DNA gekonnt imitiert, Virus ausgetrickst

Presseinformation der LMU München vom 02.04.2018

Künstlich geschaffene Moleküle ahmen nicht nur die Struktur ihrer natürlichen Vorbilder nach: Sie können auch deren Funktion übernehmen und diese darin sogar übertreffen, wie LMU-Chemiker Ivan Huc erstmals am Beispiel einer künstlichen DNA-Sequenz zeigt.

Ivan Huc ahmt in seiner Forschung die Prinzipien der Natur nach, und das auf kleinster Ebene. Der Chemiker schafft mit seiner Arbeitsgruppe „Biomimetic Supramolecular Chemistry“ an der LMU künstliche Moleküle, die sich mithilfe einer Art Origami-Technik nach dem Abbild ihrer natürlichen Vorbilder formen lassen, Foldamere nennt er diese. Nun ist es Ivan Huc gelungen, Eigenschaften der Oberfläche einer DNA-Doppelhelix so nachzuahmen, dass Proteine mit dem Imitat interagieren. Darüber berichtet der Chemiker, der bis Sommer 2017 an der Universität Bordeaux, Frankreich, forschte, aktuell in der Fachzeitschrift Nature Chemistry. In der Studie blockierten die künstlichen DNA-Imitate verschiedene Enzyme von Viren, darunter die HIV Integrase, durch die der HI-Virus sein Genom in die Wirtszelle einschleust. Damit könnte seine Forschung ganz neue therapeutische Ansatzpunkte eröffnen.

Hucs aktuelle Veröffentlichung baut vor allem auf zwei früheren Arbeiten auf, die ebenfalls in diesem Jahr in Nature Chemistry erschienen sind. Darin zeigte er, durch welche Interaktionsmuster künstliche Moleküle organische Formen wie die Helixstruktur annehmen können und unter welchen Umständen Ribosomen künstlichen Molekülen gegenüber tolerant sind. „Die Form bestimmt die Funktion“, erklärt Ivan Huc seinen Ansatz. In der nun neu erschienenen Studie hat der Chemiker als Basis ein künstliches Molekül entwickelt, das sich schraubenförmig falten und nach einer Art Baukasten-Prinzip vielfach modellieren lässt. So konnte Ivan Huc Oberflächeneigenschaften der natürlichen DNA-Doppelhelix imitieren. Das Imitat ist so gut geworden, dass zwei Enzyme, darunter die HIV Integrase, auf die falsche DNA hereinfallen und dadurch blockiert werden können.

Damit dies auch dann funktioniert, wenn die Enzyme sowohl die künstliche als auch die echte DNA zur Wahl haben, muss Hucs Schöpfung die Natur quasi übertreffen: „Wenn die Enzyme auch unter konkurrierenden Bedingungen an das Foldamer binden sollen, muss das Imitat besser sein als die DNA selbst“, erläutert Huc. Tatsächlich ist dies in der Studie gelungen: Die Bindung der HIV Integrase an das Foldamer war stärker als an die DNA selbst. „Obwohl das Design auf die Ähnlichkeit zur DNA abzielt, verdankt das Foldamer seine wertvollsten Eigenschaften gerade seinen Unterschieden zur DNA“, betont Huc.

Das Baukastenprinzip, nach dem sich die künstlichen DNA-Sequenzen nach Belieben gestalten lassen, eröffnet viele Variationsmöglichkeiten. In der vorliegenden Studie testete Ivan Huc die Funktion am Beispiel von Enzymen, die an eine beliebige Stelle der DNA binden. Es wäre jedoch auch denkbar, künstliche DNA-Abschnitte zu entwickeln, um Enzyme zu blockieren, die nur an bestimmte DNA-Sequenzen binden.

Publikation:
Nature Chemistry 2018

Externer Link: www.uni-muenchen.de

Kampf gegen Krebs: Forscher hetzen „Killer-Zellen“ auf Tumorgewebe

Pressemeldung der JKU Linz vom 14.03.2018

An der JKU ist es WissenschaftlerInnen gelungen, sogenannte T-Killer-Immunzellen speziell für den Kampf gegen Tumorgewebe zu aktivieren.

Im Kampf gegen Krebs wollen ForscherInnen weltweit immer stärker das eigene Immunsystem „mobilisieren“. „Die Krebsimmuntherapie ist eines der Hoffnungsgebiete im Kampf gegen Krebs, weil die Chirurgie, die Chemotherapie und die Strahlentherapie bei fortgeschrittenen Erkrankungen meist scheitern“, erklärt Assoz. Univ.-Prof. Wolfgang Schöfberger vom JKU-Institut für Organische Chemie. Bei dieser Therapie soll das Immunsystem mithilfe spezieller Wirkstoffe die Krebserkrankung selbst unter Kontrolle bringen.

