der Suche nach neuen Wirkstoffen. Thomas Magauer vom Institut für Organische Chemie der Universität Innsbruck orientiert sich dabei an Naturstoffen, für die es bereits Hinweise auf eine mögliche Wirkung gegen Bakterien gibt. Diese Moleküle setzt er im Labor neu zusammen und optimiert ihre Wirkung durch künstliche Anpassungen. In einer aktuellen Studie im Fachmagazin Nature Communications präsentiert Magauers Arbeitsgruppe nun einen modularen Ansatz zur chemischen Synthese einer ganzen Gruppe von Naturstoffen, denen antibakterielle, antivirale Eigenschaften sowie eine krebshemmende Wirkung nachgesagt wird. Trotz ihrer Ähnlichkeit gab es bisher nur vereinzelte Versuche, diese Naturstoffe zu synthetisieren und zu untersuchen. „Mit dem neuen Ansatz steht nun ein Werkzeug zur Verfügung, um diese faszinierenden Familie von Naturstoffen genauer zu untersuchen“, freut sich Thomas Magauer, der seit August dieses Jahres eine Professur für Organische Chemie an der Universität Innsbruck innehat.

Wirkung gegen MRSA-Keime

Bisher wurden diese Stoffe aus Pilzen oder Meerespflanzen extrahiert. Dabei können allerdings oft nicht die notwendigen Mengen gewonnen werden. Mit dem neuartigen chemischen Baukasten der Innsbrucker Wissenschaftler lassen sich sechs dieser Naturstoffe sowie 15 davon abgeleitete künstliche Moleküle in wenigen Schritten erzeugen.

Gemeinsam mit der Forschungsgruppe um Mark Brönstrup am Helmholtz-Zentrum für Infektionsforschung in Braunschweig untersuchten die Forscher auch die biologische Wirkung der Moleküle. Für grampositive Bakterien konnte dabei eine sehr gute biologische Aktivität einiger dieser Moleküle nachgewiesen werden. Zwei dieser Moleküle, Strongylin A und ein vollsynthetisches Derivat, zeigen eine bedeutende antibiotische Wirkung gegen MRSA. Diese multiresistenten Keime aus der Gruppe der Staphylokokken spielen heute in Kliniken und Pflegeeinrichtungen als Verursacher von Infektionen eine wichtige Rolle. Inzwischen treten MRSA-Varianten auch in der normalen Umgebung auf. „Durch gezielte Modifikationen an den künstlich erzeugten Molekülen soll deren Wirkung noch weiter verstärkt werden“, blickt Thomas Magauer bereits in die Zukunft. „Wir wollen auch Wege finden, um gramnegative Bakterien zu bekämpfen.“ Finanziell unterstützt wird er dabei vom Europäischen Forschungsrat ERC und der Deutschen Forschungsgemeinschaft DFG.

Publikation:
A modular synthesis of tetracyclic meroterpenoid antibiotics. Raphael Wildermuth, Klaus Speck, Franz-Lucas Haut, Peter Mayer, Bianka Karge, Mark Brönstrup, and Thomas Magauer. Nature Communications 8: 2083 DOI: 10.1038/s41467-017-02061-7

Externer Link: www.uibk.ac.at

Reaktivierung ohne Risiko

Presseinformation der LMU München vom 01.12.2017

Chemische Modifikationen der DNA steuern, wann welches Gen aktiv ist. LMU-Wissenschaftler haben einen neuen Weg entschlüsselt, wie die Zelle stillgelegte Gene wieder aktivieren kann, ohne die DNA zu beschädigen.

Jede Zelle enthält alle in den Genen festgelegten Erbinformationen. Allerdings werden nur die Informationen abgelesen und umgesetzt, die von der Zelle benötigt werden – auf diese Weise können unterschiedliche Zelltypen mit spezifischen Funktionen entstehen. Welche Gene aktiv sind und welche abgeschaltet werden, wird auf der Ebene der DNA durch kleine chemische Modifikationen reguliert. Damit die Zelle die Genaktivität regulieren kann, müssen die Aktivierung oder Inaktivierung von Genen reversibel sein, damit sie die Modifikationen also auch wieder rückgängigmachen kann. LMU-Wissenschaftler um Professor Thomas Carell haben nun einen neuen Mechanismus zur Reaktivierung stillgelegter Gene identifiziert, der im Gegensatz zum bisher bekannten Weg ohne potenziell schädliche Zwischenstufen auskommt. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Nature Chemical Biology.

