Forscher entwerfen Datenbus für Quantencomputer

Medieninformation der Universität Innsbruck vom 06.11.2017

Die Quantenwelt ist sehr fragil. Fehlerkorrekturcodes helfen, Quanteninformation vor Störungen zu schützen. Innsbrucker Quantenphysiker haben nun ein Verfahren entwickelt, mit dem unterschiedlich kodierte Bauteile wie Prozessor und Speicher miteinander verbunden werden können. Mit der in der Fachzeitschrift Nature Communications präsentierten Methode kann ein Datenbus für Quantencomputer konstruiert werden.

Quantencomputer werden in Zukunft Rechenaufgaben bewältigen, an denen herkömmliche Computer scheitern. Weil Objekte in der Quantenwelt aber sehr sensibel auf Störungen reagieren, sind der Umsetzung heute noch Grenzen gesetzt. Obwohl die Systeme mit hohem Aufwand gegenüber Umwelteinflüssen abgeschirmt werden, können bisher im Labor nur kleine Protoypen für Quantencomputer gebaut werden. Die Fehleranfälligkeit lässt sich reduzieren, indem die Quanteninformation nicht in einem einzelnen Quantenteilchen gespeichert, sondern in einer größeren Anzahl an Quantenobjekten kodiert wird. Diese logischen Quantenbits sind gegenüber Störungen unempfindlicher. In den vergangenen Jahren haben Theoretiker viele verschiedene Fehlerkorrekturcodes entwickelt und diese für unterschiedliche Aufgaben optimiert. Physiker Hendrik Poulsen Nautrup und Hans Briegel vom Institut für Theoretische Physik der Universität Innsbruck und Nicolai Friis, nun am Institut für Quantenoptik und Quanteninformation in Wien, haben ein Verfahren gefunden, mit dem Quanteninformation zwischen unterschiedlichen, kodierten Systemen ausgetauscht werden kann.

Schnittstelle zwischen Prozessor und Speicher

Wie klassische Rechner kann auch der Quantencomputer der Zukunft aus unterschiedlichen Bauteilen bestehen. Schon heute existieren im Labor erste Quantenprozessoren und Quantenspeicher. Für sie können unterschiedliche Verfahren eingesetzt werden, um logische Quantenbits zu kodieren: für Quantenprozessoren zum Beispiel sogenannte „Color“ Codes und für Quantenspeicher „Surface“ Codes. „Damit diese beiden Systeme quantenmechanisch miteinander sprechen können, müssen sie verschränkt werden“, sagt Doktorand Hendrik Poulsen Nautrup. „Wir haben ein Verfahren entwickelt, mit dem unterschiedlich kodierte Quantensysteme verbunden werden können.“ Dabei handelt es sich um lokale Eingriffe an einzelnen Elementen des kodierten Quantenbits. Die Wissenschaftler sprechen auch von „Gitterchirurgie“, mit der Systeme wie ein Quantenspeicher und ein Prozessor verschränkt werden können. Nachdem die beiden Systeme vorübergehend miteinander „vernäht“ wurden, kann die Quanteninformation vom Prozessor in den Speicher oder umgekehrt geladen werden. „Ähnlich wie ein Datenbus im klassischen Computer, kann diese Methode verwendet werden, um die Bauteile eines Quantencomputers miteinander zu verbinden“, erläutert Poulsen Nautrup.

Das neu entwickelte Verfahren soll demnächst im Labor umgesetzt werden und stellt einen weiteren Schritt auf dem Weg zu einem universellen Quantencomputer dar. Die Arbeit entstand im Rahmen des Doktoratskolleg Atoms, Light, and Molecules an der Universität Innsbruck und wurde vom österreichischen Wissenschaftsfonds und der Templeton World Charity Foundation finanziell unterstützt.

Publikation:
Fault-tolerant interface between quantum memories and quantum processors. Hendrik Poulsen Nautrup, Nicolai Friis, and Hans J. Briegel. Nature Communications 2017 DOI: 10.1038/s41467-017-01418-2

Externer Link: www.uibk.ac.at

Sprühtrocknung: Wirkstoffe passgenau verkapseln

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.09.2017

Instant-Kaffee oder Milchpulver werden mittels Sprühtrocknung hergestellt. Fraunhofer-Forscher haben das Verfahren jetzt so angewandt, dass sich auch unlösliche Komponenten problemlos zu Kern-Schale-Partikeln verarbeiten lassen. Die neue Methode hilft dabei, Wirkstoffkonzentrationen bei medikamentösen Behandlungen zu senken.

