Greifen mithilfe von Wärme und Kälte

Pressemitteilung der Universität Kassel vom 09.04.2019

Wissenschaftler der Universität Kassel haben gemeinsam mit einer Ausgründung aus der Hochschule ein Produkt entwickelt, das bestimmte Abläufe in automatisierten Fabriken effizienter machen kann. Das Produkt ist beispielhaft für die enge Zusammenarbeit von Wissenschaft und Start-ups in der nordhessischen Großstadt.

Der sogenannte Polygreifer kann auf Roboterarme montiert werden und Werkstücke verschiedener Materialien greifen und tragen. Herzstück ist eine doppelschichtige Platine, die aus einem Aluminiumblech und einem aufgetragenen Spezialpolymer besteht. Diese Material reagiert auf Wärme und Kälte: Wird die Platine erwärmt, verformt sich das Polymer und schmiegt sich in Sekundenschnelle um winzig kleine Unebenheiten, die selbst glatte Materialien wie Glas oder Metalle aufweisen. Nach der Abkühlung der Platine haftet das Werkstück und kann umgesetzt werden. Wird die Platine anschließend erneut erwärmt, wird es wieder freigegeben.

Das thermoplastische Polymer ist eine Entdeckung des Fachgebiets Kunststofftechnik der Universität Kassel. Die technisch anspruchsvolle Verbindung zwischen Aluminium und Polymer entwickelte das Fachgebiet Trennende und Fügende Fertigungsverfahren (tff). Das Start-up-Unternehmen eta opt, das von einem Absolventen der Universität Kassel gegründet wurde, bringt das Produkt zur Marktreife. Das Land Hessen förderte die Entwicklung des Polygreifers im Rahmen seiner LOEWE-Initiative mit rund 327.000 Euro.

Im Gegensatz zu bisherigen industriellen Greifverfahren wie beispielsweise mit Druckluft oder Vereisung ist der Polygreifer universell einsetzbar; das Material des Werkstücks spielt praktisch keine Rolle und selbst kleine Greifflächen genügen. Das Greifsystem eignet sich besonders für industrielle Produktionsstraßen, die unterschiedliche Produkte fertigen, da Umrüstzeiten entfallen. Gegenüber Druckluft-basierten Verfahren liegt die Energieersparnis bei bis zu 70 Prozent. Prototypen des Polygreifers gibt es bereits, binnen eines Jahres will eta opt das Produkt nun auf den Markt bringen.

Das Fachgebiet tff der Universität (Leitung Prof. Dr.-Ing. Stefan Böhm) forscht in den Bereichen Fertigungs-, Produktions- und Automatisierungstechnik sowie Schweißen, Kleben, Spanen und Strahlen. Das Fachgebiet Kunststofftechnik (Prof. Dr.-Ing. Hans-Peter Heim) vereint die Forschungsschwerpunkte Werkstofftechnik, Kunststoffprozesstechnik sowie Fügetechnik und Werkstoffverbunde. Die Ingenieurwissenschaften gehören zu den großen Schwerpunkt-Bereichen der nordhessischen Universität.

Förderung für Start-ups „ab dem ersten Geistesblitz“

Die Firma eta opt wurde 2015 von Dr.-Ing. Christoph Pohl gegründet, einem Absolventen und ehemaligen Mitarbeiter der Universität Kassel. Sie hat ihren Sitz im Science Park, in dem junge Unternehmen aus dem Umfeld der Hochschule auf dem Markt Fuß fassen und wachsen können. „Wir fördern vielversprechende Ideen und Start-ups im Grunde ab dem ersten Geistesblitz“, beschreibt es Kanzler Dr. Oliver Fromm, im Präsidium der Universität zuständig für Wissenstransfer. „Die Erfolgsgeschichte von eta opt zeigt beispielhaft, wie sich Beratung, die Anbahnung von Netzwerken, die Vermittlung von Stipendien und Förderprogrammen und die Zusammenarbeit mit der Forschung im Umfeld unserer Universität auszahlen. Hinzu kam hier eine großzügige Förderung des Landes, die es auch jungen Unternehmen ermöglicht, kapitalintensive Entwicklungen zu stemmen.“

Die Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz LOEWE ist ein Programm, mit dem das Land Hessen seit 2008 seine Forschungslandschaft stärkt und herausragende wissenschaftliche Verbundvorhaben fördert. Eine der Förderlinien unterstützt die Zusammenarbeit zwischen kleinen und mittleren Unternehmen und Hochschulen in der angewandten Forschung.

