Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern

Medienmitteilung der Universität Basel vom 11.01.2021

Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern. Physiker haben nun ein neuartiges Qubit realisiert, das sich von einem stabilen Ruhezustand in einen schnellen Rechenmodus umschalten lässt. Das Konzept eignet sich auch, um viele Qubits zu einem leistungsstarken Quantenrechner zu verbinden, berichten Forscher der Universität Basel und der TU Eindhoven in der Fachzeitschrift «Nature Nanotechnology».

Im Vergleich zu konventionellen Bits sind Quantenbits (Qubits) viel anfälliger auf Störungen und können ihren Informationsgehalt sehr schnell verlieren. Das Rechnen mit Quanten steht deshalb vor der Schwierigkeit, die empfindlichen Qubits über längere Zeit stabil zu halten und gleichzeitig Wege zu finden, um schnelle Quantenoperationen durchführen zu können. Physiker der Universität Basel und der TU Eindhoven haben nun ein umschaltbares Qubit entwickelt, das beides ermöglichen soll.

Das neuartige Qubit verfügt über einen stabilen, aber langsamen Zustand, der für die Speicherung der Quanteninformation geeignet ist. Über die elektrische Spannung konnten die Forscher das Qubit aber in einen viel schnelleren, dafür weniger stabilen Manipulationsmodus schalten. In diesem Zustand lassen sich mit den Qubits Informationen zügig verarbeiten.

Gezielte Kopplung einzelner Spins

In ihrem Experiment haben die Wissenschaftler die Qubits in Form von sogenannten Lochspins realisiert. Dabei handelt es sich um eine Leerstelle, die entsteht, wenn ein Elektron gezielt aus einem Halbleiter entfernt wird. Das entstehende Elektronenloch besitzt einen Spin, der zwei Zustände annehmen kann: hoch und runter – analog zu den Werten 0 und 1 bei klassischen Bits. Über die Abstimmung von Resonanzfrequenzen können diese Spins im neuen Qubit-Typ selektiv gekoppelt werden – zum Beispiel via ein Photon an andere Spins.

Diese Eigenschaft ist von grosser Bedeutung, setzt der Bau von leistungsfähigen Quantencomputern doch voraus, viele einzelne Qubits gezielt steuern und miteinander verschalten zu können. Die Fähigkeit zur Skalierung ist insbesondere nötig, um die Fehlerrate bei Quantenberechnungen zu verkleinern.

Ultraschnelle Spin-Manipulation

Mit dem elektrischen Schalter konnten die Forscher die Spin-Qubits auch in rekordhafter Geschwindigkeit manipulieren: «Der Spin lässt sich in nur einer Nanosekunde kohärent von oben nach unten drehen», so Studienleiter Prof. Dr. Dominik Zumbühl vom Departement Physik der Universität Basel. «Das würde fast eine Milliarde Schaltungen in einer Sekunde erlauben. Damit nähert sich die Spin-Qubit-Technologie den Taktraten der heutigen konventionellen Computer.»

Die Forscher verwendeten für ihre Experimente einen Halbleiter-Nanodraht aus Silizium und Germanium, der an der TU Eindhoven hergestellt wurde und dessen Durchmesser nur etwa 20 Nanometer beträgt. Entsprechend klein ist auch die Grösse des Qubits, wodurch im Prinzip Millionen oder sogar Milliarden von solchen Qubits auf einem Chip integriert werden können.

Originalpublikation:
Florian N. M. Froning, Leon C. Camenzind, Orson A. H. van der Molen, Ang Li, Erik P. A. M. Bakkers, Dominik M. Zumbühl, and Floris R. Braakman
Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality
Nature Nanotechnology (2021); doi: 10.1038/s41565-020-00828-6

Externer Link: www.unibas.ch

Aerobuster jagt herumfliegende Corona-Viren

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 12.11.2020

Forschende des KIT bauen preiswerten und leistungsstarken Apparat, der Krankheitserreger aus der Raumluft holen und inaktivieren kann

Aerosole spielen eine wichtige Rolle bei der Verbreitung von Covid 19. Beim Atmen, Sprechen oder Husten verbreiten sich die winzigen mit Corona-Viren beladenen Tröpfchen in Innenräumen. Besonders betroffen sind Einrichtungen wie Schulen, Kindergärten, Uni-Hörsäle, Arztpraxen oder Restaurants. Eine effektive, sichere und vor allem schnell verfügbare Lösung haben jetzt Wissenschaftlerinnen und Wissenschaftler am Karlsruher Institut für Technologie (KIT) entwickelt. Der Aerobuster ist einfach, kompakt, und kann sehr effektiv Viren und andere Krankheitserreger aus der Raumluft inaktivieren.