Die Verkapselung von Wirkstoffen dient in der Kosmetik oder Pharmazie unter anderem dazu, Substanzen vor äußeren Einflüssen wie zum Beispiel aggressiver Magensäure zu schützen. Mit Hilfe der Verkapselung lässt sich aber auch die Freisetzung der Wirkstoffe im Körper steuern: Sie entweichen je nach Durchlässigkeit des Schalenmaterials nicht auf einmal, sondern nach und nach. Weil so geringere Dosen freigesetzt werden – diese dafür aber kontinuierlich – ist die medikamentöse Therapie besser verträglich und außerdem einfacher handhabbar. Denn anstatt dreimal täglich eine Tablette zu nehmen, reicht unter Umständen eine.

Unlösliche Stoffe sind problematisch

Um den Wirkstoff zu verkapseln, wird er zunächst in einer Flüssigkeit gelöst und mit dem Schalenmaterial vermischt. Danach wird die Lösung in das Zentrum einer Düse geleitet, wo Druckluft mit hoher Geschwindigkeit aus einem Ringkanal strömt. Aufgrund des Drucks wird die Lösung in feine Tröpfchen zerstäubt und anschließend in einen Trocknungszylinder gesprüht. Die Flüssigkeit verdampft und die Kern-Schale-Partikel bleiben als feines Pulver zurück.

Das Problem: Unlösliche Stoffe lassen sich nur schwer mit anderen Materialien vermischen. Das schränkt die Auswahl an Schalenmaterialien ein, die sich zur Herstellung der Partikel verwenden lassen.

Dreistoffdüse ermöglicht beliebige Materialkombinationen

»Wir haben daher für diesen Zweck eine Dreistoffdüse im Sprühverfahren eingesetzt. Damit ist es möglich, zwei Stoffe getrennt voneinander in die Düse einfließen zu lassen. Aufgrund der Scherkräfte vermischen sich die Substanzen an der Düsenöffnung und werden dann gemeinsam zerstäubt«, sagt Michael Walz, der zusammen mit Dr. Achim Weber das neuartige Verfahren am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart etabliert und optimiert hat.

So lassen sich beliebige Materialien kombinieren und die Freisetzung der Wirkstoffe individuell steuern. »Je nach Stoff, Konzentration der Lösung, Volumenstrom der Flüssigkeiten, Trocknungstemperatur oder Druck, der an der Düse angelegt wird, können wir die Partikelgröße und die Effizienz der Verkapselung verändern. Damit sind wir in der Lage, auf alle Kundenwünsche zu reagieren und maßgeschneiderte Lösungen zu entwickeln«, sagt Weber.

Neben der Kosmetik- und Pharmaindustrie ist das neue Verfahren zur Verkapselung von Wirkstoffen auch für die Düngemittel- oder Lebensmittelherstellung interessant.

Externer Link: www.fraunhofer.de

Tests der Quantenmechanik mit massiven Teilchen

Pressemeldung der Universität Wien vom 11.08.2017

Erste Obergrenze für den Einfluss von Vielpfadinterferenz

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Das steht im Gegensatz zu klassischen Teilchen, die, wie eine Murmel, immer nur einem dieser Pfade folgen können. Die Wahrscheinlichkeit, dass das quantenmechanische Teilchen an einer Stelle auftrifft, folgt aus allen möglichen Kombinationen von Pfadpaaren, auch wenn die Welle eine größere Anzahl an Pfaden nutzt. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal „Science Advances“ publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit dieser Regeln mit unserer alltäglichen Erfahrung motiviert ForscherInnen seit langem zu einer Suche nach minimalen Änderungen der Quantenmechanik, die es erlauben den Übergang von der Quantenwelt in die klassische zu beschreiben. Ein möglicher Indikator für solch einen Übergang ist Vielpfadinterferenz. In der Standardquantenmechanik kann man jedes Interferenzmuster über die Kombination aller möglichen Pfadpaare nachbilden, unabhängig davon, wie viele Pfade die Welle tatsächlich nutzt. Jedes verbleibende Muster wäre die Folge von Vielpfadinterferenz und könnte auf neue physikalische Phänomene hinweisen.

