Neuer Mechanismus der Elektronenspinrelaxation nachgewiesen

Medienmitteilung der Universität Basel vom 27.08.2018

Physiker der Universität Basel möchten den Spin von einzelnen Elektronen als Informationseinheit für potenzielle Quantencomputer nutzen. Nun konnten sie erstmals einen vor 15 Jahren vorhergesagten Mechanismus beim Kippen des Elektronenspins experimentell nachweisen. Gleichzeitig gelang es den Wissenschaftlern, die Richtung des Elektronenspins für fast eine Minute konstant zu halten – ein neuer Weltrekord. «Nature Communications» hat die Ergebnisse einer Zusammenarbeit mit Forschenden aus Japan, der Slowakei und den USA veröffentlicht.

Der Eigendrehimpuls von Elektronen (Spin) lässt sich in einem zukünftigen Quantencomputer zur Speicherung von Informationen nutzen. Dieses Konzept hat Professor Daniel Loss vom Departement Physik und Swiss Nanoscience Institute der Universität Basel zusammen mit Professor David DiVincenzo (RWTH Aachen) bereits vor 20 Jahren entwickelt und vorgeschlagen, den Elektronenspin in Quantenpunkten als kleinste Informationseinheit (Qubit) zu verwenden.

Theoretisch geeignet, experimentell herausfordernd

Der Elektronenspin erfüllt die dafür notwendigen Anforderungen: Wird ein Magnetfeld angelegt, kann der Spin in den beiden Zuständen «Spin-up» und «Spin-down» auftreten, die sich schnell hin und her schalten lassen.

Zudem unterliegt der Elektronenspin den besonderen Gesetzen der Quantenphysik. Die beiden Zustände können nämlich für einen bestimmten Zeitraum, der sogenannten Kohärenzzeit, gleichzeitig existieren. Spins lassen sich ausserdem miteinander koppeln. Wird der Zustand des einen Spins manipuliert, ändert sich sofort auch der Zustand des verschränkten Spins. Ein spin-basierter Quantencomputer könnte damit Millionen von Rechenoperationen gleichzeitig ausführen und Aufgaben erledigen, die für heutige Supercomputer undenkbar sind.

Schwierig ist jedoch die experimentelle Umsetzung der Theorie, unter anderem auch, weil die untersuchten Elektronen sowie ihr Spin winzig klein sind. Messungen und Manipulationen des Spins sind daher nur mit grossem technischen Aufwand möglich.

Neuer Mechanismus des Kippvorgangs

Eine Grundvoraussetzung, um die Richtung eines Spins zu messen, ist dessen Richtungsstabilität über einen möglichst langen Zeitraum. Unbeeinflusst tendiert der Spin dazu, relativ schnell auf den energetisch tieferen Zustand Spin-up zu kippen.

Diesen Kippvorgang, Relaxation genannt, untersucht die Gruppe von Professor Dominik Zumbühl vom Departement Physik und Swiss Nanoscience Institut der Universität Basel bereits seit einigen Jahren, da die so wichtige Kohärenzzeit immer auch durch die Relaxationszeit limitiert ist.

Erstmals konnten die Physiker nun einen neuen Mechanismus der Spinrelaxation experimentell nachweisen, der vor etwa 15 Jahren vorausgesagt worden war. Beim Kippen des Elektronenspins kippt dabei gleichzeitig ein Kernspin in die entgegengesetzte Richtung. Die überschüssige Energie wird dabei in Form einer Gitterschwingung abgegeben.

Technische Verbesserungen bringen den Fortschritt

Dank der technischen Neuerungen, welche diesen experimentellen Nachweis möglich machte, halten die Basler Wissenschaftler auch den Weltrekord in der Elektronenspinstabilität. Im Mittel konnten sie den Elektronenspin für 57 Sekunden auf dem energetisch hohen Spin-down Zustand halten.

Sie erreichten diesen Rekord, indem sie ihre Experimente mit hohem technischem Aufwand bei Temperaturen ganz knapp über dem absoluten Nullpunkt von -273,15 °C durchführten und einen piezoelektrischen Rotator verwendeten, mit dem sie die Richtung des Magnetfeldes genau steuern konnten.