Aerosole und damit Viren verteilen sich in Windeseile im Raum und schweben über Stunden in der Luft. Werden sie von Menschen eingeatmet, können sich diese leicht mit Corona infizieren. „Erste Ergebnisse zeigen, dass mit unserem Aerobuster luftgetragene Modell-Viren zu fast 100 Prozent inaktiviert werden können. Dabei ist der Aerobuster mit einem hohen Luftdurchsatz extrem leistungsstark und hat deutlich niedrigere Anschaffungskosten als handelsübliche Luftreinigungsgeräte“, sagt Professor Horst Hahn, Leiter des Instituts für Nanotechnologie des KIT und einer der Erfinder des Aerobusters. Simulationen der Aerosolbewegungen in einem durchschnittlichen Klassenzimmer mit 20 Schülern belegen, dass durch den Aerobuster die Konzentration aktiver Viren in der Raumluft drastisch gesenkt und so die Ansteckungsgefahr dauerhaft erheblich vermindert werden kann.

Flexible Einsetzbarkeit und einfache Bauweise

„Das gilt natürlich auch für alle anderen Bereiche mit viel Publikumsverkehr, wie Krankenhäuser, Pflege- und Altenheime, Restaurants, Büros, Werkshallen oder öffentliche Verkehrsmittel sowie deren Wartebereiche“, sagt Hahn. Überall dort könne der Aerobuster eingesetzt werden, denn die Apparatur von der Größe einer Stehlampe sei leicht und könne platzsparend sowohl auf einem Ständer, an der Decke oder an der Wand montiert werden. „Die Vorrichtung besteht aus einem einfachen Metallrohr, einem Lüfter, wie er zur Kühlung von PCs eingesetzt wird, einem Heizmodul und einem Strahler, der ultraviolettes Licht einer bestimmten Wellenlänge aussendet“, so der Experte. „Durch das Rohr wird die Luft mittels eines Lüfters angesaugt, dann werden die Aerosole getrocknet und die Viren mit UV-C-Strahlung inaktiviert – eine lang bewährte Technik zur Desinfektion“, erläutert Dr. Jochen Kriegseis vom Institut für Strömungsmechanik. Der Luftdurchsatz des Geräts könne je nach Anwendungsbereich, Raumgröße und Zahl der Geräte im Raum angepasst werden und liege im Bereich zwischen 30 bis 100 Kubikmeter pro Stunde, je nach Leistungsfähigkeit des Lüfters. So können mit vier Aerobustern die typischen Luftmengen von kommerziellen Luftreinigern erreicht werden. Durch die Verteilung der Aerobuster im Raum sei die Wirkung sogar noch effektiver. „Die Abwärme kann zudem zum Heizen der Räume genutzt werden“, ergänzt Dr. Thomas Blank vom Institut für Prozessdatenverarbeitung und Elektronik. Der Aerobuster sei außerdem eine Investition in die Zukunft, denn er könne langfristig im Kampf gegen zukünftige Pandemien oder bei der jährlichen Grippewelle eingesetzt werden, so die drei Co-Erfinder des Geräts einhellig.

Große Stückzahlen könnten schnell verfügbar sein

Als nächsten Schritt wollen Hahn und seine Mitstreiter aus zahlreichen anderen Instituten des KIT 100 Prototypen bauen und diese selbst vor Ort weiter testen und optimieren. „Mit einem geeigneten Partner aus der Industrie könnten binnen weniger Wochen 10 000 Stück verfügbar sein“, schätzt Hahn, der auch auf Interesse und verstärkten Rückenwind aus der Politik hofft. Bei den Beschaffungskosten für die Materialien, aus denen der Aerobuster zusammengesetzt wird, rechnen die Experten mit rund 50 Euro. (mex)

Externer Link: www.kit.edu

Effiziente Gastrennung dank poröser Flüssigkeiten

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 11.08.2020

Neues Material eröffnet die Möglichkeit, beim Abtrennen von Rohstoffen für die Kunststoffindustrie bis zu 80 Prozent Energie einzusparen – Publikation in Nature Materials

