Quanten-Einbahnstrasse in Nanodrähten aus topologischen Isolatoren

Medienmitteilung der Universität Basel vom 12.05.2022

Nanodrähte aus einem topologischen Isolator könnten dazu beitragen, hochstabile Informationseinheiten für künftige Quantencomputer zu entwickeln. In neuen Forschungsresultaten zu solchen Bauelementen erkennen Wissenschaftlerinnen und Wissenschaftler einen wichtigen Schritt, um das Potenzial dieser Technologie ausschöpfen zu können.

Nanodrähte, die mehr als 100-mal dünner sind als ein menschliches Haar, können wie eine Einbahnstrasse für Elektronen wirken, wenn sie aus einem besonderen Material bestehen, das als topologischer Isolator bezeichnet wird. Das berichtet ein internationales Team von Forschenden in der Fachzeitschrift «Nature Nanotechnology».

Die Entdeckung ermöglicht neue technologische Anwendungen von Bauelementen aus topologischen Isolatoren und ist ein wichtiger Schritt auf dem Weg zu sogenannten topologischen Quantenbits (Qubits). Von diesen erhofft man sich, dass sie Informationen für einen Quantencomputer robust kodieren können.

Um dieses Ergebnis zu erzielen, haben die Forschungsgruppen von Prof. Dr. Jelena Klinovaja und Prof. Dr. Daniel Loss an der Universität Basel eng mit Forschenden um Prof. Dr. Yoichi Ando an der Universität Köln zusammengearbeitet.

Aussen leitend, innen nicht

Topologische Isolatoren sind Materialien, bei denen eine Kombination aus Quantenmechanik und dem mathematischen Konzept der Topologie dazu führt, dass sie elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Topologische Isolatoren gelten als vielversprechende Kandidaten für künftige Technologien und für Anwendungen im Quantencomputing.

Die Forschenden konnten zeigen, dass unter den richtigen Umständen elektrische Ströme leichter in die eine als in die andere Richtung fliessen können – ein Vorgang, der als Gleichrichtung bezeichnet wird. Die Gleichrichtung bietet ein breites Spektrum an Anwendungen und bildet die Grundlage der meisten drahtlosen Technologien.

Gleichrichter, die beispielsweise in Smartphones zu finden sind, bestehen heute aus Halbleiterdioden. Im Unterschied dazu entsteht der Gleichrichtereffekt in den Nanodrähten aus topologischen Isolatoren durch quantenmechanische Effekte und ist ausserordentlich gut steuerbar.

«Quantenmechanische Gleichrichtereffekte entstehen für gewöhnlich durch eine sogenannte Spin-Bahn-Kopplung, die eine Mischung aus Quantenmechanik und Einsteins Relativitätstheorie ist. Diese seltsame Mischung führt normalerweise nur zu winzigen Gleichrichtereffekten», erklärt Erstautor Dr. Henry Legg, Georg H. Endress-Postdoktorand an der Universität Basel.

«Das Tolle an den Nanodrähten aus topologischen Isolatoren ist, dass wir im Wesentlichen die gleiche Physik künstlich erzeugen können, allerdings in einem viel grösseren Massstab», ergänzt Legg. «Dies führt zu einem Gleichrichtereffekt, der im Vergleich zu anderen Materialien wirklich riesig ist. Das ist auch einer der Aspekte, die topologische Isolatoren für Anwendungen im Quantencomputing so interessant machen.»

Robuste Quanteninformation

Quantencomputer versprechen eine noch nie dagewesene Rechenleistung, sind aber sehr anfällig für kleinste Störungen von aussen. Ein Vorschlag, um die empfindlichen Einheiten der Quanteninformation – die Qubits – zu schützen, sind topologische Qubits. Von ihnen wird erwartet, dass sie weitaus stabiler gegenüber äusseren Einflüssen sind. Dieser Schutz ergibt sich auch aus der Mathematik der Topologie, die den Eigenschaften der topologischen Isolatoren zugrunde liegt.

