Basler Forscher entwickeln ideale Einzelphotonenquelle

Medienmitteilung der Universität Basel vom 08.09.2015

Physiker der Universität Basel haben mithilfe eines Halbleiter-Quantenpunktes eine neuartige Lichtquelle entwickelt, die einzelne Photonen aussendet. Erstmals ist es den Forschern gelungen, einen Strom identischer Photonen zu erzeugen. Dies berichten sie zusammen mit Kollegen der Universität Bochum in der Fachzeitschrift «Nature Communications».

Eine Einzelphotonenquelle sendet nie zwei oder mehr Photonen gleichzeitig aus. Wichtig sind einzelne Photonen in der Quanteninformationstechnologie, die beispielsweise im Quantencomputer Anwendung findet. Neben Helligkeit und Robustheit der Lichtquelle ist vor allem die Ununterscheidbarkeit der Photonen entscheidend. Das bedeutet insbesondere, dass alle Photonen die gleiche Farbe haben müssen. Eine solche Quelle von identischen Einzelphotonen zu realisieren, gestaltete sich bisher als sehr anspruchsvoll.

Vielversprechende Kandidaten für eine solche Einzelphotonenquelle sind sogenannte Quantenpunkte aus Halbleitermaterialien. Ein Quantenpunkt ist eine Ansammlung von wenigen Hunderttausend Atomen, die sich unter bestimmten Bedingungen in einem Halbleiter selbstständig formiert. Einzelne Elektronen können in solchen Quantenpunkten eingefangen und auf engstem Raum eingeschlossen werden. Das Aussenden eines einzelnen Photons erfolgt beim Zerfall eines angeregten Quantenzustandes.

Rauschen im Halbleiter

Ein Team von Wissenschaftlern um Dr. Andreas Kuhlmann und Prof. Richard J. Warburton von der Universität Basel konnten bereits in vorangegangen Veröffentlichungen zeigen, dass die Ununterscheidbarkeit der Photonen durch fluktuierende Kernspins der Atome des Quantenpunktes reduziert wird. Nun ist es ihnen erstmals gelungen die Kernspins so zu kontrollieren, dass selbst Photonen, die mit sehr grossem zeitlichem Abstand ausgesandt wurden, die gleiche Farbe aufweisen.

Einzelphotonenquellen könnten Anwendung in der Quantenkryptographie und Quantenkommunikation finden – Technologien, durch die Berechnungen möglich wären, die für heutige Computer unmöglich sind.

Die Studie wurde durch den Nationalen Forschungsschwerpunkt «QSIT – Quantenwissenschaften und -technologie» unterstützt, an dem die Universität Basel als Co-Leading House beteiligt ist.

Originalbeitrag:
Andreas V. Kuhlmann, Jonathan H. Prechtel, Julien Houel, Arne Ludwig, Dirk Reuter, Andreas D. Wieck, und Richard J. Warburton
Transform-limited single photons from a single quantum dot
Nature Communications 6:8204 (2015) | DOI: 10.1038/ncomms9204

Externer Link: www.unibas.ch

Quantenzustände in einem Nanoobjekt lassen sich durch mechanisches System manipulieren

Medienmitteilung der Universität Basel vom 03.08.2015

Wissenschaftler des Swiss Nanoscience Institute der Universität Basel haben mithilfe von Federbalken aus einkristallinen Diamanten ein neuartiges Bauteil entwickelt, bei dem ein Quantensystem in ein mechanisches schwingendes System integriert ist. Erstmals konnten die Forschenden zeigen, dass sich mit diesem mechanischen System ein im Federbalken eingebetteter Elektronenspin kohärent manipulieren lässt – und zwar ohne externe Antennen oder komplexe mikroelektronische Strukturen. Die Ergebnisse dieser experimentellen Studie werden in «Nature Physics» veröffentlicht.

Die Gruppe um den Georg-H.-Endress-Professor Patrick Maletinsky hat bereits in vorangegangen Veröffentlichungen beschrieben, dass sich Federbalken aus einkristallinen Diamanten mit einzelnen eingebetteten Elektronen bestens eignen, um den Spin dieser Elektronen zu adressieren. Diese Diamant-Federbalken wurden an mehreren Stellen so modifiziert, dass in ihrem Kristallgitter ein Kohlenstoffatom durch ein Stickstoffatom ersetzt wurde und gleich daneben eine Leerstelle entstand. In diesen «Stickstoff-Vakanzzentren» kreisen einzelne Elektronen, deren Spin oder Eigendrehimpuls in dieser Arbeit untersucht wurde.

Wird nun der Federbalken in Schwingung versetzt, entstehen Spannungen in der Kristallstruktur des Diamanten. Dies hat wiederum einen Einfluss auf den Spin der Elektronen, der bei einer Messung in zwei mögliche Richtungen (nach «oben» oder «unten») zeigen kann. Mithilfe von Fluoreszenzspektroskopie lässt sich diese Ausrichtung des Spins auslesen.