Für die Regulation der Genaktivität spielt die Methylierung bestimmter DNA-Bausteine – der Cytidine – eine wichtige Rolle. Durch die Übertragung einer Methylgruppe auf unmethyliertes Cytidin entsteht das sogenannte 5-Methylcytidin, von dem bekannt ist, dass es die Genaktivität hemmt. „Eine zentrale Frage ist nun, wie die Zelle den Ausgangszustand wieder herstellen kann, wenn sie also die Inaktivierung aufheben will“, sagt Carell. Um das Gen zu reaktivieren, muss die Methylgruppe entfernt werden. Bisher ging man davon aus, dass das methylierte Cytidin dazu komplett aus der DNA herausgeschnitten und durch eine unmethylierte Form ersetzt wird. Während dieses Prozesses können allerdings Brüche in einem oder sogar beiden DNA-Strängen entstehen, die unrepariert schwerwiegende Folgen für die Zelle haben.

„Wir konnten in embryonalen Stammzellen der Maus nun zeigen, dass es auch einen anderen Weg gibt, der ohne ein Zerschneiden der DNA auskommt“, sagt Carell. Bei diesem Weg wird die Methylgruppe oxidert, wodurch das sogenannte 5-Formylcytidin entsteht, das Carells Team bereits 2011 in Stammzellen der Maus entdeckt hat. Im 5-Formylcytidin fällt die oxidierte Methylgruppe dann ab, übrig bleibt wieder unmethyliertes Cytidin. „Dieser neue Mechanismus macht es möglich, die Genaktivität zu regulieren, ohne dass die DNA selbst beschädigt wird“, erklärt Carell. Nach Ansicht der Wissenschaftler ist dieser Prozess auch medizinisch interessant, denn mit seiner Hilfe könnten möglicherweise Zellen gezielt umprogrammiert und so neue Chancen in der regenerativen Medizin eröffnet werden.

Publikation:
Nature Chemical Biology 2017

Externer Link: www.uni-muenchen.de

Winzige Spurenverunreinigungen, enorme Auswirkungen

Presseaussendung der TU Wien vom 21.08.2017

Winzigste Verunreinigungen haben keinen nennenswerten Einfluss auf das Verhalten eines chemischen Stoffes – dachte man bisher. Ergebnisse von Experimenten eines internationalen Forscherteams unter Beteiligung der TU Wien konnten jetzt das Gegenteil beweisen.

Das chemische Verhalten von Stoffen ist in der Welt der Chemie grundsätzlich sehr demokratisch geregelt: die Mehrheit eines Stoffs definiert, wie sich die Substanz verhält, auch wenn „fremde“ Spurenelemente enthalten sind. So kristallisiert Kochsalz und schmeckt wie Kochsalz, auch wenn es Spuren anderer Stoffe enthält. Bisher galt es daher als ausgeschlossen, dass eine Spurenverunreinigung das komplette Kristallisationsverhalten oder den chemischen Aufbau eines Stoffs substanziell verändern kann. Ein Forscherteam der Leibniz Universität Hannover, der TU Wien und der Universität Wien konnte diese Annahme in Experimenten nun widerlegen.

Ein Atom schafft an, eine halbe Milliarde Atome gehorchen

„Unsere Arbeit hatte ihren Ursprung in einem Forschungspraktikum“, erklärt Dr. Peter Weinberger vom Institut für Angewandte Synthesechemie der TU Wien. „Ausgangspunkt war, dass wir uns das eigenartige Kristallisationsverhalten einer Substanz nicht erklären konnten.“ Unzählige Experimente und mehrere Jahre später, konnte das Rätsel um die betreffende Americium-dotierte Verbindung geklärt werden. „Durch unsere Arbeit konnten wir zeigen, dass eine Ultraspurenverunreinigung des radioaktiven Elements Americium das chemische Verhalten der „Seltenen Erde“ Terbium drastisch beeinflusst“, erklärt der Projektleiter Prof. Georg Steinhauser vom Institut für Radioökologie und Strahlenschutz an der Leibniz Universität Hannover. Durch die Verunreinigung mit Americium verhält sich das Terbium, bei dem es sich um einen Vertreter der schweren Seltenen Erden handelt, wie eine leichte Seltene Erde. Der Einfluss eines einzelnen Americium-Atoms verändert die chemischen Eigenschaften einer halben Milliarde Terbium-Atome also derart, dass sie sich verhalten, als hätte sich ihr Atomgewicht scheinbar verringert. Bildlich gesprochen rutscht damit das Terbium im Periodensystem der Elemente deutlich weiter nach vorne. Interessant ist dabei besonders, dass eine Substanzmenge, die eigentlich in der alltäglichen chemischen Betrachtungsweise so gut wie gar nicht vorhanden ist, plötzlich durchaus dramatische Auswirkungen auf ein Experiment haben kann. Die Tatsache, dass Americium radioaktiv ist und damit verhältnismäßig leicht messbar war, hat diesen Nachweis überhaupt erst ermöglicht. „Mit normalen analytisch-chemischen Messmethoden hätten wir eine Verunreinigung nur mit größerem Aufwand wahrnehmen können“, meint Peter Weinberger.