Die JKU-WissenschafterInnen haben dazu einen Polymer-Wirkstoff in den Tumor eingebracht. „Damit wollten wir eine Aktivierung der dendritischen Zellen (DC) im Tumor erreichen.“ Das Polymer bringt den Wirkstoff also zu den dendritischen Zellen im Gewebe, die wie eine Zielscheibe für das Immunsystem funktionieren.

Eine besondere Herausforderung: den Wirkstoff punktgenau im Tumor zu platzieren. Gelungen ist das durch ein wasserlösliches abbaubares Polymer (Arbeitsgruppe Univ.-Prof. Ian Teasdale, Institut für Polymer Chemie der JKU), das den Wirkstoff wie ein Taxi genau zur Zelle bringt und dort freisetzt.

„Es ist uns gelungen, die DC zu aktivieren. Diese haben dann eine Immunreaktion der Killer-T-Zellen ausgelöst. Im nächsten Schritt wird nun im Gewebe eine Entzündung mit dem Wirkstoff erzeugt. Daraus resultiert letztlich eine Abstoßung des Tumors“, so Schöfberger.

Die Arbeit, die im Rahmen eines FFG-Projekts entstand, wurde nun im international renommierten Fachjournal „Chemistry – A European Journal“ publiziert. (Tobias Prietzel)

Externer Link: www.jku.at

Mit nachgebauten Naturstoffen gegen Bakterien

Medieninformation der Universität Innsbruck vom 20.12.2017

Mit chemisch nachgebauten Naturstoffen will Thomas Magauer von der Universität Innsbruck Mittel gegen die weltweit zunehmenden Antibiotikaresistenzen finden. Biologische Analysen einer Gruppe von erstmals systematisch hergestellten Molekülen zeigen eine vielversprechende Wirkung zum Beispiel gegen multiresistente MRSA-Keime. Die synthetisch erzeugten Wirkstoffe lassen sich zudem chemisch weiter optimieren.

Durch den ungehemmten Einsatz von Antibiotika entwickeln Krankheitskeime immer häufiger Resistenzen. Seit der Entdeckung von Penicillin haben Antibiotika die Therapie von bakteriellen Erkrankungen revolutioniert, doch diese medizinischen Waffen könnte bald stumpf werden. Die Wissenschaft ist deshalb schon seit Jahren auf der Suche nach neuen Wirkstoffen. Thomas Magauer vom Institut für Organische Chemie der Universität Innsbruck orientiert sich dabei an Naturstoffen, für die es bereits Hinweise auf eine mögliche Wirkung gegen Bakterien gibt. Diese Moleküle setzt er im Labor neu zusammen und optimiert ihre Wirkung durch künstliche Anpassungen. In einer aktuellen Studie im Fachmagazin Nature Communications präsentiert Magauers Arbeitsgruppe nun einen modularen Ansatz zur chemischen Synthese einer ganzen Gruppe von Naturstoffen, denen antibakterielle, antivirale Eigenschaften sowie eine krebshemmende Wirkung nachgesagt wird. Trotz ihrer Ähnlichkeit gab es bisher nur vereinzelte Versuche, diese Naturstoffe zu synthetisieren und zu untersuchen. „Mit dem neuen Ansatz steht nun ein Werkzeug zur Verfügung, um diese faszinierenden Familie von Naturstoffen genauer zu untersuchen“, freut sich Thomas Magauer, der seit August dieses Jahres eine Professur für Organische Chemie an der Universität Innsbruck innehat.

Wirkung gegen MRSA-Keime

Bisher wurden diese Stoffe aus Pilzen oder Meerespflanzen extrahiert. Dabei können allerdings oft nicht die notwendigen Mengen gewonnen werden. Mit dem neuartigen chemischen Baukasten der Innsbrucker Wissenschaftler lassen sich sechs dieser Naturstoffe sowie 15 davon abgeleitete künstliche Moleküle in wenigen Schritten erzeugen.

