Ein Transistor für alle Fälle

Presseinformation der LMU München vom 19.03.2019

Ob Handy, Kühlschrank oder Flugzeug: Transistoren sind überall verbaut. LMU-Physiker haben jetzt einen nanoskopisch kleinen Transistor aus organischem Halbleitermaterial entwickelt, der sowohl bei niedrigem als auch hohem Strom bestens funktioniert.

Transistoren sind Halbleiter-Bauelemente, die in elektrischen Schaltungen Spannungen und Ströme steuern. Im gleichen Maße wie viele elektrische Geräte immer leistungsfähiger und gleichzeitig kleiner werden, gilt dies auch für Transistoren. Bei anorganischen Bauelementen sind Abmessungen unter 100 Nanometer bereits Standard.

Organische Halbleiter können hier noch nicht mithalten, denn ihre Leistung bezüglich des Ladungstransports ist deutlich geringer. Doch ihre Strukturen bieten andere Vorteile. Sie lassen sich großindustriell drucken, die Materialkosten sind niedrig und sie können transparent auf flexible Oberflächen wie Folien aufgebracht werden. Daher arbeiten Thomas Weitz, Professor für Physik an der LMU und Mitglied in der Nanosystems Initiative Munich, und seine Gruppe an der Optimierung der organischen Transistoren. In ihrer aktuellen Publikation in Nature Nanotechnology präsentieren sie Transistoren, die durch ihren ungewöhnlichen Aufbau sehr klein, leistungsstark und anpassungsfähig sind. Über wenige Parameter lässt sich beispielsweise bei der Herstellung steuern, ob der Halbleiter für hohe oder niedrige Stromdichten optimiert sein soll. Das Besondere ist eine untypische Geometrie, die es zudem erlaubt, die nanoskopisch kleinen Transistoren leichter herzustellen.

„Unser Ziel war es, Bauteile zu entwickeln, die zwei Aufgaben kombinieren“, sagt Thomas Weitz „Einerseits die Fähigkeit, bei hohen Strömen als klassische Transistoren zu fungieren, und andererseits bei Niedrigstrom arbeiten zu können.“ Potenzielle Einsatzgebiete sind organische LEDs oder Sensoren, denn hier werden niedrige Spannungen, hohe Ströme oder große Transkonduktanzen benötigt. Besonders interessant könnte die Verwendung in sogenannten memristiven Elementen sein. „Man kann sich einen Memristor als ein Element vorstellen, das sich beim Verarbeiten elektrischer Signale wie ein Netzwerk von Neuronen verhält und seine Eigenschaften abhängig von dem Zustand, in dem es sich befindet, verändert“, erklärt Weitz. „Durch das genaue Anpassen der Geometrie unserer memristiven Elemente können diese für verschiedene Anwendungen wie beispielsweise Lernprozesse in künstlichen Synapsen eingesetzt werden.“

Die Forscher haben ihren Transistor bereits zum Patent angemeldet, damit er für die industrielle Anwendung weiterentwickelt werden kann.

Externer Link: www.uni-muenchen.de

Datenspeicherung mit einzelnen Molekülen

Medienmitteilung der Universität Basel vom 17.12.2018

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast allen Medien wird zur Speicherung ein Phasenübergang genutzt. So etwa wird für die Herstellung von CDs eine sehr dünne Metallschicht in Kunststoffen verwendet, die innerhalb von Mikrosekunden aufschmilzt, um dann wieder zu erstarren. Dies auf der Ebene von Atomen oder Molekülen zu ermöglichen, ist Gegenstand eines Forschungsprojekts unter Leitung der Universität Basel.

Phasenwechsel einzelner Atome zur Datenspeicherung

Ein Phasenwechsel auf Ebene einzelner Atome oder Moleküle kann prinzipiell zur Speicherung von Daten genutzt werden und in der Forschung gibt es derartige Speicher bereits. Sie sind allerdings aufwendig und teuer herzustellen. Die Gruppe um Professor Thomas Jung von der Universität Basel hat das Ziel, solch winzige Speichereinheiten aus wenigen Atomen durch Selbstorganisation herzustellen und damit den Herstellungsprozess enorm zu vereinfachen.

Die Gruppe hat dazu zunächst ein sogenanntes metallorganisches Netzwerk hergestellt, das wie ein Sieb mit präzise definierten Poren aussieht. Wenn die richtigen Verbindungen und Bedingungen gewählt werden, ordnen sich die Moleküle dabei selbstständig zu einer regelmässigen supramolekularen Struktur an.