Für die Experimente entwarfen die Basler Forscher einen etwa 2 mal 2 Millimeter grossen Chip aus dem Halbleitermaterial Galliumarsenid, auf dem sie in einem Quantenpunkt mithilfe von nanofabrizierten Metallelektroden ein einzelnes Elektron einfingen. Gekühlt auf extrem tiefe 60 Millikelvin konnten die Wissenschaftler den Zeitraum von Tausenden der Kippvorgänge messen und erhielten für eine optimale Konfiguration mit dem kleinsten Magnetfeld den Durchschnittswert von 57 Sekunden.

«Mit dem experimentellen Nachweis des neuen Relaxationsmechanismus haben wir unser Verständnis über die Physik der Elektronenspins in Nanostrukturen, die als Qubits eingesetzt werden sollen, wesentlich erweitert», erläutert Dominik Zumbühl. «Diese Fortschritte, den Spin besser zu kontrollieren und zu messen, sind wichtige Zwischenschritte auf dem Weg zu einem Quantencomputer», ergänzt er.

Originalbeitrag:
Leon C. Camenzind, Liuqi Yu, Peter Stano, Jeramy D. Zimmerman, Arthur C. Gossard, Daniel Loss, and Dominik M. Zumbühl
Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot
Nature Communications (2018), doi: 10.1038/s41467-018-05879-x

Externer Link: www.unibas.ch

Der perfekte Terahertz-Strahl – mit dem 3D-Drucker

Presseaussendung der TU Wien vom 10.07.2018

An der TU Wien ist es gelungen, Terahertz-Strahlen nach Belieben zu formen. Dazu braucht man nur eine simple Kunststoff-Blende aus dem 3D-Drucker.

Terahertz-Strahlung ist sehr vielseitig einsetzbar, sie wird heute für Sicherheitskontrollen am Flughafen genauso verwendet wie für Materialanalysen im Labor. Die Wellenlänge dieser Strahlung liegt im Millimeterbereich, sie ist also deutlich größer als die Wellenlänge von sichtbarem Licht. Daher braucht man auch spezielle Methoden, um die Strahlen zu manipulieren und in die richtige Form zu bringen. Ein spektakulärer Erfolg beim Formen von Terahertz-Strahlen gelang nun an der TU Wien: Mit Hilfe einer genau berechneten und am 3D-Drucker hergestellten Plastik-Blende kann man Terahertz-Strahlen praktisch beliebig formen.

Wie Linsen – nur besser

„Gewöhnliches Plastik ist für Terahertz-Strahlen durchsichtig, ähnlich wie Glas für sichtbares Licht“, erklärt Prof. Andrei Pimenov vom Institut für Festkörperphysik der TU Wien. „Allerdings werden die Terahertz-Wellen, wenn sie sich durch Kunststoff bewegen, ein bisschen abgebremst. Das bedeutet, dass die Wellenberge und Wellentäler des Strahls ein wenig verschoben werden – man nennt das eine Phasenverschiebung.“

Diese Phasenverschiebung kann man nutzen, um einen Strahl zu formen. Genau das passiert – in sehr einfacher Form – bei einer optischen Linse aus Glas: Wenn die Linse in der Mitte dicker ist als am Rand, verbringt ein Lichtstrahl in der Mitte mehr Zeit im Glas als ein anderer Strahl, der parallel dazu den Randbereich der Linse trifft. Die Lichtwelle in der Mitte wird daher stärker phasenverschoben als die Lichtwelle am Rand. Genau das führt dazu, dass sich die Form des Strahls ändert – ein breiter Lichtstrahl lässt sich auf einen einzelnen Punkt fokussieren.

Doch damit sind die Möglichkeiten noch lange nicht ausgeschöpft. „Wir wollten nicht bloß einen breiten Strahl auf einen Punkt abbilden. Unser Ziel war, einen beliebigen Strahl in eine beliebige Form bringen zu können“, sagt Jan Gospodaric, Dissertant im Team von Andrei Pimenov.

Die Blende aus dem 3D-Drucker

Das gelingt, indem man eine genau angepasste Kunststoffblende in den Strahl einbringt. Die Blende hat einen Durchmesser von wenigen Zentimetern, ihre Dicke variiert von 0 bis 4 mm. Die Dicke der Blende muss Punkt für Punkt so angepasst werden, dass unterschiedliche Bereiche des Strahls genau richtig abgelenkt werden und am Ende das gewünschte Bild ergeben. Eine spezielle Berechnungsmethode wurde entwickelt um das richtige Blendenmuster zu berechnen. Daraus wird dann in einem gewöhnlichen 3D-Drucker die passende Blende hergestellt.