Gemeinsam mit der Forschungsgruppe um Mark Brönstrup am Helmholtz-Zentrum für Infektionsforschung in Braunschweig untersuchten die Forscher auch die biologische Wirkung der Moleküle. Für grampositive Bakterien konnte dabei eine sehr gute biologische Aktivität einiger dieser Moleküle nachgewiesen werden. Zwei dieser Moleküle, Strongylin A und ein vollsynthetisches Derivat, zeigen eine bedeutende antibiotische Wirkung gegen MRSA. Diese multiresistenten Keime aus der Gruppe der Staphylokokken spielen heute in Kliniken und Pflegeeinrichtungen als Verursacher von Infektionen eine wichtige Rolle. Inzwischen treten MRSA-Varianten auch in der normalen Umgebung auf. „Durch gezielte Modifikationen an den künstlich erzeugten Molekülen soll deren Wirkung noch weiter verstärkt werden“, blickt Thomas Magauer bereits in die Zukunft. „Wir wollen auch Wege finden, um gramnegative Bakterien zu bekämpfen.“ Finanziell unterstützt wird er dabei vom Europäischen Forschungsrat ERC und der Deutschen Forschungsgemeinschaft DFG.

Publikation:
A modular synthesis of tetracyclic meroterpenoid antibiotics. Raphael Wildermuth, Klaus Speck, Franz-Lucas Haut, Peter Mayer, Bianka Karge, Mark Brönstrup, and Thomas Magauer. Nature Communications 8: 2083 DOI: 10.1038/s41467-017-02061-7

Externer Link: www.uibk.ac.at

Reaktivierung ohne Risiko

Presseinformation der LMU München vom 01.12.2017

Chemische Modifikationen der DNA steuern, wann welches Gen aktiv ist. LMU-Wissenschaftler haben einen neuen Weg entschlüsselt, wie die Zelle stillgelegte Gene wieder aktivieren kann, ohne die DNA zu beschädigen.

Jede Zelle enthält alle in den Genen festgelegten Erbinformationen. Allerdings werden nur die Informationen abgelesen und umgesetzt, die von der Zelle benötigt werden – auf diese Weise können unterschiedliche Zelltypen mit spezifischen Funktionen entstehen. Welche Gene aktiv sind und welche abgeschaltet werden, wird auf der Ebene der DNA durch kleine chemische Modifikationen reguliert. Damit die Zelle die Genaktivität regulieren kann, müssen die Aktivierung oder Inaktivierung von Genen reversibel sein, damit sie die Modifikationen also auch wieder rückgängigmachen kann. LMU-Wissenschaftler um Professor Thomas Carell haben nun einen neuen Mechanismus zur Reaktivierung stillgelegter Gene identifiziert, der im Gegensatz zum bisher bekannten Weg ohne potenziell schädliche Zwischenstufen auskommt. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Nature Chemical Biology.

Für die Regulation der Genaktivität spielt die Methylierung bestimmter DNA-Bausteine – der Cytidine – eine wichtige Rolle. Durch die Übertragung einer Methylgruppe auf unmethyliertes Cytidin entsteht das sogenannte 5-Methylcytidin, von dem bekannt ist, dass es die Genaktivität hemmt. „Eine zentrale Frage ist nun, wie die Zelle den Ausgangszustand wieder herstellen kann, wenn sie also die Inaktivierung aufheben will“, sagt Carell. Um das Gen zu reaktivieren, muss die Methylgruppe entfernt werden. Bisher ging man davon aus, dass das methylierte Cytidin dazu komplett aus der DNA herausgeschnitten und durch eine unmethylierte Form ersetzt wird. Während dieses Prozesses können allerdings Brüche in einem oder sogar beiden DNA-Strängen entstehen, die unrepariert schwerwiegende Folgen für die Zelle haben.

„Wir konnten in embryonalen Stammzellen der Maus nun zeigen, dass es auch einen anderen Weg gibt, der ohne ein Zerschneiden der DNA auskommt“, sagt Carell. Bei diesem Weg wird die Methylgruppe oxidert, wodurch das sogenannte 5-Formylcytidin entsteht, das Carells Team bereits 2011 in Stammzellen der Maus entdeckt hat. Im 5-Formylcytidin fällt die oxidierte Methylgruppe dann ab, übrig bleibt wieder unmethyliertes Cytidin. „Dieser neue Mechanismus macht es möglich, die Genaktivität zu regulieren, ohne dass die DNA selbst beschädigt wird“, erklärt Carell. Nach Ansicht der Wissenschaftler ist dieser Prozess auch medizinisch interessant, denn mit seiner Hilfe könnten möglicherweise Zellen gezielt umprogrammiert und so neue Chancen in der regenerativen Medizin eröffnet werden.

Publikation:
Nature Chemical Biology 2017

Externer Link: www.uni-muenchen.de

Winzige Spurenverunreinigungen, enorme Auswirkungen

Presseaussendung der TU Wien vom 21.08.2017

Winzigste Verunreinigungen haben keinen nennenswerten Einfluss auf das Verhalten eines chemischen Stoffes – dachte man bisher. Ergebnisse von Experimenten eines internationalen Forscherteams unter Beteiligung der TU Wien konnten jetzt das Gegenteil beweisen.