Der Science Park auf dem Campus der Universität Kassel ist ein Projekt von Universität und Stadt Kassel und der Sitz von zur Zeit etwa 20 jungen Unternehmen aus dem Umfeld der Hochschule. Bereits kurz nach der Einweihung 2015 war er weitgehend ausgebucht.

Externer Link: www.uni-kassel.de

Saar-Universität vergibt Lizenz für ein geschütztes augenchirurgisches Instrument

Pressemitteilung der Universität des Saarlandes vom 08.04.2019

Ein neues Instrument zur Vereinfachung von Hornhauttransplantationen wurde jetzt von der Geuder AG, einem der führenden Hersteller für augenchirurgische Instrumente, lizenziert. Die Universität des Saarlandes hatte die Erfindung von Dr. Shady Suffo als Gebrauchsmuster schützen lassen. Es handelt sich dabei um einen neuartigen Hornhautmarkierer, der bei der so genannten Keratoplastik, also der Hornhauttransplantation, zum Einsatz kommt. Diese ist eine relativ häufige und an vielen Kliniken durchgeführte Augenoperation. Allein am saarländischen Universitätsklinikum gab es im vergangenen Jahr über fünfhundert dieser Operationen. Die Patentverwertungsagentur der saarländischen Hochschulen war für die Vermarktung der Erfindung verantwortlich.

Bei einer Hornhauttransplantation wird die erkrankte Hornhaut durch eine gesunde Spenderhornhaut ersetzt. Es wird dabei eine Kreuzstichnaht erzeugt, um die Hornhaut dauerhaft am Augapfel zu fixieren. Diese Technik, die „Kreuzstichnaht nach Hoffmann“, stellt für ungeübte Operateure eine große Hürde dar. Schon seit einiger Zeit sind daher verschiedene Hilfsmittel, so genannte Hornhautmarkierer, auf dem Markt erhältlich. Durch die Erfindung von Dr. Shady Suffo werden gleich mehrere Probleme der bestehenden Hilfssysteme gelöst. Zum einen entfällt die Schwierigkeit, das Instrument per Augenmaß zu zentrieren. Zum anderen wird die Markierung auf punktuelle Weise erzeugt, so dass es für den Operateur nun wesentlich einfacher ist, die Stichtiefe während des Nahtvorgangs zu erkennen.

Die Erfindung wurde durch die Patentverwertungsagentur der saarländischen Hochschulen als Gebrauchsmuster für die Universität des Saarlandes geschützt. Das Gerät wurde bereits erfolgreich getestet und von Dr. Shady Suffo in Workshops mit Nachwuchsärzten eingesetzt. Kürzlich hat sich nun die Firma Geuder entschlossen, ihre Produktpalette um den „Kreuzstichnahtmarker nach Suffo“ zu erweitern.

Externer Link: www.uni-saarland.de

Wasserwellen und Quantensplitter

Presseaussendung der TU Wien vom 26.03.2019

Wasserwellen in einem Glas sind etwas ganz anderes als die Scherben, in die das Glas zerbricht. Aber in der Quantenphysik ultrakalter Atome ist beides verwandt, zeigt eine Studie mit Beteiligung der TU Wien und der Universität Wien.