„Das Verfahren ist erstaunlich einfach“, sagt Andrei Pimenov. „Man braucht nicht einmal einen 3D-Drucker mit besonders hoher Auflösung. Es genügt, wenn die Präzision der Struktur deutlich besser ist als die Wellenlänge der verwendeten Strahlung – das ist bei Terahertzstrahlung mit 2 mm Wellenlänge kein Problem.“

Um die Möglichkeiten der Methode zu demonstrieren erstellte das Team unterschiedliche Blenden – unter anderem eine, die einen breiten Strahl in die Form des Logos der TU Wien bringt. „Das zeigt, dass der Technik kaum geometrische Grenzen gesetzt sind“, sagt Andrei Pimenov. „Unsere Methode ist relativ leicht anwendbar. Wir glauben daher, dass sich die Technik rasch in vielen Bereichen einsetzen lässt und die derzeit aufstrebende Terahertz-Technik ein Stück präziser und vielseitiger macht.“ (Florian Aigner)

Originalpublikation:
3D-printed phase waveplates for THz beam shaping, J. Gospodaric, A. Kuzmenko, Anna Pimenov, C. Huber, D. Suess, S. Rotter, and A. Pimenov; Appl. Phys. Lett. 112, 221104 (2018); doi: 10.1063/1.5027179

Externer Link: www.tuwien.ac.at

Die Brücke, die sich dehnen kann

Presseaussendung der TU Wien vom 19.02.2018

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort eingebaut werden muss, weil sich die Brücke je nach Temperatur ausdehnt und zusammenzieht. Gerade diese Fugen sind teuer und wartungsintensiv. An der TU Wien wurde daher eine Brückenvariante entwickelt, bei der auf diese Dehnfugen verzichtet wird. Die Technik wurde von der ASFINAG beim Bau der Satzengrabenbrücke an der Nordautobahn erstmals eingesetzt. Nun hat die dehnfugenlose Brücke ihren ersten Winter überstanden. Die Messergebnisse zeigen, dass die neue Technik bestens funktioniert.

Drohende Winterschäden

„Kleinere Distanzen überbrückt man gerne mit sogenannten integralen Brücken – das sind monolithische Bauwerke, bei denen es keine getrennten Teile gibt, die sich gegeneinander verschieben könnten“, erklärt Prof. Johann Kollegger vom Institut für Tragkonstruktionen der TU Wien. Bei längeren Brücken ist das normalerweise nicht möglich, denn der Beton kann sich abhängig von der Temperatur ausdehnen oder zusammenziehen. Bei einer Brücke mit einer Länge von 100 Metern ergeben sich schon einige Zentimeter Längenunterschied zwischen Sommer und Winter, rechnet Kollegger vor – und das ist zu viel. Besonders im Winter, wenn sich der Beton zusammenzieht, können schwere Schäden in der Asphaltfahrbahn entstehen. Im Sommer ist die Gefahr geringer, weil das Material bei höheren Temperaturen formbarer wird.

Mit Dehnfugen lässt sich das Problem beheben: Die Brücke besteht dann aus mehreren Teilen, die sich in einem gewissen Ausmaß frei gegeneinander verschieben können – doch diese Dehnfugen sind ein typischer Schwachpunkt moderner Brückenbauten. Sie brauchen immer wieder Wartung, müssen manchmal ausgetauscht werden, und sind die Ursache für etwa 20 % der Brücken-Instandhaltungskosten. „Da sind allerdings die volkswirtschaftlichen Schäden noch gar nicht mitberücksichtigt, die durch Umleitungen, Staus und Verkehrsbehinderungen anfallen“, fügt Kollegger hinzu.

Wie Perlen auf der Gummischnur

Daher entwickelte man an der TU Wien eine Alternative: Statt die Verformung in einzelnen Fugen am Anfang und am Ende der Brücke aufzunehmen, verteilt man die Verformung auf einen größeren Bereich. 20 bis 30 Betonelemente werden hintereinander aufgereiht und mit Seilen aus einem speziellen Glasfaser-Werkstoff miteinander verbunden. Die Konstruktion ähnelt einer Kette von Perlen, die auf einem Gummiband aufgefädelt sind: Wenn daran gezogen wird, erhöht sich der Abstand zwischen allen Perlen gleichmäßig im selben Ausmaß. Wenn sich die Brücke im Winter verkürzt, entstehen zwischen benachbarten Betonelementen kleine Spalten – allerdings nur im Millimeterbereich, sodass diese keine Gefahr für die Asphaltfahrbahn darstellen.