Das chemische Verhalten von Stoffen ist in der Welt der Chemie grundsätzlich sehr demokratisch geregelt: die Mehrheit eines Stoffs definiert, wie sich die Substanz verhält, auch wenn „fremde“ Spurenelemente enthalten sind. So kristallisiert Kochsalz und schmeckt wie Kochsalz, auch wenn es Spuren anderer Stoffe enthält. Bisher galt es daher als ausgeschlossen, dass eine Spurenverunreinigung das komplette Kristallisationsverhalten oder den chemischen Aufbau eines Stoffs substanziell verändern kann. Ein Forscherteam der Leibniz Universität Hannover, der TU Wien und der Universität Wien konnte diese Annahme in Experimenten nun widerlegen.

Ein Atom schafft an, eine halbe Milliarde Atome gehorchen

„Unsere Arbeit hatte ihren Ursprung in einem Forschungspraktikum“, erklärt Dr. Peter Weinberger vom Institut für Angewandte Synthesechemie der TU Wien. „Ausgangspunkt war, dass wir uns das eigenartige Kristallisationsverhalten einer Substanz nicht erklären konnten.“ Unzählige Experimente und mehrere Jahre später, konnte das Rätsel um die betreffende Americium-dotierte Verbindung geklärt werden. „Durch unsere Arbeit konnten wir zeigen, dass eine Ultraspurenverunreinigung des radioaktiven Elements Americium das chemische Verhalten der „Seltenen Erde“ Terbium drastisch beeinflusst“, erklärt der Projektleiter Prof. Georg Steinhauser vom Institut für Radioökologie und Strahlenschutz an der Leibniz Universität Hannover. Durch die Verunreinigung mit Americium verhält sich das Terbium, bei dem es sich um einen Vertreter der schweren Seltenen Erden handelt, wie eine leichte Seltene Erde. Der Einfluss eines einzelnen Americium-Atoms verändert die chemischen Eigenschaften einer halben Milliarde Terbium-Atome also derart, dass sie sich verhalten, als hätte sich ihr Atomgewicht scheinbar verringert. Bildlich gesprochen rutscht damit das Terbium im Periodensystem der Elemente deutlich weiter nach vorne. Interessant ist dabei besonders, dass eine Substanzmenge, die eigentlich in der alltäglichen chemischen Betrachtungsweise so gut wie gar nicht vorhanden ist, plötzlich durchaus dramatische Auswirkungen auf ein Experiment haben kann. Die Tatsache, dass Americium radioaktiv ist und damit verhältnismäßig leicht messbar war, hat diesen Nachweis überhaupt erst ermöglicht. „Mit normalen analytisch-chemischen Messmethoden hätten wir eine Verunreinigung nur mit größerem Aufwand wahrnehmen können“, meint Peter Weinberger.

Potentiell weitreichende Konsequenzen

Und wie steht es mit den Auswirkungen, die diese Ergebnisse auf den Alltag haben? Eine wichtige Frage stellt sich dabei an die Design-Kriterien, die man für Endlager von radioaktiven Abfällen anlegt. In der bisherigen Konzeption von Endlagern wurde untersucht, wie sich unterschiedlichste Umweltbedingungen auf das Umweltverhalten der radioaktiven Abfälle auswirken. In Anbetracht der vorliegenden Ergebnisse müsste in Zukunft ebenfalls berücksichtigt werden, welchen ändernden Einfluss radioaktive Abfälle unter bestimmten Bedingungen auf die sie umgebende Umwelt haben könnten. „Dies zu berücksichtigen, wird zweifelsfrei möglich sein. Unsere Forschung hat es jedenfalls ermöglicht, ein künftiges Endlager noch ein gutes Stück sicherer zu machen“, ist Georg Steinhauser überzeugt.

Am Projekt beteiligt waren das Institut für Radioökologie und Strahlenschutz an der Leibniz Universität Hannover, an der TU Wien das Institut für Angewandte Synthesechemie, das Institut für chemische Technologien und Analytik und das Atominstitut sowie das Institut für Mineralogie und Kristallographie an der Universität Wien. (Christine Cimzar-Egger)

Originalpublikation:
Steinhauser, G., Weinberger, P., et al., Picomolar traces of AmIII introduce drastic changes in the structural chemistry of TbIII: a break in the „gadolinium break“. Angew. Chem. Int. Ed.. DOI: 10.1002/anie.201703971

Externer Link: www.tuwien.ac.at