Xenon-Atome: mal fest, mal flüssig

Die Physikerin Aisha Ahsan, Erstautorin der aktuellen Studie, hat nun einzelne Xenon-Gasatome in die etwas über einen Nanometer grossen Poren des Netzwerks eingebracht. Durch Temperaturveränderungen und durch lokal angelegte elektrische Pulse gelang es ihr, den Aggregatzustand der Xenon-Atome zwischen fest und flüssig gezielt hin und her zu schalten. Sie konnte diesen Phasenübergang durch Temperaturänderung in allen Poren gleichzeitig bewirken. Die Temperaturen für den Phasenübergang hängen von der Stabilität der Xenon-Cluster ab, die je nach Anzahl der Xenon-Atome unterschiedlich ist. Mit dem Mikroskopsensor lässt sich der Phasenübergang auch lokal in einer einzelnen Pore auslösen.

Da diese Experimente bei sehr tiefen Temperaturen von wenigen Kelvin durchgeführt werden müssen (unter -260° C), wird sich mit Xenon-Atomen selbst kein neuer Datenspeicher realisieren lassen. Die Versuche haben aber belegt, dass sich supramolekulare Netzwerke prinzipiell eignen, um winzige Strukturen herzustellen, in denen mit wenigen Atomen oder Molekülen gezielt Phasenübergänge induziert werden können.

«Wir werden nun grössere Moleküle wie kurze Alkohole testen, da diese Aggregatszustandsänderungen bei höheren Temperaturen durchlaufen und daher eine Anwendung gut denkbar ist», bemerkt Professor Thomas Jung, der die Arbeiten betreut hat.

Die Studie ist in Zusammenarbeit des Swiss Nanoscience Instituts (SNI), des Departements Physik der Universität Basel und des Paul Scherrer Instituts (PSI) mit den Universitäten Heidelberg und Linköping entstanden.

Originalbeitrag:
Aisha Ahsan, S. Fatemeh Mousavi, Thomas Nijs, Sylwia Nowakowska, Olha Popova, Aneliia Wäckerlin, Jonas Björk, Lutz H. Gade, Thomas A. Jung:
Phase transitions in confinements: Controlling solid to Fluid transitions of xenon atoms in an on-surface network
Small (2018), doi: 10.1002/smll.201803169

Externer Link: www.unibas.ch

Drehung auch bei Kälte

Presseinformation der LMU München vom 22.11.2018

LMU-Chemiker haben den ersten molekularen Motor entwickelt, der nur mit Licht als Antrieb auskommt und temperaturunabhängig betrieben werden kann.

Molekulare Motoren, die durch externe Energiezufuhr hin gezielte Drehbewegungen ausführen, sind eine wichtige Grundlage für zukünftige Anwendungen in der Nanotechnologie. Vielversprechende Kandidaten für solche Motoren sind Moleküle, die unter Lichteinfluss ihre Struktur ändern. Allerdings benötigen alle bisherigen lichtgetriebenen molekularen Motoren zusätzliche, durch Wärme angetriebene Reaktionen und sind deshalb von der Umgebungstemperatur abhängig. LMU-Chemiker Henry Dube ist nun ein entscheidender Durchbruch gelungen: Mit seinem Studenten Aaron Gerwien hat er den ersten molekularen Motor entwickelt, der vollständig lichtgetrieben und damit temperaturunabhängig ist – bei tiefen Temperaturen ist er sogar schneller. Diese einzigartige Eigenschaft könnte die Einsatzmöglichkeiten zukünftiger Nanomaschinen wesentlich erweitern. Über ihre Ergebnisse berichten die Wissenschaftler im Journal of the American Chemical Society.

Grundvoraussetzung für einen funktionierenden molekularen Rotationsmotor ist eine durch Energiezufuhr erzeugte gerichtete Drehbewegung. Dabei führen mehrere Drehschritte zu einer vollständigen 360 Grad Rotation eines bestimmten Molekülteils um einen anderen. Um zu verhindern, dass sich das Molekül wieder zurückdreht, benötigen alle bisher entwickelten molekularen Motoren sogenannte Ratschenschritte: Darunter versteht man Zwischenschritte, die das Molekül nach einem Drehschritt so verändern, dass die Rückreaktion blockiert wird. Diese Ratschenschritte werden normalerweise durch Wärme induziert. Deshalb laufen die Motoren umso langsamer, je tiefer die Umgebungstemperaturen sind und bleiben bei Kälte schließlich stehen.