Während bisherige Tests mit Licht oder Mikrowellenstrahlung durchgeführt wurden, stellt das Experiment der ForscherInnen aus Wien und Tel Aviv den ersten dezidierten Test mit massiven Teilchen dar. „Die Idee ist schon seit mehr als 20 Jahren bekannt. Doch erst jetzt haben wir die technologischen Möglichkeiten solch ein Experiment mit massiven Teilchen in die Tat umzusetzen“, sagt Christian Brand, einer der Hauptautoren der Studie.

Materiewellenbeugung an einem Mehrfachspalt

In ihren Experimenten an der Universität Wien untersucht die Gruppe für Quantennanophysik um Markus Arndt die Welleneigenschaften von komplexen organischen Molekülen. Um die Moleküle in solch einen nicht-klassischen Zustand zu überführen, wurden sie von einer wenige Mikrometer großen Quelle im Hochvakuum verdampft, wo sie sich ungehindert ausbreiteten. Nach einer gewissen Zeit waren die Moleküle delokalisiert. Das heißt, dass es unmöglich war festzustellen, wo sie sich genau befanden. Sobald ein delokalisiertes Molekül auf ein Gitter traf, war es so, als ob es mehrere Spalte gleichzeitig passierte. Das resultierende Interferenzmuster wurde an einem Detektor aufgenommen und sorgsam ausgewertet. Durch den Vergleich der Beugungsbilder von Einzel-, Doppel- und Dreifachspalten gelang es den WissenschafterInnen Höchstgrenzen für den Anteil von Vielpfadinterferenz anzugeben.

Nanofabrikation: eine wegweisende Technologie

Eine wesentliche Komponente des Experiments war die Maske – eine ultradünne Membran aus Kohlenstoff, in die die verschiedenen Schlitze geschrieben wurden. Sie wurde entworfen und hergestellt von Yigal Lilach und Ori Cheshnovsky an der Universität von Tel Aviv. Die Anforderungen an die Maske waren enorm. So mussten die Abweichungen der Schlitzparameter zu der Größe der Moleküle vergleichbar sein, die an ihnen gebeugt wurden. An diesen Strukturen wurden dann in Wien die Interferenzexperimente durchgeführt. Insgesamt konnte ein großer Bereich an molekularen Geschwindigkeiten in den Experimenten untersucht werden. Dabei hat sich herausgestellt, dass alle untersuchten Geschwindigkeiten den Vorhersagen der Quantenmechanik mit einer maximalen Unsicherheit von einem Prozent folgten. „Das ist der erste explizite Test dieser Art, der mit massiven Teilchen durchgeführt wurde“, erklärt Joseph Cotter, der Erstautor dieser Publikation. „Frühere Studien haben wegweisende Experimente mit Licht und Mikrowellenstrahlung durchgeführt. Mit diesem Experiment gelang es uns erstmals Obergrenzen für den Anteil von Vielpfadinterferenz mit Materiewellen festzulegen.“

Originalpublikation:
In search of multipath interference using large molecules
J. P. Cotter, C. Brand, C. Knobloch, Y. Lilach, O. Cheshnovsky, M. Arndt. In: Science Advances 3, e1602478 (2017)
Doi: 10.1126/sciadv.1602478

Externer Link: www.univie.ac.at

Für Quanten ist es nie zu kalt

Presseaussendung der TU Wien vom 27.07.2017

Die merkwürdigen Eigenschaften sogenannter „quantenkritischer Punkte“ am absoluten Temperatur-Nullpunkt gehören immer noch zu den großen Rätseln der Wissenschaft.

Normalerweise muss sich die Temperatur ändern, damit man einen Phasenübergang beobachten kann: Es wird kalt, und eine Flüssigkeit gefriert. Ein Metall wird heiß und verliert seine magnetischen Eigenschaften. Doch es gibt auch Phasenübergänge, bei denen sich die Temperatur nicht ändern kann, weil sie direkt am absoluten Temperatur-Nullpunkt stattfinden. Man spricht dann von „quantenkritischen Punkten“ – sie werden seit Jahren intensiv erforscht, halten aber noch immer große Rätsel der Quantenphysik bereit.