Wenn man ein Wassergefäß sanft schüttelt, werden an der Wasseroberfläche charakteristische Wellenmuster sichtbar – man bezeichnet sie als „Faraday-Wellen“. Denselben Effekt konnte ein internationales Forschungsteam mit Beteiligung der TU Wien nun auch in einer Wolke ultrakalter Atome nachweisen. Allerdings gibt es hier noch eine bemerkenswerte Besonderheit: Unter bestimmten Bedingungen kann man die Atomwolke dazu bringen, auf zufällige, unvorhersagbare Weise zu zerbrechen, wie ein Glas, das in Scherben zersplittert. Diesen spontanen Zerfall nennt man „Granulation“. Aus dem Zusammenhang zwischen den Faraday-Wellen und der Granulation kann man einiges über komplizierte quantenphysikalische Vielteilchen-Phänomene lernen. Die Ergebnisse wurden nun im Fachjournal „Physical Review X“ publiziert.

Zufall oder nicht?

„Granulation ist normalerweise ein Zufallsprodukt, das man bei festen Körpern beobachtet – wie das Zerbrechen von Glas oder das Pulverisieren eines Steins in unterschiedlich große Körner“, sagt Axel Lode, der am Atominstitut der TU Wien und am Wolfgang Pauli Institut an der Uni Wien arbeitet. „Faraday-Wellen hingegen sind nicht zufällig. Bei ihnen handelt es sich um regelmäßige, stehende Wellen, die immer wieder genau gleich aussehen, wenn man eine Flüssigkeit auf dieselbe Weise schüttelt.“

Erstaunlicherweise lassen sich aber die quantenphysikalischen Versionen beider Phänomene in ein und demselben Quantensystem hervorrufen. Dafür verwendete man eine Wolke von Lithium-Atomen. Sie werden zunächst bis knapp über den absoluten Nullpunkt gekühlt, sodass sie einen gemeinsamen Quantenzustand annehmen und ein sogenanntes „Bose-Einstein-Kondensat“ bilden.

Durch ein schwaches, langsam oszillierendes Magnetfeld kann man in diesem Bose-Einstein-Kondensat Faraday-Wellen erzeugen – auf klar vorhersagbare und wiederholbare Weise. „Wenn man dieses Magnetfeld allerdings verstärkt und gleichzeitig seine Frequenz senkt, passiert etwas Erstaunliches“, berichtet Axel Lode. „Die Atomwolke zerbricht an zufälligen Positionen.“ Aus dem Kondensat, in dem alle Atome streng quantenphysikalisch miteinander verbunden sind und exakt im gleichen Takt schwingen, werden unterschiedliche Quanten-Körner, deren Größe und Position vom Zufall bestimmt ist.

Gemessen wurde das an der Rice University in Houston, Texas, mit Unterstützung von Forschungsteams aus Brasilien und Österreich. „Es wurden sogenannte single-shot-Bilder aufgenommen, also, ganz simpel gesagt, Fotos vom Quantenzustand der Atomwolke“, erklärt Axel Lode. So lange sich im Kondensat Faraday-Wellen ausbildeten, sahen diese Bilder jedes Mal gleich aus. Doch wenn es zur Granulation kommt, sieht das Bild immer völlig anders aus, auch wenn man das Experiment völlig gleich durchführt.

Computersimulation der Quantenkorrelationen

Das hat mit Quantenkorrelationen zu tun – mit den komplizierten Zusammenhängen zwischen Quantenteilchen, die sich mathematisch nur sehr schwer beschreiben lassen. Axel Lode entwickelte an der TU Wien die nötige Software, um das Vielteilchensystem mit seinen Quantenkorrelationen zu beschreiben und so die Messergebnisse korrekt deuten zu können. Das Verhalten von Quanten-Vielteilchensystemen gehört nach wie vor zu den großen ungelösten Rätseln der Physik. Zwar ist die Gleichung bekannt, an die sich die Quantenteilchen zu halten haben – nämlich die Schrödingergleichung, doch machen die Quantenkorrelationen den Zustand der Teilchen viel zu kompliziert, als dass man ein System von hunderten oder gar tausenden Quantenteilchen exakt beschreiben könnte. Zu klären, wie Quantensysteme aus Teilsystemen aufgebaut sind, wie sie miteinander zusammenhängen und wie ein großes System in kleinere, unabhängige Teile zerfallen kann, spielt für die Forschung an den Grundlagen der Physik daher eine wichtige Rolle. Die Forschungsarbeit wird an der TU Wien weiter fortgesetzt: Axel Lode leitet nun ein vom FWF finanziertes Einzelprojekt, das weitere Rätsel rund um diese Vielteilchensysteme lösen soll. (Florian Aigner)