Der neue Motor basiert wie frühere von Dube entwickelte Motorsysteme auf dem Molekül Hemithioindigo. Dieses Molekül besteht aus zwei unterschiedlichen Kohlenwasserstoff-Hälften, die über eine chemische Doppelbindung miteinander verbunden sind. „Wir haben es nun geschafft, das Molekül so zu modifizieren, dass drei Teilreaktionen ausreichen, um eine vollständige Rotation des einen Molekülteils um den anderen zu erzielen“, sagt Dube. Alle drei Teilschritte der Drehung werden durch sichtbares Licht angetrieben und kommen ohne thermische Ratschen-Zwischenschritte aus. Alle drei Teilreaktionen werden durch Kühlung sogar effizienter, deshalb kann der neue Motor bei tieferen Temperaturen schneller werden anstatt langsamer. „Die Teilschritte bestehen aus drei unterschiedlichen Photoreaktionen, von denen wir zwei erst dieses Jahr zum ersten Mal direkt experimentell bewiesen haben“, erklärt Dube. Das einzigartige Verhalten des Motors und sein neuartiger Mechanismus werden es nach Überzeugung der Wissenschaftler in Zukunft ermöglichen, molekulare Maschinen zu bauen, die wegen ihrer Temperaturunempfindlichkeit neue Einsatzmöglichkeiten eröffnen werden, die mit herkömmlichen molekularen Motoren unmöglich sind.

Publikation:
Journal of the American Chemical Society 2018

Externer Link: www.uni-muenchen.de

Von der Starterfirma der Saar-Uni zum Wachstumschampion 2019

Pressemitteilung der Universität des Saarlandes vom 20.11.2018

Die Instillo GmbH, deren Ursprung im Starterzentrum der Universität des Saarlandes liegt, ist eines der wachstumsstärksten Technologieunternehmen Deutschlands: Für ein Umsatzwachstum von 448,91 Prozent im Zeitraum 2014 bis 2017 hat Instillo im November den „Technology Fast 50 Award“ des Wirtschaftsprüfungs- und Beratungsunternehmens Deloitte erhalten. Außerdem zählt das Unternehmen zu den „Wachstumschampions 2019“. In einem branchenübergreifenden Ranking der 500 am schnellsten wachsenden deutschen Unternehmen, die das Nachrichtenmagazin Focus und das Statistik-Portal Statista ermittelt haben, belegt Instillo Rang 68 – und in ihrer Branche „Chemie und Pharma“ sogar Rang 1. Das Unternehmen geht auf die Starterfirma „MJR PharmJet“ auf dem Unicampus Homburg zurück.

Mit einem neuartigen Verfahren, kleinste Wirkstoff-Transporter für die Arzneimittel- oder Kosmetikbranche herzustellen, gründete Dr. Bernd Baumstümmler 2010 mit zwei Partnern das Unternehmen „MJR PharmJet“ im Starterzentrum auf dem Campus Homburg. Der Wirkstoff-Transport über die körpereigenen Barrieren wie Darm- oder Lungenschleimhaut ist einer der Forschungsschwerpunkte der pharmazeutischen Forschung an der Saar-Universität und am Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS).

Mit ihrer patentierten „Mikrojetreaktor-Technologie“ konnten die Gründer Partikel unterschiedlicher Größe bis hin zu Nanopartikeln erzeugen und in ihnen – unverändert und hochdosiert – Wirkstoffe verpacken. Werden sie vom Patienten zum Beispiel inhaliert, überwinden sie als Nano-Transporter die Lungen-Barriere, liefern eine Antibiotika-Ladung am richtigen Wirkort ab und werden dann vom Körper abgebaut. Diesen Wirkstoff-Paketdienst entwickelten die Gründer für Medikamente, er kommt aber auch bei Nahrungsergänzungsmitteln oder Kosmetik zum Einsatz. Das Verfahren nutzen die Pharma- und Kosmetikindustrie etwa, um neue Produkte herzustellen oder zu prüfen.

Die MJR Pharmjet expandierte schnell. Durch Beteiligungen entstand die Instillo Group, deren technologischer Kern noch immer die MJR PharmJet bildet. Am neuen Standort in Überherrn arbeiten derzeit über 60 Mitarbeiterinnen und Mitarbeiter aus den Disziplinen Chemie, Pharmazie, Biologie, Biotechnologie, aber auch Ingenieure und Betriebswirte.

Neben dem aktuellen „Technology Fast 50 Award“ und der Auszeichnung als Wachstumschampion 2019 zählt Instillo laut dem Wettbewerb TOP 100 außerdem seit Juni dieses Jahres zu den innovativsten Firmen des deutschen Mittelstands.

Insgesamt 389 Firmen sind auf dem Gründer Campus Saar bislang entstanden. Den Start in die Selbstständigkeit unterstützt die Kontaktstelle für Wissens- und Technologietransfer (KWT) der Universität des Saarlandes seit über 23 Jahren: In drei Starterzentren können Gründerinnen und Gründer der Universität günstig Geschäftsräume in räumlicher Nähe zu den Uni-Forschern mieten. Alle Gründungsphasen unterstützt die KWT mit einem großen Angebot zum Beispiel mit Seminaren, Workshops oder Coaching-Programmen.