«Topologische Isolatoren gelten schon seit Langem als geeignete Kandidaten für topologische Quantencomputer», erklärt Jelena Klinovaja, die vor kurzem einen ERC Consolidator Grant für ihre Forschung zu topologischer Quantenmaterie erhalten hat. «Damit die Herstellung topologischer Qubits nun vorankommt, ist es entscheidend, dass wir Bauelemente aus topologischen Isolatoren genauestens kontrollieren können.»

«In unserer Studie haben wir nicht nur einen einzigartigen und sehr grossen Quanteneffekt entdeckt, sondern wir zeigen auch, dass wir sehr gut verstehen, was in diesen Systemen passiert. Es scheint, dass alle Schlüsseleigenschaften von topologischen Isolatoren vorhanden sind, um auf dem Weg zur Herstellung von topologischen Qubits weiterzukommen», kommentiert Klinovaja.

Originalpublikation:
Henry F. Legg et al.
Giant magnetochiral anisotropy from quantum confined surface states of topological insulator nanowires
Nature Nanotechnology (2022); doi: 10.1038/s41565-022-01124-1

Externer Link: www.unibas.ch

Nervenstimulation mithilfe implantierbarer Mini-Solarzellen

Pressemeldung der TU Graz vom 07.04.2022

Ein internationales Forschungsteam entwickelte und testete erfolgreich ein Konzept, bei dem Nerven mit Lichtpulsen stimuliert werden. Die Methode liefert erhebliche Vorteile für die Medizin und eröffnet eine Vielzahl an Anwendungsmöglichkeiten.

Die Technologie ermöglicht vollkommen neue Arten von Implantaten, die zum Anregen von Nervenzellen eingesetzt werden können und wurde in einer Gemeinschaftsleistung von Forschenden der TU Graz, der Med Uni Graz, der Universität Zagreb und dem CEITEC (Central European Institute of Technology) entwickelt. Basis dafür sind Farbpigmente aus der Lebensmittelindustrie, wie sie beispielsweise auch in organischen Solarzellen verwendet werden. Die Pigmente werden zu einer nur wenige Nanometer dünnen Schicht aufgedampft und wandeln dort – gleich wie in organischen Solarzellen – Licht in elektrische Ladung. Nervenzellen, die an der Folie anhaften (sie werden zunächst auf die Folie pipettiert und „wandern“ darauf, Anm.), reagieren auf diese Aufladung und feuern ihrerseits elektrische Impulse, mit denen sie andere Nervenzellen anregen.

In zellbiologischen Experimenten konnten die Forschenden diesen Prozess nun erstmals nachweisen. Gezüchtete Nervenzellen, die direkt auf der Folie wuchsen, wurden durch mehrere jeweils wenige Millisekunden kurze Lichtblitze mit einer Wellenlänge von 660 Nanometern (rotes Licht) angeregt und reagierten wie erhofft: Sie erzeugten sogenannte Aktionspotenziale, die wesentlich sind für die Kommunikation zwischen Nervenzellen. Die Ergebnisse ihrer elektrophysiologischen Messungen und Computersimulationen haben die Forschenden im Fachjournal „Advanced Materials Technologies“ veröffentlicht.

Paradigmenwechsel von Metallelektroden hin zu flexiblen Folien

Korrespondierende Autorin Theresa Rienmüller vom Institut für Health Care Engineering der TU Graz spricht von einem Paradigmenwechsel: „Im Gegensatz zur derzeit gängigen Elektrostimulation mittels Metallelektroden stellen unsere Pigmentfolien eine vollkommen neue Möglichkeit dar, Nervenzellen anzuregen.“ Die Folien sind so dünn, dass sie leicht implantiert werden können. Während der Behandlung würde die Nervenzellen dann mit rotem Licht bestrahlt werden, das ohne Schaden tief in den Körper dringen kann. „Wir denken, dass kurzfristige Behandlungen zu therapeutischen Langzeiteffekten führen können. Diese Experimente werden jetzt gerade erforscht“, gibt Rainer Schindl, Elektrophysiologe am Lehrstuhl für Biophysik der Med Uni Graz und Supervisor im Projekt einen Ausblick.