Originalpublikation:
J. Nguyen et al., Phys. Rev. X 9, 011052 (2019)

Externer Link: www.tuwien.ac.at

Neuartiger Rollstuhl: Besserer Antrieb durch Kurbeln

Presseaussendung der TU Wien vom 12.02.2019

An der Technischen Universität Wien wurde mit Hilfe biomechanischer Modelle ein völlig neuartiger Rollstuhl entwickelt. Kurbeln machen den Antrieb effizienter und ergonomischer.

Wer Rollstühle für ganz einfache Geräte hält, an denen es nichts mehr zu verbessern gibt, hat sich geirrt. Das Forschungsteam für Biomechanik und Rehabilitationstechnik der TU Wien hat nun ein völlig neues Antriebssystem entwickelt, bei dem der Rollstuhl nicht durch einen Greifring am Rad bewegt wird, sondern mit Hilfe von Kurbeln. Das ist ergonomischer und entspricht viel besser den natürlichen Bewegungsmustern des Oberkörpers. Der neue Rollstuhltyp wurde nun zum Patent angemeldet, jetzt wird nach Industriepartnern gesucht.

Die Gelenke sind nicht für den Rollstuhl gemacht

„Der Bewegungsablauf beim Rollstuhlfahren ist normalerweise recht unnatürlich“, erklärt Prof. Margit Gföhler (Institut für Konstruktionswissenschaften und Produktentwicklung, TU Wien). „Wenn man den Rollstuhl an einem gewöhnlichen Greifring bewegt, kommt es zu extremen Gelenkstellungen, für die unser Körper einfach nicht gemacht ist.“ Die Folge davon ist, dass viele Menschen Gelenksverletzungen und -schmerzen haben, die durch das Rollstuhlfahren ausgelöst werden.

Um das zu ändern, entwickelte Margit Gföhler und ihr Forschungsteam ein biomechanisches Computermodell, mit dem verschiedene Bewegungsabläufe des Oberkörpers analysiert werden können. „Wir haben überlegt: Was wäre der optimale Bewegungsablauf? Welche Bewegungen kommen der Funktion von Schultern und Armen am ehesten entgegen?“ sagt Gföhler.

Der Bewegungsablauf, der sich in der biomechanischen Simulation als besonders geeignet herausstellte, wurde dann in einen mechanischen Antrieb umgesetzt. Das Ergebnis war ein Rollstuhl, der von zwei Kurbeln angetrieben wird. Während jeder Umdrehung ändert die Kurbel ihre Länge, sodass keine kreisrunde, sondern eine eher eierförmige Bewegung entsteht. Die Kurbeln werden an den Armlehnen des Rollstuhls montiert, sie treiben dann über einen Zahnriemen die Hinterräder an, die dann etwas kleiner gestaltet werden können als normalerweise üblich. Durch die kompakten Abmessungen wird der Rollstuhl weder breiter noch länger, und ist daher auch mit dem neuen Antrieb für die Verwendung im Alltag und auch in Innenräumen geeignet.

Bessere Winkel, weniger Anstrengung

Die neue Rollstuhltechnik wurde in verschiedenen Tests untersucht, auch in Zusammenarbeit mit dem Rehabilitationszentrum „Weißer Hof“ in Klosterneuburg. „Die Rückmeldungen waren sehr positiv, es wird als angenehm empfunden, dass sich die Gelenke nun nur noch im natürlichen Winkelbereich bewegen müssen und eine durchgängige Bewegung ohne Unterbrechungen möglich ist“, berichtet Margit Gföhler. Außerdem wurden spirometrische Untersuchungen durchgeführt: Durch Analyse der Atemluft lässt sich messen, wie anstrengend eine bestimmte Tätigkeit ist. Mit Hilfe der neuen Antriebstechnik lässt sich dieselbe Geschwindigkeit wie bisher mit deutlich weniger Anstrengung erreichen.