Externer Link: www.uni-saarland.de

Elektronensysteme: Präzise Untersuchung einzelner Randkanäle

Medienmitteilung der Universität Basel vom 12.09.2018

Mit einer neuen Methode lässt sich erstmals ein individueller Fingerabdruck von stromleitenden Randkanälen erstellen, wie sie in neuartigen Materialien wie zum Beispiel topologischen Isolatoren vorkommen. Physiker der Universität Basel stellen das Verfahren zusammen mit amerikanischen Wissenschaftlern in «Nature Communications» vor.

Während Isolatoren keinen elektrischen Strom leiten, gibt es einige Materialien, die über besondere elektrische Eigenschaften verfügen: sie können zwar nicht in ihrem Innern, aber aufgrund von Quanteneffekten an ihrer Oberfläche und an ihren Rändern elektrische Ströme übermitteln, und dies sogar verlustfrei.

Diese sogenannten topologischen Isolatoren stehen seit einigen Jahren im Fokus der Festkörperforschung, da ihre besonderen Eigenschaften technologische Innovationen versprechen – beispielsweise für elektronische Bauelemente.

Stromfluss nur am Rand

Ähnliche Effekte wie die Randströme in den topologischen Isolatoren zeigen sich auch, wenn ein zweidimensionales Metall bei tiefen Temperaturen einem starken Magnetfeld ausgesetzt wird. Tritt der sogenannte Quanten-Hall-Effekt ein, fliesst Strom nur noch an den Grenzflächen. Dabei bilden sich mehrere stromleitende Bereiche.

Individuelle Untersuchung möglich

Bisher war es nicht möglich, diese leitenden Bereiche individuell zu untersuchen beziehungsweise die Position eines einzelnen Randzustands zu messen. Ein neues Verfahren erlaubt nun erstmals, einen exakten Fingerabdruck der leitenden Bereiche mit einer Auflösung im Nanometerbereich zu erstellen.

Dies berichten Forscher des Departements Physik und des Swiss Nanoscience Institutes der Universität Basel zusammen mit Kollegen der University of California Los Angeles sowie der Universitäten Harvard und Princeton (USA).

Zur Messungen der leitenden Bereiche haben sich die Physiker um Professor Dominik Zumbühl von der Universität Basel die Tunnelspektroskopie zunutze gemacht.

Sie verwenden einen Nanodraht aus Galliumarsenid, der sich auf dem Rand der Probe befindet und parallel zu den Randkanälen verläuft. Elektronen können nun zwischen dem Nanodraht und spezifischen Randzuständen hin und her hüpfen (tunneln), falls die Impulse in beiden Systemen übereinstimmen. Mithilfe eines zweiten Magnetfeldes kontrollieren die Wissenschaftler den Impuls der tunnelnden Elektronen, wodurch sie einzelne Randzustände individuell ansteuern können. Aus den gemessenen Tunnelströmen lassen sich die Position und der Verlauf jedes Randzustands mit einer Präzision im Nanometerbereich berechnen.

Mehr als eine Momentaufnahme

Wird bei Quanten-Hall-Systemen die Stärke des angelegten Magnetfeldes erhöht, ändert sich die Verteilung der Randzustände und ihre Anzahl sinkt. Mit der neuen Methode konnten die Wissenschaftler erstmals den gesamten Verlauf der Randzustände inklusive ihrer Entstehung bei kleinen Magnetfeldern beobachten.

Mit zunehmender Magnetfeldstärke werden die Randzustände zunächst gegen den Materialrand gedrückt und wandern schliesslich in die Mitte der Probe, wo sie vollständig verschwinden. Analytische und numerische Modelle, die das Forscherteam erstellt hat, stimmten sehr gut mit den experimentellen Daten überein.

«Wir können diese neue Technik nicht nur zur Untersuchung des Quanten-Hall-Effektes einsetzen», kommentiert Dominik Zumbühl die Ergebnisse der internationalen Zusammenarbeit. «Auch bei der Untersuchung exotischer neuer Materialien wie beispielsweise topologischen Isolatoren, Graphen oder anderer 2D-Materialien erhoffen wir bahnbrechende Erkenntnisse durch Anwendung der neuen Methode.»

Originalpublikation:
T. Patlatiuk, C. P. Scheller, D. Hill, Y. Tserkovnyak, G. Barak, A. Yacoby, L. N. Pfeiffer, K.W. West, and D. M. Zumbühl
Evolution of the quantum Hall bulk spectrum into chiral edge states
Nature Communications (2018), doi: 10.1038/s41467-018-06025-3

Externer Link: www.unibas.ch