Zukünftig bräuchte es also keine aufwendige Verkabelung mehr, was nach invasiven Eingriffen wiederum die Infektionsgefahr reduziert, weil keine Schläuche oder Kabel mehr aus dem Körper nach außen führen müssen. Dank ihrer organischen Beschaffenheit sind die Pigmentfolien ausgesprochen gut verträglich, sowohl für menschliche als auch für tierische Zellen.

Vielfältige Einsatzgebiete

Anwendungsmöglichkeiten sehen die Forschenden bei schweren Hirnverletzungen. Hier kann die Stimulation von Nervenzellen den Heilungsprozess beschleunigen und Komplikationen vorbeugen, indem sie „ein Absterben der Nervenzellen verhindert“, so Erstautor Tony Schmidt vom Lehrstuhl für Biophysik der Med Uni Graz. Potenzial sehen die Forschenden auch bei anderen neurologischen Verletzungen oder in der Schmerztherapie. Außerdem könne die Technologie eingesetzt werden, um neuartige Netzhaut-Implantate zu erzeugen.

Bis die Pigmentfolie den Weg in die klinische Anwendung findet, ist noch weitere Forschung nötig. Diese erfolgt unter anderem im Rahmen eines derzeit laufenden und vom FWF geförderten Zukunftskollegs (Titel: LOGOS-TBI: Light-controlled OrGanic semicOnductor implantS for improved regeneration after Traumatic Brain Injury). Rienmüller, Schindl und Schmidt geben sich zuversichtlich, dass „schon in den nächsten beiden Jahren erste Pigmentfolien implantiert werden könnten.“ (Christoph Pelzl)

Originalpublikation:
Schmidt, T., Jakešová, M., Đerek, V., Kornmueller, K., Tiapko, O., Bischof, H., Burgstaller, S., Waldherr, L., Nowakowska, M., Baumgartner, C., M. Üçal, , Leitinger, G., Scheruebel, S., Patz, S., Malli, R., Głowacki, E. D., Rienmüller, T., Schindl, R., Light Stimulation of Neurons on Organic Photocapacitors Induces Action Potentials with Millisecond Precision. Adv. Mater. Technol. 2022, 2101159.

Externer Link: www.tugraz.at

Photokatalysatoren: Die besten Löcher der Welt

Presseaussendung der TU Wien vom 15.02.2022

Mit einer schwammartigen Lochstruktur auf Nanometer-Skala, die kleinen Molekülen Durchlass gewährt, konnte eine rekordverdächtige chemische Reaktivität erzielt werden.

Katalysatoren sind oft feste Materialien, deren Oberfläche in Kontakt mit Gasen oder Flüssigkeiten kommt und dadurch bestimmte chemische Reaktionen ermöglicht. Das bedeutet allerdings: Alle Atome des Katalysators, die sich nicht an der Oberfläche befinden, erfüllen keinen echten Zweck. Daher versucht man, extrem poröse Materialien herzustellen, mit einer möglichst großen Oberfläche pro Gramm Katalysatormaterial.

An der TU Wien wurde nun in Zusammenarbeit mit anderen Forschungsgruppen eine neue Methode entwickelt, um hochaktive schwammartige Strukturen mit einer Porosität auf Nanometer-Skala herzustellen. Der entscheidende Durchbruch gelang durch ein zweistufiges Verfahren: Man verwendet metallorganische Gerüstverbindungen, die bereits viele winzige Löcher enthalten, und erzeugt in diesen Materialien dann zusätzlich noch eine weitere Sorte von Löchern, die dann als Hochgeschwindigkeits-Verbindungen für Moleküle dienen. Dadurch gelang es, bisherige Aktivitäts-Rekorde bei der Aufspaltung von Wasser in Wasserstoff und Sauerstoff zu brechen. Die Ergebnisse wurden nun im Fachjournal „Nature Communications“ publiziert.

Ein Netz auf Nanometer-Skala

„Metallorganische Gerüstverbindungen sind eine sehr spannende Klasse multifunktionaler Materialien“, sagt Shaghayegh Naghdi, die Erstautorin des neuen Papers. „Sie bestehen aus kleinen Metalloxid-Clustern, die durch kleine organische Moleküle miteinander verbunden sind, und somit extrem poröse Netzwerke ergeben.“ Auf den ersten Blick sieht die Verbindung aus wie ein festes Material, erst auf der Nanoskala zeigt sich die offene Struktur.