Extrem schnelle Spin-Oszillation

In der aktuellen Veröffentlichung haben die Wissenschaftler die Federbalken nun so geschüttelt, dass sie dadurch erstmals eine kohärente Oszillation des gekoppelten Spins induzieren konnten. Das bedeutet, dass der Eigendrehimpuls der Elektronen kontrolliert in einem schnellen Rhythmus von oben nach unten und umgekehrt wechselt und die Wissenschaftler zu jedem Zeitpunkt den Spinzustand kontrollieren können. Dabei ist diese Oszillation des Spins schnell verglichen mit der Frequenz des Federbalkens. Sie schützt den Spin zudem vor schädlichen Dekohärenz-Mechanismen.

Gut vorstellbar ist eine Anwendung dieser Diamant-Federbalken in der Sensorik, da sich die Auslenkung des Federbalkens über den veränderten Spin erfassen lässt, und zwar potenziell auf eine sehr sensitive Art und Weise. Zudem kann nach den neuen Erkenntnissen der Spin über einen recht langen Zeitraum von annähernd hundert Mikrosekunden kohärent rotiert werden, was die Präzision der Messung erhöht. Eventuell liessen sich Stickstoff-Vakanzzentren auch zur Entwicklung eines Quantencomputers heranziehen. In diesem Fall wäre die in dieser Arbeit gezeigte schnelle Manipulation ihrer Quantenzustände ein entscheidender Vorteil.

Originalbeitrag:
Arne Barfuss, Jean Teissier, Elke Neu, Andreas Nunnenkamp, Patrick Maletinsky
Strong mechanical driving of a single electron spin
Nature Physics (2015), doi: 10.1038/nphys3411

Externer Link: www.unibas.ch

Basler Physiker entwickeln Methode zur effizienten Signalübertragung aus Nanobauteilen

Medienmitteilung der Universität Basel vom 22.05.2015

Physiker haben eine innovative Methode entwickelt, die den effizienten Einsatz von Nanobauteilen in elektronische Schaltkreisen ermöglichen könnte. Sie entwickelten dazu eine Anordnung, bei der ein Nanobauteil mit zwei elektrischen Leitern verbunden ist. Diese bewirken eine hocheffiziente Auskopplung des elektrischen Signals. Die Wissenschaftler vom Departement Physik und dem Swiss Nanoscience Institute der Universität Basel haben ihre Ergebnisse zusammen mit Kollegen der ETH Zürich in der Fachzeitschrift «Nature Communications» publiziert.

Elektronische Bauteile werden immer kleiner. In Forschungslabors werden bereits Bauelemente von wenigen Nanometern hergestellt, was ungefähr der Grösse von zehn Atomen entspricht. Dank der Miniaturisierung lassen sich zahlreiche elektronische Komponenten auf kleinstem Raum unterbringen, womit sich die Leistungsfähigkeit der Elektronik in Zukunft weiter steigern lassen wird.

Wissenschaftlerteams untersuchen weltweit, wie sich solche Nanobauteile mithilfe von Kohlenstoff-Nanoröhrchen herstellen lassen. Diese Röhrchen besitzen einzigartige Eigenschaften – sie leiten hervorragend Wärme, können mit hohen Stromstärken belastet werden und eignen sich als Leiter oder Halbleiter. Allerdings ist die Signalübertragung zwischen einem Kohlenstoff-Nanoröhrchen und einem sehr viel grösseren elektrischen Leiter noch immer problematisch, da grosse Teile des elektrischen Signals durch die sogenannte Reflexion verlorengehen. Dabei wird ein Teil des Signals zurückgeworfen.

Antireflex erhöht die Effizienz

Ein ähnliches Problem stellt sich bei Lichtquellen in einem Glasobjekt. Da sehr viel Licht von den Wänden reflektiert wird, dringt nur ein kleiner Teil des Lichts nach aussen. Dagegen kann eine Antireflexbeschichtung an den Wänden dienen.

Ganz analog sind die Basler Wissenschaftler um Prof. Christian Schönenberger nun in der Nanoelektronik vorgegangen. Sie entwickelten eine Antireflexeinheit für elektrische Signale, um die Reflexion, die beim Übergang von Nanobauteilen in grössere Schaltkreise stattfindet, zu reduzieren. Dazu schufen sie eine spezielle Anordnung von elektrischen Leitern bestimmter Länge, die mit einem Kohlenstoff-Nanoröhrchen gekoppelt sind. Die Forscher konnten somit ein hochfrequentes Signal aus dem Nanobauteil effizient auszukoppeln.