Ein Forscher des Karlsruher Instituts für Technologie (KIT) hat gemeinsam mit Partnern „poröse Flüssigkeiten“ entwickelt: In einem Lösemittel schweben – fein verteilt – Nanoteilchen, die Gasmoleküle verschiedener Größen voneinander trennen. Denn die Teilchen besitzen leere Poren, durch deren Öffnungen nur Moleküle einer bestimmten Größe eindringen können. Die porösen Flüssigkeiten lassen sich direkt einsetzen oder zu Membranen verarbeiten, die Propen als Ausgangsstoff für den weit verbreiteten Kunststoff Polypropylen effizient aus Gasgemischen trennen. Die bislang übliche energieaufwendige Destillation könnte somit ersetzt werden. Über die Ergebnisse berichtet das Team in Nature Materials. (DOI: 10.1038/s41563-020-0764-y).

Propen, auch Propylen genannt, ist einer der wichtigsten Grundstoffe der chemischen Industrie, von dem jährlich weltweit rund 100 Millionen Tonnen verbraucht werden. Der daraus hergestellte „Massenkunststoff“ Polypropylen wird vor allem in Verpackungsmaterialien eingesetzt, aber beispielsweise auch in der Bau- oder Automobilbranche. Gewonnen wird Propen vor allem bei der Aufbereitung von Rohöl oder natürlichem Erdgas, wobei es durch Destillation von anderen Gasen separiert und gereinigt wird. „In der Fachliteratur geht man davon aus, dass die Gastrennung in der Petrochemie mit Hilfe von Membranen nur ein Fünftel der Energie kosten würde, die für Destillationen benötigt wird. Das bedeutet angesichts des hohen Propen-Bedarfs eine Einsparung riesiger Mengen des Treibhausgases CO2“, so Nachwuchsgruppenleiter Dr. Alexander Knebel vom Institut für Funktionelle Grenzflächen des KIT, der bis 2019 an der Leibniz Universität Hannover und in Saudi-Arabien forschte.

So könnte es für die petrochemische Industrie erstmals wirtschaftlich interessant werden, für die Abtrennung von Propen auf Membranen zu setzen. In diesem Projekt arbeitete Knebel mit Wissenschaftlerinnen und Wissenschaftler der Leibniz Universität Hannover, der King Abdullah University of Science and Technology und des Deutschen Instituts für Kautschuktechnologie zusammen.

Erstmals Metall-Organisches Netzwerk in Flüssigkeiten

Die Forschenden starteten bei ihrer Arbeit mit dem festen Material ZIF-67 (zeolitic imidazole framework), dessen Atome ein Metall-Organisches Netzwerk mit 0,34 Nanometer breiten Porenöffnungen bilden. Dabei veränderten sie Nanopartikel von ZIF-67 gezielt an der Oberfläche. „Dadurch gelang es uns, erstmals ein Metall-Organisches Netzwerk in Flüssigkeiten wie Cyclohexan, Cyclooctan oder Mesitylen fein zu verteilen, also zu dispergieren“, sagt Knebel. Die entstandene Dispersion nennen die Wissenschaftler poröse Flüssigkeit.

Für den Weg durch eine Säule, die mit der porösen Flüssigkeit gefüllt ist, braucht gasförmiges Propen deutlich länger als beispielsweise Methan. Denn Propen wird in den Poren der Nanopartikel gleichsam festgehalten, die kleineren Methanmoleküle hingegen nicht. „Diese Eigenschaft der Dispersion wollen wir künftig ausnutzen, um flüssige Trennmembranen zu erzeugen“, sagt Knebel.

Doch mit den porösen Flüssigkeiten lassen sich auch feste Trennmembranen mit besonders vorteilhaften Eigenschaften produzieren. So stellte das Team Membranen aus einem Kunststoff und dem chemisch modifizierten ZIF-67 her. Dabei konnte es den Anteil an modifiziertem ZIF-67 in der Membran bis auf 47,5 Prozent erhöhen, ohne dass diese mechanisch instabil wurde. Leiteten die Wissenschaftlerinnen und Wissenschaftler eine Gasmischung aus gleichen Teilen Propen und Propan über zwei hintereinandergeschaltete Membranen, so erhielten sie Propen mit einem Reinheitsgrad von mindestens 99,9 Prozent, obwohl sich die beiden Gasmoleküle nur um 0,2 Nanometer in ihrer Größe unterscheiden.