Potentiell weitreichende Konsequenzen

Und wie steht es mit den Auswirkungen, die diese Ergebnisse auf den Alltag haben? Eine wichtige Frage stellt sich dabei an die Design-Kriterien, die man für Endlager von radioaktiven Abfällen anlegt. In der bisherigen Konzeption von Endlagern wurde untersucht, wie sich unterschiedlichste Umweltbedingungen auf das Umweltverhalten der radioaktiven Abfälle auswirken. In Anbetracht der vorliegenden Ergebnisse müsste in Zukunft ebenfalls berücksichtigt werden, welchen ändernden Einfluss radioaktive Abfälle unter bestimmten Bedingungen auf die sie umgebende Umwelt haben könnten. „Dies zu berücksichtigen, wird zweifelsfrei möglich sein. Unsere Forschung hat es jedenfalls ermöglicht, ein künftiges Endlager noch ein gutes Stück sicherer zu machen“, ist Georg Steinhauser überzeugt.

Am Projekt beteiligt waren das Institut für Radioökologie und Strahlenschutz an der Leibniz Universität Hannover, an der TU Wien das Institut für Angewandte Synthesechemie, das Institut für chemische Technologien und Analytik und das Atominstitut sowie das Institut für Mineralogie und Kristallographie an der Universität Wien. (Christine Cimzar-Egger)

Originalpublikation:
Steinhauser, G., Weinberger, P., et al., Picomolar traces of AmIII introduce drastic changes in the structural chemistry of TbIII: a break in the „gadolinium break“. Angew. Chem. Int. Ed.. DOI: 10.1002/anie.201703971

Externer Link: www.tuwien.ac.at

Forscher ahmen molekulares Gedränge nach

Medienmitteilung der Universität Basel vom 01.03.2017

Enzyme verhalten sich im geräumigen Reagenzglas anders als im molekularen Gedränge einer lebenden Zelle. Chemiker der Universität Basel konnten diese engen Bedingungen nun erstmals in künstlichen Vesikeln naturgetreu simulieren. Die Erkenntnisse helfen der Weiterentwicklung von Nanoreaktoren und künstlichen Organellen, berichten die Forscher in der Fachzeitschrift «Small».

Im Inneren einer Zelle herrscht dichtes Gedränge. Neben hunderttausenden Makromolekülen wie Proteinen tummelt sich eine Unzahl an DNA, RNA und kleineren Molekülen und bilden eine dickflüssige Wasserlösung. Diese Enge nennt man in der Wissenschaft «molecular crowding». Der Effekt kann dazu führen, dass sich einige Eigenschaften eines Moleküls wesentlich verändern.

Das Verhalten eines «freien» Proteins oder Enzyms in einem Reagenzglas lässt sich also nicht unbedingt auf die natürlichen Vorgänge übertragen, da die Viskosität innerhalb einer lebenden Zelle viel höher ist als in einer normalen Wasserlösung. Im Labor konnte bisher allerdings nur die hohe Konzentration an Molekülen nachgeahmt werden, nicht aber gleichzeitig der geschlossene Raum wie beispielsweise in einer Zelle.

Mutter Natur nachahmen

Ein Forscherteam um Prof. Wolfgang Meier von der Universität Basel hat nun ein System entwickelt, welches dem natürlichen Vorbild einen wesentlichen Schritt näherkommt, indem es erstmals den Crowding-Effekt innerhalb eines geschlossenen Vesikels simuliert hat. «Das Milieu innerhalb einer Zelle wirkt sich wesentlich auf die stattfindenden chemischen Reaktionen aus, weshalb wir dieses so naturgetreu wie möglich nachahmen wollen», so Meier.

Um die zelluläre Umgebung nachzubauen, stellten die Forscher vom Departement Chemie nanoskopische Vesikel her, sogenannte Polymersome, und beluden diese mit dem Enzym Meerrettichperoxidase, sowie einer hochviskosen Lösung als Crowding-Komponente. Dadurch liess sich zum ersten Mal die Kinetik von chemischen Reaktionen durch ein bestimmtes Enzym unter Berücksichtigung von «molecular crowding» und in einem abgeschlossenen Raum bestimmen. Es zeigte sich deutlich, dass beide Faktoren die Reaktionsgeschwindigkeit beeinflussen.