Unterschiedliche Scheinwiderstände sind das Problem

Die Kopplung von Nanostrukturen mit wesentlich grösseren Leitern gestaltet sich schwierig, da sie sehr unterschiedliche Scheinwiderstände, sogenannte Impedanzen, aufweisen. Je grösser der Unterschied der Impedanzen zwischen zwei leitenden Strukturen ist, desto grösser ist der Verlust beim Übergang. Zwischen Nanobauteilen und makroskopischen Leitern ist der Unterschied so gross, dass ohne Gegenmassnahmen kein Signal übertragen wird. Die Antireflexeinheit vermindert diesen Effekt und passt die Scheinwiderstände einander an, was zu einer effizienten Kopplung führt. Damit sind die Wissenschaftler dem Ziel, Nanobauteile zur Signalübertragung in elektronischen Bauelementen zu gebrauchen, einen entscheidenden Schritt näher gekommen.

Orginalbeitrag:
V. Ranjan, G. Puebla-Hellmann, M. Jung, T. Hasler, A. Nunnenkamp, M. Muoth, C. Hierold, A. Wallraff & C. Schönenberger
Clean carbon nanotubes coupled to superconducting impedance-matching circuits
Nature Communications (2015), doi: 10.1038/ncomms8165

Externer Link: www.unibas.ch

Pseudoteilchen wandern durch photoaktives Material

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 22.04.2015

KIT-Wissenschaftler messen wichtigen Prozess bei der Umwandlung von Lichtenergie – Publikation in Nature Communications

Einen wichtigen Schritt der Umwandlung von Licht in speicherbare Energie haben Forscher des Karlsruher Instituts für Technologie (KIT) aufgeklärt: Gemeinsam mit Wissenschaftlern des Fritz-Haber-Instituts Berlin und der Aalto University in Helsinki/Finnland untersuchten sie die Bildung von sogenannten Polaronen in Zinkoxid. Die Pseudoteilchen wandern durch das photoaktive Material, bis sie an einer Grenzschicht in elektrische oder chemische Energie umgewandelt werden. Ihre unter anderem für die Photovoltaik wichtigen Erkenntnisse veröffentlichen die Forscher in der renommierten Zeitschrift Nature Communications.

Prozesse, die Licht in speicherbare Energie umwandeln, können wesentlich zu einer nachhaltigen Energieversorgung beitragen. Die Natur nutzt solche Prozesse schon seit Milliarden von Jahren bei der Photosynthese, um mithilfe von Licht Kohlenhydrate aufzubauen. In der Forschung gewinnt die Photokatalyse, die Licht nutzt, um chemische Prozesse zu beschleunigen, immer mehr an Bedeutung. Auch bei der Photovoltaik, die einfallendes Sonnenlicht direkt in elektrische Energie umwandelt, haben Forscher in den vergangenen Jahren beachtliche Fortschritte erzielt. Der Wirkungsgrad hat sich stetig verbessert.

Allerdings sind die der Photovoltaik zugrunde liegenden Prozesse bis jetzt nur in groben Zügen erforscht. „Die Umwandlung der Photonen, das heißt Lichtteilchen, in elektrische Energie geschieht über mehrere Schritte“, erklärt Professor Christof Wöll, Leiter des Instituts für Funktionelle Grenzflächen (IFG) des KIT. Zunächst wird in einem photoaktiven Material Licht absorbiert. Einzelne Elektronen werden von ihrem Platz gelöst und lassen an diesem ein Loch zurück. Die Elektronen-Loch-Paare sind nur für kurze Zeit stabil. Danach zerfallen sie entweder unter Lichtabstrahlung oder werden in ein Elektron und ein Loch aufgespalten, die sich dann unabhängig voneinander im Material bewegen. Was mit diesen geladenen Teilchen weiter geschieht, hängt vom Material ab.

In den meisten Materialien sind freie Löcher nicht stabil, sondern werden unter Energieverlust in sogenannte Polaronen umgewandelt. Ein Polaron ist ein spezielles Pseudoteilchen, das sich aus einem Teilchen und dessen Wechselwirkung mit seiner Umgebung zusammensetzt. Die gebildeten Polaronen sind für längere Zeit stabil und wandern durch das photoaktive Material, bis sie an einer Grenzschicht in elektrische oder chemische Energie umgewandelt werden.