Für den praktischen Einsatz einer solchen Membran ist neben dem Trennvermögen entscheidend, wie hoch die Menge eines Gasgemisches ist, die in einer bestimmten Zeit hindurchgeleitet werden kann. Diese Durchflussrate war bei den neuen Membranen mindestens dreimal so hoch wie bei bisherigen Materialien. Knebel ist aufgrund der erzielten Trennwerte davon überzeugt, dass es sich für die petrochemische Industrie erstmals auszahlen würde, zur Gastrennung Membranen statt herkömmlicher Destillationsverfahren einzusetzen.

Entscheidend für die Leistungsfähigkeit der Membranen ist, dass möglichst viele Metall-Organische Partikel einheitlich im Kunststoff verteilt werden können und dass die Poren in den Nanopartikeln bei der Membranherstellung nicht durch Lösemittel verstopft sind, also gleichsam leer bleiben. „Beides konnten wir erreichen, weil wir nicht direkt feste Partikel in die Membran eingearbeitet haben, sondern den scheinbaren Umweg über die porösen Flüssigkeiten gegangen sind“, erläutert Knebel. (ffr)

Originalpublikation:
Knebel, A., Bavykina, A., Datta, S., Sundermann, L., Garzon-Tovar, L., Lebedev, Y., Durini, S., Ahmad, R., Kozlov, S. M., Shterk, G., Karunakaran, M., Carja, I. D., Simic, D., Weilert, I., Klüppel, M., Giese, U., Cavallo, L., Rueping, M., Eddaoudi, M., Caro, J., Gascon, J.: Solution processable metal-organic frameworks for mixed matrix membranes using porous liquids. Nature Materials, 2020. DOI: 10.1038/s41563-020-0764-y

Externer Link: www.kit.edu

Stark lichtabsorbierendes und regelbares Material entwickelt

Medienmitteilung der Universität Basel vom 10.08.2020

Physiker der Universität Basel haben durch die Schichtung verschiedener zweidimensionaler Materialien eine neue Struktur geschaffen, die Licht einer wählbaren Wellenlänge fast vollständig absorbiert. Sie erreichen dies mithilfe von zweilagigem Molybdändisulfid. Aufgrund dieser besonderen Eigenschaften der neuen Struktur ist eine Anwendung als optisches Bauteil oder als Quelle für einzelne Photonen denkbar, die in den Quantenwissenschaften eine wichtige Rolle spielen. Das Fachjournal «Nature Nanotechnology» hat diese Ergebnisse veröffentlicht.

Neue zweidimensionale Materialien sind zurzeit ein wichtiges Forschungsthema weltweit. Dabei sind van-der-Waals-Heterostrukturen, die sich aus einzelnen Lagen unterschiedlicher Materialien zusammensetzen und durch van-der-Waals-Kräfte aneinander haften, von besonderem Interesse. Die Wechselwirkungen zwischen den unterschiedlichen Schichten können zu ganz neuen Eigenschaften des Materials führen.

Zweilagig mit gewünschten Eigenschaften

Es gibt bereits van-der-Waals-Strukturen, die bis zu 100 Prozent des Lichts absorbieren. Einlagige Schichten aus Molybdändisulfid weisen ein solch hohes Absorptionsvermögen auf. Wenn das Licht absorbiert wird, verlässt ein Elektron seinen angestammten Platz im sogenannten Valenzband und hinterlässt dort ein positiv geladenes Loch. Das Elektron gelangt auf ein höheres Energieniveau, in das sogenannte Leitungsband, in dem es sich frei bewegen kann.

Das entstandene Loch und das Elektron ziehen sich durch die Coulombkraft gegenseitig an und es entstehen gebundene Elektronen-Loch-Paare, die auch bei Raumtemperatur stabil sind. Es ist jedoch nicht möglich, in dieser einlagigen Molybdändisulfidschicht zusätzlich einzustellen, welche Wellenlängen an Licht absorbiert werden. «Erst wenn zwei Lagen Molybdändisulfid verwendet werden, kommt die für Anwendungen wichtige Eigenschaft der Regulierbarkeit hinzu», erklärt Prof. Dr. Richard Warburton vom Departement Physik und Swiss Nanoscience Institute der Universität Basel.