Der fugenlose Fahrbahnübergang wurde von der TU Wien, mit Unterstützung durch ihre Abteilung „Forschungs- und Transfersupport“ patentiert. Maßgeblich beteiligt an der Entwicklung war auch Dr. Bernhard Eichwalder, der mehrere Jahre lang im Team von Johann Kollegger forschte und im Jahr 2017 den FSV-Preis für seine Dissertation erhielt.

Wichtig war außerdem, eine passende Asphaltmischung zu entwickeln, mit der man die Betonelemente bedecken kann. Sie muss flexibel genug sein, um die millimeterkleinen Bewegungen mitzumachen, ohne dabei rissig zu werden. Diese Aufgabe übernahm das Team von Prof. Ronald Blab vom Institut für Verkehrswissenschaften der TU Wien.

Pilotprojekt in Niederösterreich

Die Autobahnen- und Schnellstraßen-Finanzierungs-AG ASFINAG war von Beginn an am Projekt beteiligt und war somit auch der erste Bauträger, der die neuen Erkenntnisse umsetzen durfte: Als Teil der Nordautobahn A5 zwischen Schrick und Poysbrunn im Norden Niederösterreichs wurde die 112 Meter lange Satzengrabenbrücke errichtet – die nun längste integrale Brücke Österreichs.

Nachdem es sich um ein erstes Pilotprojekt handelte, entschied man sich dafür, ein umfangreiches Monitoringprogramm zu installieren. So können wertvolle Erfahrungen gesammelt werden. Nun, nachdem die kälteste Zeit des Jahres vorüber ist und die Daten ausgewertet wurden, lässt sich eine positive Bilanz ziehen: „Unsere theoretischen Berechnungen zur Aufteilung der Verformungen auf die einzelnen Betonelemente konnten durch die Messungen bestätigt werden“, berichtet Dr. Michael Kleiser, der zuständige Experte für Brückenbau bei der ASFINAG. So steht nun dem Einsatz der neuen Technik für weitere Brückenbauten nichts mehr im Weg. Das Team hofft, dass sich die neue Methode nicht nur in Österreich, sondern auch in anderen Staaten bald durchsetzt. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Materialforscher entwickeln neue Klasse metallischer Gläser – Leichtbauanwendungen möglich

Pressemitteilung der Universität des Saarlandes vom 01.02.2018

Drei junge Forscher der Universität des Saarlandes haben eine neue Klasse so genannter amorpher Metalle entwickelt. Da diese Legierungen, auch metallische Gläser genannt, ganz andere Eigenschaften als ihre Ausgangsmaterialien haben, eignen sie sich hervorragend beispielsweise für Leichtbauteile in Luft- und Raumfahrt. Die Forscher des Lehrstuhls für Metallische Werkstoffe konnten in jahrelanger Arbeit eine Legierung aus Titan und Schwefel erzeugen, die sehr leicht ist und gleichzeitig eine hohe Festigkeit besitzt. Für ihre Erfindung sind sie von der Kontaktstelle für Wissens- und Technologietransfer der Universität mit dem Erfinderpreis ausgezeichnet worden.

Materialforschung ähnelt einem Puzzle aus tausenden Teilen: Wenn man nicht das richtige Teil findet, mit dem man anfangen kann, stochert man mehr im Dunkeln als dass man ein zusammenhängendes Bild hinbekommt. Auf der Suche nach diesem Puzzleteil waren auch Alexander Kuball, Benedikt Bochtler und Oliver Gross. Die Doktoranden am Lehrstuhl für Metallische Werkstoffe von Professor Ralf Busch haben nun in Zusammenarbeit mit dem Technologiekonzern Heraeus nach hunderten Versuchen und mehreren Jahren Forschung Legierungen entwickelt, die eine sehr hohe Festigkeit besitzen und gleichzeitig sehr leicht sind.

Gegenüber bisherigen Werkstoffen aus der Klasse der sogenannten amorphen Metalle haben die Legierungen mehrere entscheidende Vorteile: Die Verbindungen bestehen hauptsächlich aus Titan und Schwefel und damit aus Elementen, die sehr häufig auf der Erde vorkommen und industriell sehr gut nutzbar sind. Und anders als amorphe Metalle auf Basis von Zirkonium, Palladium oder Platin ist Titan verhältnismäßig günstig, ebenso wie der Schwefel, der darüber hinaus keine hochgiftige Wirkung hat wie die in solchen Legierungen bisher häufig verwendeten Elemente Beryllium oder Phosphor.