Solche metallorganischen Gerüstverbindungen (Metal-organic frameworks, MOFs) weisen mit bis zu 7000 m² pro Gramm die größte bekannte spezifische Oberfläche auf. Das macht sie zu optimalen Materialien für die Trennung und Aufbewahrung von Gasen, für die Reinigung von Wasser oder auch für den Transport von Medikamenten im Körper. Außerdem sind sie äußerst vielversprechende Kandidaten für Photo- und Elektrokatalyse – wie etwa die Aufspaltung von Wasser in Sauerstoff und Wasserstoff unter dem Einfluss von Licht.

Eine neue Sorte Löcher

„Das große Problem war bisher, dass die Poren dieser Materialien einfach zu klein sind, um eine effiziente Katalyse zu ermöglichen“, sagt Prof. Dominik Eder, der an der TU Wien die Forschungsgruppe für molekulare Materialchemie leitet. „Wir sprechen hier von extrem dünnen Poren, mit einem Durchmesser von weniger als einem Nanometer. Das ist ungefähr die Größe eines kleinen Moleküls. Es dauert zu lange, bis die Moleküle durch diese Poren die aktiven Stellen des Katalysators erreichen, und das bremst den katalytischen Prozess insgesamt deutlich ab.“

Daher machte sich die Forschungsgruppe die Tatsache zunutze, dass MOFs strukturell sehr flexibel sind: Sie können aus unterschiedlichen Molekülen zusammengesetzt werden. „Wir verwendeten zwei ähnliche aber chemisch unterschiedliche organische Verbindungsmoleküle und stellten somit eine Hybrid-Struktur her“, sagt Alexey Cherevan. „Die beiden organischen Moleküle reagieren unterschiedlich empfindlich auf Hitze. Daher ist es möglich, einen der beiden Liganden selektiv zu entfernen“, erklärt Shaghayegh Naghdi. So können zusätzliche Arten von Poren mit Durchmessern von bis zu 10 Nanometern in die poröse Struktur eingebaut werden: Zu den von Anfang an vorhandenen Poren, die man sich wie Löcher in Schweizer Käse vorstellen kann, kommen nun rissartige Verbindungen hinzu, die als Schnellverbindungen für Moleküle dienen.

Sechsmal so gut wie bisher

Gemeinsam mit Teams der Universität Wien und des Technion in Israel wurde das neue Material im Detail charakterisiert. Dabei zeigte sich, dass es bisherige Katalysatoren tatsächlich bei weitem übertrifft: Die katalytische Aktivität bei der photokatalytischen Produktion von Wasserstoff, also der Wasser-Aufspaltung unter Lichteinfluss, ist sechsmal so hoch wie bei bisherigen metallorganischen Gerüstverbindungen. Somit gehört das neue Material zu den effektivsten Photokatalysatoren für Wasserstoffproduktion, die es überhaupt gibt.

Dieser Erfolg ist allerdings bloß der erste Schritt: Ideen für mögliche Anwendungen gibt es viele. Größere Poren in solchen Materialien könnten sich ideal für die Adsorption, Speicherung oder auch Umwandlung von größeren Molekülen eignen, etwa im Bereich der Medizin oder der Abwasserreinigung. In Anwendungen aus Photo- und Elektrochemie könnten sich ganz neue Möglichkeiten eröffnen: „Wenn man selektiv bestimmte Liganden entfernt, bleiben unsaturierte Metalle zurück, die dann den chemischen Reaktionsmechanismus stark beeinflussen können“, erklärt Dominik Eder. „Wir erwarten, dadurch selektivere Katalysatoren für komplexere Prozesse herstellen zu können.“

Diese Hypothese wird derzeit getestet. Unter anderem versucht man, auf diese Weise CO2 in synthetische Treibstoffe umzuwandeln. Aus der chemischen Industrie gibt es auch großes Interesse daran, durch solche Katalysatoren Prozesse, die heute mit viel Energieaufwand bei hohen Temperaturen durchgeführt werden, auf umweltfreundlichere Weise bei niedrigeren Temperaturen ablaufen zu lassen. (Florian Aigner)

Originalpublikation:
S. Naghdi et al., Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis, Nature Communications volume 13, 282 (2022).