So gibt es etwa bis heute kein umfassendes theoretisches Modell für die Hochtemperatur-Supraleitung, die vermutlich mit den quantenkritischen Punkten eng zusammenhängt – dabei könnte ein solches Modell viele nützliche technische Anwendungen hervorbringen. Thomas Schäfer, Karsten Held und Alessandro Toschi vom Institut für Festkörperphysik der TU Wien arbeiten an einem besseren Verständnis dieser Phänomene, neue Ideen dazu veröffentlichten sie nun im Journal „Physical Review Letters.“

Fluktuationen: Alles, was wackeln kann, wackelt

„Normalerweise sind thermische Fluktuationen für Phasenübergänge verantwortlich“, erklärt Thomas Schäfer. „Auf ganz zufällige Weise beginnen zum Beispiel einzelne Teilchen zu wackeln oder sich zu drehen. Je höher die Temperatur, umso ausgeprägter werden diese Fluktuationen, und das kann zu einem Phasenübergang führen – zum Beispiel zum Schmelzen eines Festkörpers.“

Verringert man die Temperatur, dann gehen die Bewegungen der Teilchen immer mehr zurück, bis sie sich am absoluten Nullpunkt eigentlich gar nicht mehr bewegen sollten. Somit, so könnte man annehmen, müsste am absoluten Temperatur-Nullpunkt vollkommene Ruhe eingekehrt sein, bei der sich nichts mehr verändern kann – aber ganz so einfach ist die Sache nicht.

„Die Quantenphysik verbietet, dass sich ein Teilchen völlig ruhig an einem ganz bestimmten Ort aufhält“, sagt Alessandro Toschi. „Die Unschärferelation von Heisenberg sagt uns, dass Ort und Impuls nicht völlig exakt bestimmt sein können. Daher können sich Ort und Impuls des Teilchens auch am absoluten Nullpunkt ändern, auch wenn die klassischen thermischen Fluktuationen verschwunden sind. Man spricht dann von Quantenfluktuationen.“

Wenn es also zu kalt ist, um klassische Wackelbewegungen zu erlauben, sorgt immer noch die Quantenphysik dafür, dass physikalisch interessante Dinge geschehen können. Und genau deshalb sind Phasenübergänge beim Temperatur-Nullpunkt immer so interessant.

Impuls und Energie

„Entscheidend für das Verhalten der Teilchen ist, wie ihr Impuls mit der Energie zusammenhängt“, sagt Thomas Schäfer. Bei einer Kugel, die durch die Luft geworfen wird, ist der Zusammenhang einfach: Je höher der Impuls, umso höher die Bewegungsenergie. Die Energie steigt mit dem Quadrat des Impulses. Bei Teilchen in einem Festkörper ist dieser Zusammenhang aber viel komplizierter. Je nach Richtung, in die sich das Teilchen bewegt, kann er ganz unterschiedlich aussehen. Man stellt diesen Zusammenhang daher mit sogenannten „Fermi-Flächen“ dar, die komplizierte dreidimensionale Formen annehmen können.

„Bisher dachte man, dass die Form dieser Fermi-Flächen bei Quantenphasenübergängen keine wichtige Rolle spielt“, sagt Karsten Held. „Wir konnten nun zeigen, dass das nicht so ist. Erst wenn man die Form berücksichtigt, kann man bestimmte physikalische Effekte korrekt berechnen – zum Beispiel die Art, wie sich magnetische Eigenschaften eines Materials verändern, wenn man sich dem absoluten Nullpunkt nähert.“

Mit diesem neuen Werkzeug hoffen die Forscher nun, quantenkritische Materialien besser beschreiben zu können – und vielleicht lassen sich so einige der großen Geheimnisse lüften, an denen in der Materialwissenschaft seit Jahren so intensiv geforscht wird.

Die Ergebnisse wurden im Rahmen des Austria-Russia FWF-Projekts „Quantenkritikalität in stark korrelierten Magneten (QCM)“ (I-610 N16), unter der Leitung von Prof. Alessandro Toschi (Institut für Festkörperphysik der TU Wien) und durch die langfristige Kooperation mit Prof. Andrey Katanin (Institut of Metal Physics, Ekaterinburg, Russia), erzielt. (Florian Aigner)

Originalpublikation:
T. Schäfer, A. A. Katanin, K. Held, and A. Toschi: Interplay of Correlations and Kohn Anomalies in Three Dimensions: Quantum Criticality with a Twist.