Dass Schwefel dabei das richtige Element ist, um das leichte Metall Titan so zu gestalten, dass es gleichzeitig eine hohe Festigkeit hat, ohne dabei spröde und brüchig zu werden, war dabei keine Selbstverständlichkeit. „Denn Schwefel hatte 20, 30 Jahre lang keiner auf der Rechnung, weil es in keinem Versuch zuvor funktioniert hat“, erläutert Oliver Gross. Und wenn es 30 Jahre lang nicht funktioniert hat, forscht keiner mehr mit Schwefel, um bessere Werkstoffe damit zu erhalten.

Die jungen Wissenschaftler hatten allerdings den richtigen Riecher und Schwefel dennoch als Beimischung verschiedener Metalle getestet. „Zuerst hatten wir dann mit Palladium, Nickel und Schwefel eine funktionierende Legierung gefunden, die gute Eigenschaften hatte“, erläutert Benedikt Bochtler. „Da sind wir dann drangeblieben und haben weiter mit dem leichten und günstigeren Titan experimentiert.“ Nach ungefähr 250 Experimenten, in denen Alexander Kuball, Benedikt Bochtler und Oliver Gross die Mischungsverhältnisse von Titan, Schwefel und weiterer Stoffe in feinsten Variationen miteinander kombinierten, fanden sie schließlich die richtige Abstimmung. Wie kompliziert die Suche nach dieser Abstimmung ist, verdeutlicht die Tatsache, dass schon ein Unterschied von einem Prozent mehr oder weniger eines Stoffes ausschlaggebend dafür sein kann, ob eine Legierung die gewünschten Eigenschaften aufweist oder nicht.

Die von ihnen entwickelten Legierungen sind etwa um das Doppelte fester als gängige Metalle auf Titanbasis derselben Dichte, also desselben Gewichts. Damit eignet es sich hervorragend zur Herstellung leichter, kleiner Bauteile, zum Beispiel für die Luft- und Raumfahrt, wo jedes Gramm eingespartes Gewicht zählt und natürlich auch die Stabilität und Festigkeit des Materials entscheidend ist.

Das Verfahren, nach dem sie dieses so genannte Metallische Glas hergestellt haben, ist essenziell für diese Eigenschaften. Denn die über 1100 Grad Celsius heiße Schmelze wird blitzartig abgekühlt, so dass keine klassische Legierung entsteht, deren Atome sich während des lang andauernden Abkühlens in einem regelmäßigen Kristallgitter anordnen. Dadurch, dass die Schmelze in weniger als einer Sekunde herabgekühlt wird, erstarrt sie in der ungeordneten Atomstruktur der Schmelze. Dieser strukturelle Zustand wird auch als Glas bezeichnet. Dieses Chaos im Aufbau verleiht dem Metallischen Glas Eigenschaften, die ganz anders sind als der herkömmlichen Legierung derselben Ausgangsstoffe. Diese Metallischen Gläser sind fest wie Stahl, aber gleichzeitig elastisch wie Kunststoff.

Für ihre Entdeckung wurden die drei jungen Erfinder mit dem Erfinderpreis der Kontaktstelle für Wissens- und Technologietransfer ausgezeichnet. Die neue Legierungsklasse, die Alexander Kuball, Benedikt Bochtler und Oliver Gross mit Unterstützung des Technologiekonzerns Heraeus mit Sitz in Hanau entdeckt haben, wurde in Zusammenarbeit mit der Patentverwertungsagentur der saarländischen Hochschulen zum Patent angemeldet. Das global agierende Familienunternehmen Heraeus hat sich für den größten Teil der neuen Legierungen die Verwertungsrechte gesichert, so dass die Chancen gut stehen, dass diese ihren Weg in die industrielle Nutzung finden werden.