Externer Link: www.tuwien.at

Lotuseffekte lasern

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.02.2022

In Oberflächen lassen sich jetzt im Handumdrehen Nano- und Mikrostrukturen per Laser einarbeiten. Die Technologie wird von der jungen Dresdner Firma Fusion Bionic entwickelt und vertrieben – einer Ausgründung aus dem Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS. Bei der Laserstrukturierung sind der Fantasie keine Grenzen gesetzt. Ihr Vorteil: Sie ist schnell und deutlich vielseitiger als Beschichtungen.

Oberflächen von Produkten lassen sich durch viele verschiedene Effekte veredeln. Beim Lotuseffekt zum Beispiel sorgt eine Mikrostruktur dafür, dass Schmutz nicht anhaftet, sondern beim nächsten Regen einfach abgewaschen wird. Die feinen Rippeln der Haifischhaut wiederum verbessern die Strömung an der Außenseite von Flugzeugen und Schiffen, was Treibstoff spart. Bislang werden viele solcher naturinspirierter Effekte erzeugt, indem man die Oberfläche beschichtet oder mit Folien beklebt, in die Mikrostrukturen eingeprägt sind. Doch Beschichtungen und Folien können sich abnutzen, sodass der gewünschte Effekt mit der Zeit nachlässt. Forscher am Fraunhofer IWS und an der Technischen Universität Dresden haben in den vergangenen Jahren eine alternative Methode zur Marktreife gebracht, mit der man Oberflächen dauerhaft mit Nano- und Mikrostrukturen versehen kann: die Direkte Laserinterferenz-Strukturierung (Direct Laser Interference Patterning, DLIP). Bei diesem Verfahren wird die Nano- oder Mikrostruktur per Laser direkt in die Oberfläche eingeschrieben, um biomimetische Effekte zu erzeugen. Bemerkenswert ist die hohe Geschwindigkeit des Verfahrens, das aktuell pro Minute eine Fläche von bis zu einem Quadratmeter bearbeiten kann. Die neue Technologie ist so vielversprechend, dass in diesem Jahr die Firma Fusion Bionic aus dem Fraunhofer IWS ausgegründet wurde. Fusion Bionic entwickelt und vertreibt DLIP-Systemlösungen für die biomimetische Oberflächenveredelung, führt im Auftrag von Kunden aber auch selbst Oberflächenfunktionalisierungen durch.

Schnell genug für große Flächen

»Im Vergleich zum Beschichten oder Bekleben galt der Laser lange Zeit als viel zu langsam, um große Oberflächen zu veredeln«, sagt Fusion-Bionic-Geschäftsführer Dr. Tim Kunze, der das Unternehmen zusammen mit drei Partnern gegründet hat. »Mit dem DLIP-Verfahren aber haben wir den Schritt zur schnellen Bearbeitung großer Flächen geschafft.« Klassischerweise stellt man sich einen Laserstrahl als einen einzelnen feinen Strahl vor. Wollte man damit wie mit einer Nadel ein Muster in eine Oberfläche einarbeiten, verlöre man viel zu viel Zeit. Das DLIP-Verfahren funktioniert anders. Dabei wird zunächst ein Laserstrahl in mehrere Strahlenbündel aufgeteilt. Um ein Muster in die Oberfläche einzubringen, werden die vielen Laserstrahlen kontrolliert überlagert, sodass ein sogenanntes Interferenzmuster entsteht. Dieses Muster lässt sich dabei auf einer größeren Fläche verteilen, was eine großflächige und schnelle Bearbeitung möglich macht.