Absorption und Regulierbarkeit

Warburton und seinem Team ist es in enger Zusammenarbeit mit Forschenden aus Frankreich gelungen, eine solche Struktur herzustellen. Die Physikerinnen und Physiker verwendeten eine zweilagige Schicht von Molybdändisulfid, die wie bei einem Sandwich unten und oben von einem Isolator und dem elektrischen Leiter Graphen umgeben ist.

«Wenn wir an die äusseren Graphenschichten dann eine Spannung anlegen, erzeugen wir ein elektrisches Feld, das die Absorptionseigenschaften der beiden Molybdändisulfidschichten beeinflusst», erklärt Nadine Leisgang, Doktorandin im Warburton-Team und Erstautorin der Studie. «Durch die Einstellung dieser angelegten Spannung können wir bestimmen, bei welchen Wellenlängen Elektronen-Loch-Paare in diesen Schichten gebildet werden.»

«Diese Arbeiten können einen neuen Ansatz zur Entwicklung optoelektronischer Geräte wie Modulatoren liefern», erläutert Richard Warburton. Modulatoren dienen dazu, die Amplitude eines Signals gezielt zu verändern. Möglich erscheint auch die Nutzung als Quelle für einzelne Photonen, die in den Quantentechnologien eine wichtige Rolle spielen könnte.

Originalbeitrag:
Nadine Leisgang, Shivangi Shree, Ioannis Paradisanos, Lukas Sponfeldner, Cedric Robert, Delphine Lagarde, Andrea Balocchi, Kenji Watanabe, Takashi Taniguchi, Xavier Marie, Richard J. Warburton, Iann C. Gerber and Bernhard Urbaszek:
Giant Stark splitting of an exciton in bilayer MoS2
Nature Nanotechnology (2020), doi: 10.1038/s41565-020-0750-1

Externer Link: www.unibas.ch

Die große Kunst der kleinen Löcher

Presseaussendung der TU Wien vom 03.08.2020

Wie kann man eine atomare Materialschicht perforieren und die darunterliegende unversehrt lassen? An der TU Wien entwickelte man eine Technik zur Bearbeitung von Oberflächen auf atomarer Skala.

Niemand kann eine Pistolenkugel so durch eine Banane schießen, dass die Schale durchlöchert wird, die Banane aber heil bleibt. Auf der Ebene einzelner atomarer Schichten ist ein solches Kunststück nun allerdings gelungen – an der TU Wien wurde eine Nano-Strukturierungs-Methode entwickelt, mit der man bestimmte Materialschichten extrem präzise perforieren und andere völlig unangetastet lassen kann, obwohl das Projektil alle Schichten durchdringt.

Möglich wird das mit Hilfe hochgeladener Ionen. Mit ihnen kann man die Oberflächen neuartiger 2D Materialsysteme gezielt bearbeiten, etwa um bestimmte Metalle auf ihnen zu verankern, die dann als Katalysatoren dienen können. Die neue Methode wurde nun im Fachjournal „ACS Nano“ publiziert.

Neue Materialien aus ultradünnen Schichten

Materialien, die aus mehreren ultradünnen Schichten zusammengesetzt sind, gelten als großes Hoffnungsgebiet der Materialforschung. Seit das Hochleistungsmaterial Graphen erstmals hergestellt wurde, das nur aus einer einzigen Lage von Kohlenstoffatomen besteht, werden immer wieder neue Dünnschicht-Materialien entwickelt, oft mit vielversprechenden neuen Eigenschaften.

„Wir untersuchten eine Kombination aus Graphen und Molybdän-Disulfid. Die beiden Materialschichten werden in Kontakt gebracht und haften dann durch schwache van der Waals-Kräfte aneinander“, sagt Dr. Janine Schwestka vom Institut für Angewandte Physik der TU Wien und Erstautorin der aktuellen Publikation. „Graphen ist ein sehr guter Leiter, Molybdän-Disulfid ist ein Halbleiter, die Kombination könnte etwa zur Herstellung neuartiger Datenspeicher interessant sein.“

Für bestimmte Anwendungen möchte man allerdings die Geometrie des Materials auf einer Skala von Nanometern gezielt bearbeiten – etwa um danach durch zusätzlich aufgebrachte Atomsorten die chemischen Eigenschaften zu verändern, oder auch um die optischen Eigenschaften der Oberfläche zu kontrollieren. „Dafür gibt es unterschiedliche Methoden“, erklärt Janine Schwestka. „Man kann die Oberflächen mit einem Elektronenstrahl verändern oder auch mit einem herkömmlichen Ionenstrahl. Bei einem Zweischicht-System hat man jedoch immer das Problem, dass der Strahl beide Schichten gleichzeitig verändert, auch wenn man eigentlich nur eine davon bearbeiten möchte.“