Externer Link: www.uni-saarland.de

Maschinelles Lernen im Quantenlabor

Medieninformation der Universität Innsbruck vom 19.01.2018

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von Menschen erdacht. Das könnte sich bald ändern. Innsbrucker Quantenphysiker um Hans Briegel beschäftigen sich unter anderem mit der grundsätzlichen Frage, inwieweit Maschinen selbstständig experimentieren können. Dazu nutzen die Physiker ein von der Gruppe entwickeltes Modell für künstliche Intelligenz, das einer Maschine einfache Formen kreativen Verhaltens ermöglichen soll. Das Gedächtnis dieser autonomen Maschine speichert viele einzelne Erfahrungsfragmente, die netzwerkartig miteinander verbunden sind. Ist die Maschine mit einem bestimmten Ereignis konfrontiert, werden in einer Zufallsbewegung damit zusammenhängende Erinnerungen abgerufen. Sowohl aus Erfolg als auch aus Misserfolg lernt die Maschine und passt ihr Netzwerk entsprechend an. Gleichzeitig kann sie selbst neue Szenarien erzeugen und diese ausprobieren.

Nun haben sich die Innsbrucker Physiker mit Wienern Kollegen um Anton Zeilinger zusammengetan. Diese haben zuvor schon die Nützlichkeit von automatisiertem Design von Quantenexperimenten zeigen können mithilfe des Algorithmus Melvin, wobei einige dieser computer-inspirierten Experimente auch schon in den Labors von Zeilinger umgesetzt wurden. Durch die Anwendung des Lernmodells der Projektiven Simulation konnten die Wissenschaftler nun gemeinsam zeigen, dass diese Umgebung ideal dafür geeignet ist, das Potential maschinellen Lernens in Quantenexperimenten zu untersuchen. In einer in den amerikanischen Proceedings of the National Academy of Sciences veröffentlichten Arbeit präsentieren die Forscher erste Ergebnisse.

Computer entwirft optimierte Quantenexperimente

Am Anfang steht ein leerer Labortisch für photonische Quantenexperimente. Der künstliche Agent versucht nun neue Experimente zu entwickeln, indem er Spiegel, Prismen oder Strahlteiler virtuell auf dem Tisch anbringt. Führen seine Aktionen zu einem sinnvollen Ergebnis, merkt der Agent sich das und greift bei späteren Versuchen wieder darauf zurück. „Dieses bestärkende Lernen unterscheidet unser Modell von einer automatischen Suche, die immer durch ein zufälliges Verhalten gesteuert ist“, erklärt Alexey Melnikov vom Institut für Theoretische Physik der Universität Innsbruck. „Der künstliche Agent führt auf dem virtuellen Labortisch Zehntausende von Experimenten durch. Wenn wir im Gedächtnis der Maschine die Ergebnisse analysieren, sehen wir, dass sich bestimmte Strukturen entwickelt haben“, erklärt sein Kollege Hendrik Poulsen Nautrup. Einige dieser Strukturen sind den Physikern bereits als nützliche Werkzeuge aus modernen quantenoptischen Labors bekannt. Andere sind völlig neu und könnten in Zukunft im Labor zum Einsatz kommen. „Während die automatische Suche mit jeder Lösung zufrieden ist, sucht die intelligente Maschine immer den besten Weg, wie etwas umgesetzt werden kann, und generiert so optimierte Experimente“, verdeutlicht Alexey Melnikov. „Und manchmal liefert sie auch Antworten auf Fragen, die wir gar nicht gestellt haben.“

Kreative Unterstützung im Labor

In Zukunft wollen die Wissenschaftler das lernfähige Programm noch weiter ausbauen. Zurzeit ist die Maschine noch darauf getrimmt, einzelne Probleme selbstständig zu lösen. Aber damit ist sie weiterhin nur ein Werkzeug, das von Wissenschaftlern gezielt eingesetzt werden muss. Kann eine Maschine aber auch mehr als nur ein Werkzeug sein? Wird die Maschine der Zukunft eine kreativere Rolle an der Seite des Wissenschaftlers spielen? Dies sind die Fragen, die sich die Wissenschaftler stellen und nur die Zukunft wird zeigen, welche Rolle die künstliche Intelligenz tatsächlich im Labor spielen wird.

Die Arbeit wurde unter anderem vom österreichischen Wissenschaftsfonds FWF und der Templeton World Charity Foundation finanziell unterstützt.

Publikation:
Active learning machine learns to create new quantum experiments. Alexey A. Melnikov, Hendrik Poulsen Nautrup, Mario Krenn, Vedran Dunjko, Markus Tiersch, Anton Zeilinger, and Hans J. Briegel. Proc. Natl. Acad. Sci. USA 2018 DOI: 10.1073/pnas.1714936115 (arXiv: 1706.00868)

Externer Link: www.uibk.ac.at