Das Prinzip der Interferenz ist schnell erklärt: Licht breitet sich wellenförmig aus. Überlagert man zwei Lichtstrahlen, können sich ihre Wellentäler und Wellenberge gegenseitig auslöschen oder verstärken. Dort, wo Licht auf die Oberfläche trifft, wird durch die Laserenergie Material abgetragen beziehungsweise verändert. Die dunklen Bereiche bleiben unberührt. »Wir können damit nahezu alle erdenklichen Strukturen herstellen«, sagt Tim Kunze. »Lotuseffekt, Haifischhaut, Mottenauge und vieles mehr.«

Noch zu seiner Zeit am Fraunhofer IWS entwickelte sein Team in enger Zusammenarbeit mit Prof. Andrés Lasagni von der Technischen Universität Dresden mit Airbus eine Mikrostruktur, die während des Flugs verhindert, dass sich Eis auf den Tragflächen anlagert. Bei herkömmlichen Jets wird das verhindert, indem warme Abluft aus den Triebwerken in die Tragflächen geleitet wird. Damit geht den Triebwerken allerdings Energie verloren. Das Projekt hat ergeben, dass sich der Energiebedarf eines Eisschutzsystems um 80 Prozent verringert, wenn die Tragfläche zusätzlich über eine DLIP-Mikrostruktur verfügt. »Vor allem auch für künftige elektrisch betriebene Flugzeuge wäre das eine Lösung, weil bei diesen keine Abwärme aus den Triebwerken zur Verfügung steht«, sagt Tim Kunze. In anderen Projekten wurden Implantate wie etwa Hüftgelenkprothesen und Zahnimplantate bearbeitet, sodass ihre Oberflächen besonders biokompatibel sind oder antibakteriell wirken.

Förderung durch Fraunhofer-AHEAD-Programm

Den Anstoß zur DLIP-Entwicklung gab vor gut zehn Jahren der Laserexperte Prof. Andrés Fabián Lasagni, als er von der Universität Saarbrücken ans Fraunhofer IWS wechselte und die Technik in den Fokus nahm. DLIP war damals ein eher akademisches Grundlagenthema. Lasagni, der heute die Professur für die Laserstrukturierung großer Oberflächen an der TU Dresden inne hat, war aber klar, dass darin ein großes Potenzial steckte. Er baute am Fraunhofer IWS ein leistungsstarkes Team auf, das unter seinem Nachfolger Tim Kunze ab 2017 weiter anwuchs. Aufbauend auf Lasagnis wegweisenden Vorarbeiten entwickelten beide zusammen industrietaugliche DLIP-Optiken, die mittlerweile weltweit bei zahlreichen Pilotkunden installiert wurden. Ab 2020 wurde deutlich, dass die Kommerzialisierung der DLIP-Technologie auf eine neue Stufe gehoben werden muss. »Unsere Lösungen bieten einen völlig neuen Freiheitsgrad bei der Oberflächengestaltung mit einer noch nie dagewesenen Geschwindigkeit, was neuartige Produkte und Prozesse ermöglicht«, erläutert Tim Kunze.

Durch Förderung im Rahmen des AHEAD-Programms, mit dem die Fraunhofer-Gesellschaft Spin-offs ermöglicht, wurde jetzt Fusion Bionic gegründet. »Es gibt einen großen Bedarf für die Funktionalisierung von Oberflächen«, resümiert Lasagni. »Jede Branche hat da ihre eigenen Herausforderungen, sei es die Haftung von Eiscreme an Behälterwänden oder die Verringerung von Reibung. Insofern wird uns die Arbeit so schnell nicht ausgehen.«

Um die Entwicklung von innovativen Oberflächen zu beschleunigen, arbeitet Fusion Bionic mit Unterstützung seines Investors Avantgarde Labs Ventures an einer Vorhersageplattform auf der Grundlage Künstlicher Intelligenz. Mit dieser sollen fortschrittliche Laserfunktionalitäten realisiert werden. Parallel wird am Fraunhofer IWS eine »AI Test Bench« aufgebaut, ein Multisensor-Teststand zur Laserbearbeitung, auf dem sich mithilfe von Künstlicher Intelligenz die optimale Oberflächenstruktur für jedes Problem schnell vorhersagen und erzeugen lässt.

Zu den Gründungsmitgliedern von Fusion Bionic gehören Dr. Sabri Alamri, Laura Kunze, Dr. Tim Kunze und Benjamin Krupop.