Zwei Sorten Energie

Wenn man mit einem Ionenstrahl eine Oberfläche bearbeitet, ist es normalerweise die Wucht des Aufpralls der Ionen, die das Material verändert. An der TU Wien hingegen verwendete man relativ langsame Ionen, die dafür aber gleich mehrfach elektrisch geladen sind. „Man muss hier zwei unterschiedliche Formen von Energie unterscheiden“, erklärt Prof. Richard Wilhelm. „Einerseits die kinetische Energie, die von der Geschwindigkeit abhängt, mit der die Ionen auf der Oberfläche einschlagen. Andererseits aber auch die potentielle Energie, die durch die elektrische Ladung der Ionen bestimmt wird. Bei herkömmlichen Methoden war die kinetische Energie entscheidend, uns hingegen ist die potentielle Energie besonders wichtig.“

Zwischen diesen beiden Energieformen gibt es einen wichtigen Unterschied: Während die kinetische Energie beim Durchdringen des Schichtsystems in beiden Materialschichten abgegeben wird, kann die potenzielle Energie sehr ungleich auf die Schichten verteilt werden: „Das Molybdän-Disulfid reagiert sehr stark auf die hochgeladenen Ionen“, sagt Richard Wilhelm. „Ein einzelnes Ion, das auf dieser Schicht eintrifft, kann dutzende oder hunderte Atome aus der Schicht entfernen. Zurück bleibt ein Loch, das man unter dem Elektronenmikroskop sehr gut sehen kann.“ Die Graphenschicht hingegen, auf die das Projektil unmittelbar danach trifft, bleibt unversehrt: Der Großteil der Potentialenergie ist dann bereits abgeben worden.

Dasselbe Experiment kann man auch umkehren, sodass das hochgeladene Ion zuerst auf das Graphen und dann erst auf die Molybdän-Disulfid-Schicht trifft. In diesem Fall bleiben beide Schichten unversehrt: Das Graphen liefert dem Ion in winzigen Sekundenbruchteilen die nötigen Elektronen um es elektrisch zu neutralisieren. Die Beweglichkeit der Elektronen im Graphen ist dabei derart hoch, dass auch der Einschlagsort sofort „abkühlt“. Das Ion durchquert die Graphenschicht ohne eine bleibende Spur zu hinterlassen. Danach kann es auch in der Molybdän-Disulfid-Schicht keinen großen Schaden mehr anrichten.

„Das liefert uns nun eine wunderbare neue Methode, Oberflächen gezielt zu manipulieren“, sagt Richard Wilhelm. „Wir können die Oberfläche mit Nano-Poren in die Oberflächen versehen, ohne das Trägermaterial darunter zu verletzen. Somit können wir geometrische Strukturen erzeugen, die bisher unmöglich waren.“ Man könnte auf diese Weise „Masken“ aus genau nach Wunsch perforiertem Molybdän-Disulfid herstellen, auf dem sich dann genau in den Löchern bestimmte Metallatome einlagern. Für die Kontrolle der chemischen, elektronischen und optischen Eigenschaften der Oberfläche ergeben sich dadurch völlig neue Möglichkeiten.

„Wir freuen uns sehr, dass unsere gute Vernetzung über das TU Doktoratskolleg TU-D wesentlich zu diesen Ergebnissen beitragen konnte“, sagt Janine Schwestka, die als Kollegiatin über 3 Jahre Mitglied im TU-D war. „Darüber hinaus zeichnet es den Wissenschaftsstandort Wien aus, dass wir mit kurzen Wegen Kontakte zur Universität Wien knüpfen konnten, um unsere gemeinsame Expertise zu vertiefen und uns methodisch zu ergänzen.“

Für den Aufbau der ersten ultraschnellen Ionenquelle der Welt wurde Richard Wilhelm 2019 mit dem START-Preis des FWF ausgezeichnet. (Florian Aigner)

Originalpublikation:
J. Schwestka et al., Atomic-Scale Carving of Nanopores into a van der Waals Heterostructure with Slow Highly Charged Ions, ACS Nano 2020

Externer Link: www.tuwien.at