Forscher des KIT um Professor Christof Wöll haben nun Experimente an dem photoaktiven Material Zinkoxid durchgeführt, um Bildung und Bewegung der Polaronen zu untersuchen. Dabei setzten sie eine am KIT entwickelte, weltweit einzigartige Apparatur zur Infrarot-Reflexions-Absorptions-Spektroskopie (IRRAS) mit einer zeitlichen Auflösung von 100 Millisekunden ein. Sie maßen Infrarotspektren an Zinkoxid-Einkristallen und beobachteten intensive Absorptionsbanden, sozusagen Fingerabdrücke, eines bislang unbekannten Pseudoteilchens. Die Interpretation der Daten und die Identifikation dieses neuen Teilchens stellte die Karlsruher Forscher zunächst vor große Herausforderungen. Erst in Zusammenarbeit mit einer Arbeitsgruppe, die am Fritz-Haber-Institut und im Exzellenzzentrum für Rechnergestützte Nanophysik (COMP) der Aalto University tätig ist, gelang es, die Absorptionsbanden eindeutig sogenannten Loch-Polaronen zuzuordnen. „Ein wichtiges Ergebnis, das im Jahr 2015 als internationales Jahr des Lichts und der lichtbasierten Technologien besonders erfreulich ist“, sagt Professor Wöll. (or)

Publikation:
Hikmet Sezen, Honghui Shang, Fabian Bebensee, Chengwu Yang, Maria Buchholz, Alexei Nefedov, Stefan Heissler, Christian Carbogno, Matthias Scheffler, Patrick Rinke, and Christof Wöll: Evidence for photogenerated intermediate hole polarons in ZnO. Nature Communications, 22nd April 2015. DOI 10.1038/ncomms7901

Externer Link: www.kit.edu

Metallcluster mit subatomarer Auflösung abgebildet

Pressemitteilung der Universität Regensburg vom 19.03.2015

Neues Verfahren mit Rasterkraftmikroskop

Metallcluster, die nur aus wenigen Eisenatomen aufgebaut sind, konnten jetzt erstmals mit subatomarer Auflösung abgebildet werden. Forscher der Universität Regensburg und der Ludwig-Maximilians-Universität München nutzten dazu ein Rasterkraftmikroskop. Die Abbildungen der Cluster zeigen sowohl deren interne Struktur als auch die atomare Anordnung auf einer dicht gepackten Kupferoberfläche. Cluster aus Eisenatomen sind für die Entwicklung von Kleinstmagneten oder für die Abgasreinigung in Katalysatoren von großer Bedeutung. Die neuen Forschungsergebnisse sind in der renommierten Fachzeitschrift „Science“ (DOI 10.1126/science.aaa5329) erschienen.

Die Entwicklung der Rasterkraftmikroskopie hat in den letzten Jahren zu enormen Fortschritten im Bereich der Nanowissenschaften geführt. Sie ermöglicht eine detaillierte Abtastung von Oberflächen. Dies geschieht allerdings nicht optisch wie bei einem Lichtmikroskop, sondern durch mechanisches Abtasten – ähnlich dem Lesen von Blindenschrift. So kann ein Rasterkraftmikroskop einzelne Atome auf einer Oberfläche sichtbar machen. Bis jetzt konnten Atome allerdings nur als einzelne Hügel ohne weitere Struktur abgebildet werden. Dasselbe galt bislang für Cluster: Hier lieferte lediglich die Höhe der Hügel Rückschlüsse über die Zahl der beinhalteten Atome.

Die Forscher um Prof. Dr. Franz J. Gießibl vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg haben nun einzelne Eisenatome und Cluster aus wenigen Eisenatomen untersucht. Die begleitende theoretische Basis für ihre Versuche haben Forscher um PD Dr. Diemo Ködderitzsch und Prof. Dr. Hubert Ebert vom Department Chemie der LMU München gelegt. So haben sie mit Hilfe der Dichtefunktionaltheorie auf quantenphysikalischen Grundlagen unter anderem berechnet, wie sich die Eisenatome im Cluster auf der Kupferoberfläche vorzugsweise ausrichten.

Kalkulation und Experiment bestätigten sich gegenseitig. Die neuen Aufnahmen zeigen Eisenatome als klar abgrenzbarer Ring mit drei Erhebungen. Mit dem Verfahren ist es somit möglich, die Form der Elektronenhülle jedes Atoms zu „sehen“ und auch abzuzählen, wie viele Atome in einem Cluster vorhanden sind. Zudem geben die neuen Bilder Einblicke in die Bindungssymmetrie der Eisenatome.

Gießibl gilt als Pionier der Rasterkraftmikroskopie. Er ist der Erfinder des sogenannten qPlus Sensors, einem auf einem Quarzfederbalken basierenden hochempfindlichen Sensor für die Kraftmikroskopie. Die Mitarbeiterinnen und Mitarbeitern seines Lehrstuhls arbeiten schon länger mit Forschern der LMU München im Rahmen des Sonderforschungsbereichs (SFB) 689 „Spinphänomene in reduzierten Dimensionen“ zusammen.

Titel des Originalartikels:
Sub-Atomic Resolution Force Microscopy Reveals Internal Structure and Adsorption Sites of Small Iron Clusters, in “Science” (2015)

Externer Link: www.uni-regensburg.de