Externer Link: www.tuwien.ac.at

Lernende Maschinen sagen die Eigenschaften von Röntgenstrahlen-Impulsen voraus

Pressemitteilung der Universität Kassel vom 12.07.2017

Mithilfe lernender Rechner ist es einer Forschungsgruppe mit Beteiligung der Universität Kassel gelungen, die Eigenschaften spezieller Röntgen-Strahlung aus sogenannten Freie-Elektronen-Lasern (XFELs) genau und schnell zu bestimmten. Das macht Experimentatoren in aller Welt viele Untersuchungen von Molekülen und Atomen leichter und eröffnet neue Möglichkeiten der Grundlagenforschung in der Physik, Biologie, Chemie und Materialwissenschaft.

XFELs stoßen eine extrem helle und vielseitige Strahlung aus, die in der Grundlagenforschung eingesetzt wird, um Moleküle und Atome in Großanlagen wie der Photonenquelle European XFEL in Hamburg zu beschießen und beim Zerfall zu untersuchen. Doch um die gewonnenen Daten exakt auszuwerten, müssen die Eigenschaften jedes Strahlungsimpulses – Intensität, Puls-Dauer, Wellenlänge – genau bestimmt werden. Das war bislang nur mit sehr aufwändigen und zeitintensiven Verfahren möglich.

Eine fast fünfzigköpfige Gruppe von Wissenschaftlerinnen und Wissenschaftlern hat ein Verfahren entwickelt, die Eigenschaften der Impulse mit sehr großer Genauigkeit vorherzusagen. Beteiligt waren mit Gregor Hartmann und Andre Knie auch zwei Experimentalphysiker der Universität Kassel. Die Kasseler Wissenschaftler übernahmen dabei wesentliche Experimente an der LCLS in Kalifornien. Die Ergebnisse wurden jetzt im renommierten Forschungsjournal Nature Communications veröffentlicht.

Für ihre neue Methode entwickelten die Wissenschaftler einen Trick: Bestimmte Eigenschaften von XFEL-Impulsen lassen sich nur mit einem sehr aufwändigen und langwierigen Verfahren bestimmen. Andere Eigenschaften können mit einem schnelleren Verfahren bestimmt werden, das aber nur einen Teil der nötigen Daten liefert. Die Wissenschaftler brachten ihren Rechnern bei, diese beiden Datensätze miteinander zu verknüpfen und die Beziehung zwischen ihnen zu verstehen; von den „schnelleren“ Daten können die Computer nun auch auf die Daten rückschließen, die sonst nur sehr langsam zu gewinnen wären. „Man kann sich das vorstellen wie bei einer Sprache“, vergleicht Dr. André Knie, Mitarbeiter am Institut für Physik und Geschäftsführer des Forschungsverbunds „Elektronendynamik chiraler Systeme (ELCH)“: „Wir haben dem Algorithmus beigebracht, wie die Struktur, wie die ,Grammatik‘ der Eigenschaften von XFEL-Impulsen aussieht – neue Vokabeln können dann aus dem Kontext erschlossen werden. Das bedeutet, dass die Rechner selbstständig die Ergebnisse neuer Experimente auswerten können.“ Die Treffgenauigkeit liegt bei 97 Prozent.

„Für die Grundlagenforschung bedeutet dies, dass der Einsatz von XFELs viel praktikabler wird“, erläutert Knies Kollege Dr. Gregor Hartmann. „Atome und Moleküle lassen sich so in Zukunft umfassender, schneller und einfacher untersuchen. Unsere Arbeitsgruppe wird diese Technik einsetzen, um beispielsweise die Chiralität, die Händigkeit von Molekülen zu untersuchen“, also die Frage, warum sich Moleküle aus denselben Elementen oft völlig unterschiedlich verhalten. „Das Verfahren kann aber auch die Entwicklung neuer digitaler Speicherverfahren beschleunigen und im Grunde in allen Naturwissenschaften zum Einsatz kommen.“

Die Forschungsgruppe „ELCH – Elektronendynamik chiraler Systeme“ wurde vom Land Hessen im Rahmen des LOEWE-Programms gefördert. Auch durch dieses Programm hat sich an der Universität Kassel ein Kompetenzcluster für die Untersuchung von Materie mithilfe von Laser-Impulsen profiliert.

Publikation:
Sanchez-Gonzalez, A. et al. Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning. Nat. Commun. 8, 15461 doi: 10.1038/ncomms15461 (2017).

Externer Link: www.uni-kassel.de