Externer Link: www.fraunhofer.de

Optik und Photonik: Dünnster optischer Diffusor für neue Anwendungen

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 22.12.2021

Neuartige optische Komponente auf der Basis von Metamaterialien aus Silizium-Nanopartikeln – Publikation in Advanced Materials

Die Miniaturisierung von optischen Komponenten ist eine Herausforderung in der Photonik. Forschenden des Karlsruher Instituts für Technologie (KIT) und der Friedrich-Schiller-Universität Jena ist es gelungen, einen Diffusor – eine optische Streuscheibe – auf der Basis von Silizium-Nanopartikeln zu entwickeln. Damit können sie Richtung, Farbe und Polarisation von Licht gezielt steuern. Anwendungen kann die neuartige Technologie etwa in transparenten Bildschirmen oder in der Augmented Reality finden. Über ihre Ergebnisse berichten die Forschenden in der Zeitschrift Advanced Materials. (DOI: 10.1002/adma.202105868)

Die Photonik, die Wissenschaft von der Erzeugung, Ausbreitung und Detektion von Licht, gilt als Treiber bei der Entwicklung von Technologien für das 21. Jahrhundert. Eine Herausforderung für die Forschung besteht darin, traditionelle optische Komponenten wie Linsen, Spiegel, Prismen oder Diffusoren zu miniaturisieren oder ihre Merkmale um Eigenschaften zu ergänzen, die erst durch die Nanophotonik zugänglich sind. Dies führt zu neuen Anwendungen wie miniaturisierten Sensoren in autonom fahrenden Fahrzeugen oder integrierten photonischen Quantencomputern.

Diffusoren sind Streuscheiben, die einfallendes Licht mithilfe kleiner Streuzentren beeinflussen und etwa gleichmäßig in alle Richtungen verteilen. Um eher massive traditionelle Diffusoren zu ersetzen, brachten Forschende des KIT und der Friedrich-Schiller-Universität Jena eine Schicht spezieller Silizium-Nanopartikel auf ein Substrat auf. Dabei verteilten sie die Partikel in einer ungeordneten, aber sorgfältig geplanten Weise. Die Nanopartikel sind hundertmal dünner als ein menschliches Haar und wechselwirken mit bestimmten einstellbaren Wellenlängen des Lichts. Richtung, Farbe und Polarisation von Licht können mit diesen Meta-Oberflächen gezielt gesteuert werden.

„Sweet Spot“ für die perfekte Diffusion

„Das Forschungsteam ging zwei grundlegenden Fragen nach: Wie stark können wir den optischen Diffusor verkleinern und wie genau muss die Unordnung in der räumlichen Struktur der Nanopartikel sein?“, so Aso Rahimzadegan, Doktorand am KIT und einer der beiden Hauptautoren der Studie. „Bemerkenswerterweise haben wir einen ‚Sweet Spot‘ für die Unordnung gefunden, der zu einer perfekten Diffusion führt.“ Dennis Arslan, Doktorand an der Universität Jena und ebenfalls Hauptautor dieser Publikation, erläutert: „Wir haben Meta-Oberflächen-Diffusoren hergestellt, die, wenn man sie mit bloßem Auge betrachtet, aus allen Richtungen gleich hell erscheinen. Das Bemerkenswerte daran ist, dass dies alles in einer Schicht mit einer Dicke von nur 0,2 Mikrometern geschieht. Die Diffusoren streuen Licht einer bestimmten Farbe und lassen andere Wellenlängen ungestört passieren.” Diese Eigenschaft sei beispielsweise für wissenschaftliche Anwendungen nützlich, aber auch Konsumartikel wie transparente Bildschirme, die von beiden Seiten betrachtet werden könnten, holografische Projektoren oder Augmented-Reality-Headsets profitierten davon. Nur durch die Kombination experimenteller und theoretischer Expertise beider Partner war es möglich, Antworten auf die anspruchsvollen Fragen zu finden.

Die Forschung, die zu diesen Ergebnissen führte, wurde in dem von der Deutschen Forschungsgemeinschaft geförderten Schwerpunktprogramm „Tailored Disorder“ durchgeführt und war am KIT in das Exzellenzcluster 3D Matter Made to Order integriert. (jh)

Externer Link: www.kit.edu