Chemische Reaktionsgeschwindigkeit regulieren

«Unser Design berücksichtigt die natürlichen Umgebungsfaktoren, die die Leistung von Enzymen beeinflussen, und bringt uns so wesentlich weiter in der Entwicklung von Nanoreaktoren», sagt Meier. Die Resultate deuten ebenfalls daraufhin, dass sich das Verhalten von Enzymen durch den Einsatz des Crowding-Effekts gezielt regulieren lässt – ein wichtiger Faktor in der Entwicklung künstlicher Organelle für Enzymersatztherapien.

Originalartikel:
Patric Baumann, Mariana Spulber, Ozana Fischer, Anja Car, Wolfgang Meier
Investigation of horseradish peroxidase kinetics in an “organelle like” environment
Small (2017), doi: 10.1002/smll.201603943

Externer Link: www.unibas.ch

Metallorganische Gerüste fungieren als Webstühle

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 15.02.2017

Forscher des KIT fertigen zweidimensionale Textilien aus monomolekularen Polymerfäden – Veröffentlichung in Nature Communications

Ein wichtiger Fortschritt in der Herstellung zweidimensionaler polymerbasierter Materialien ist Forschern am Karlsruher Institut für Technologie (KIT) gelungen: Um Tücher aus monomolekularen Fäden zu fertigen, nutzten die Wissenschaftler die am KIT entwickelten SURMOFs – auf Oberflächen verankerte metallorganische Gerüste. Sie fügten vierarmige Monomere, also kleinere Molekülbausteine, in einzelne SURMOF-Schichten ein. Durch Verknüpfung der Monomere entstanden zu flachen Textilien verwobene Polymerfäden. Die Forscher stellen ihre molekularen Gewebe in der Zeitschrift Nature Communications vor. (DOI: 10.1038/ncomms14442)

Das selbstorganisierte Verknüpfen von Polymerfäden, das heißt extrem langen Molekülen, zu zweidimensionalen Geweben ist eine der großen Herausforderungen der Polymerchemie. Mithilfe eines Bottom-up-Prozesses, der kleinere Moleküle, sogenannte Monomere, in geeigneter Weise verknüpft, sind am KIT Wissenschaftler des Instituts für Funktionelle Grenzflächen (IFG) sowie des Instituts für Nanotechnologie (INT) diesem Ziel nun einen wesentlichen Schritt näher gekommen: Sie fertigten Gewebe aus monomolekularen Polymerfäden, wobei ihnen SURMOFs – auf Oberflächen verankerte metallorganische Gerüste – sozusagen als Webstühle dienten. In der Zeitschrift Nature Communications stellen sie ihren Ansatz vor.

Die am IFG des KIT entwickelten SURMOFs (Surface Mounted Metal-Organic Frameworks) sind Gerüste aus metallischen Knotenpunkten und organischen Verbindungselementen, die Schicht für Schicht auf einem Substrat aufgebaut werden. Sie haben eine kristalline Struktur und lassen sich durch die Kombination verschiedener Materialien sowie die Variation der Porengröße für unterschiedliche Anwendungen maßschneidern. Um die SURMOFs zum Weben zweidimensionaler Textilien einzusetzen, bauten die Karlsruher Forscher in die einzelnen SURMOF-Schichten spezielle Verbindungselemente ein, nämlich vierarmige Monomere, die alle exakt auf eine spätere Verknüpfung ausgerichtet sind. Die Wissenschaftler fügten diese aktiven SURMOF-Schichten zwischen sogenannten Opferschichten ein. „So erreichten wir einen sandwichartigen Aufbau, der gewährleistet, dass die hergestellten Gewebe tatsächlich zweidimensional, das heißt nur eine Moleküllage dick sind“, berichtet Professor Christof Wöll, Leiter des IFG und zusammen mit Professor Marcel Mayor vom INT korrespondierender Autor der Publikation.

Die Forscher führten in den aktiven SURMOF-Schichten mithilfe eines Katalysators eine Reaktion zur Verknüpfung der Monomere zu Polymeren herbei. Anschließend wurden die metallischen Knotenpunkte einfach herausgelöst. Übrig blieben flache Gewebe aus monomolekularen Polymerfäden. „Die Polymerfäden werden untereinander ausschließlich von den durch das Webmuster bedingten mechanischen Kräften zusammengehalten“, erklärt Marcel Mayor. „Damit sind die molekularen Gewebe ebenso flexibel wie die auf herkömmliche Weise gefertigten Textilien.“ (or)

Publikation:
Zhengbang Wang, Alfred Błaszczyk, Olaf Fuhr, Stefan Heissler, Christof Wöll, Marcel Mayor: Molecular weaving via surface-templated epitaxy of crystalline coordinationnetworks.  Nature Communications, 2017. DOI: 10.1038/ncomms14442

Externer Link: www.kit.edu