„Unser neues Rollstuhlkonzept könnte sicher für viele Menschen eine echte Verbesserung der Lebensqualität sein“, ist Margit Gföhler optimistisch. „Wir hoffen, bald einen Industriepartner zu finden, der unsere Entwicklung in einem kommerziellen Produkt umsetzt. Mit Unterstützung des Forschungs- und Transfersupports der TU Wien wurde der Rollstuhlantrieb bereits zum Patent angemeldet. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Supraleiter: Widerstand ist zwecklos

Presseaussendung der TU Wien vom 28.01.2019

Über Supraleitung muss ganz neu nachgedacht werden. Experimente an der TU Wien beweisen, dass unbewegliche Ladungsträger, die als „Klebstoff“ wirken, die Supraleitung erst ermöglichen.

Jedes gewöhnliche Kabel, jeder Draht, jeder elektronische Bauteil hat einen gewissen elektrischen Widerstand. Es gibt allerdings spezielle supraleitende Materialien mit der besonderen Fähigkeit, elektrischen Strom mit einem Widerstand von exakt null zu transportieren – zumindest bei sehr niedrigen Temperaturen. Ein Material zu finden, das sich auch bei Raumtemperatur immer noch als Supraleiter verhält, wäre ein wissenschaftlicher Durchbruch von herausragender Bedeutung, sowohl in theoretischer als auch in technologischer Hinsicht. Es würde eine Reihe ganz neuer Anwendungen ermöglichen, von schwebenden Hochgeschwindigkeitszügen bis hin zu neuen bildgebenden Verfahren für die Medizin.

Die Suche nach solchen Hochtemperatur-Supraleitern ist allerdings extrem schwierig, weil viele der Quanteneffekte, die mit der Supraleitung in Zusammenhang stehen, noch nicht gut verstanden sind. Professor Neven Barišić vom Institut für Festkörperphysik an der TU Wien experimentiert mit Cupraten, einer Materialklasse, die bei Normaldruck bis zu einer Temperatur von 140 Kelvin (-133° C) supraleitend bleiben, damit sind Cuprate bis heute die Rekordhalter. Barišić und seinem Team gelang es nun, bemerkenswerte neue Resultate zu erzielen und neue Ideen vorzustellen, durch die sich die Art, wie man über komplexe Materialien und Hochtemperatur-Supraleitung denkt, völlig verändern soll.

Die Suche nach dem Heiligen Gral

„Das Phänomen der Hochtemperatur-Supraleitung wird seit Jahrzehnten eingehend erforscht, aber bisher hat niemand das Rätsel wirklich gelöst“, sagt Neven Barišić. „Es gibt durchaus einige Materialien, die supraleitendes Verhalten bei Temperaturen in der Nähe des absoluten Nullpunktes zeigen, und bei manchen verstehen wir sogar, warum das so ist. Aber die wirkliche Herausforderung ist es, Supraleitung in Cupraten zu verstehen, wo sie bei viel höheren Temperaturen bestehen bleibt. Ein Material, das bei Raumtemperatur supraleitend bleibt, wäre gewissermaßen der Heilige Gral der Festkörperphysik, und dem kommen wir näher und näher.“

Barišić konnte mit seinem Team nun zeigen, dass es in Cupraten zwei fundamental unterschiedliche Ladungsträger gibt. Das subtile Wechselspiel zwischen ihnen ist entscheidend für die Supraleitung.

Manche der elektrischen Ladungsträger im Material sind lokalisiert, jeder von ihnen sitzt an ganz bestimmten Atomen und kann sich nur wegbewegen, wenn das Material aufgeheizt wird. Andere Ladungsträger hingegen sind mobil und können von einem Atom zum anderen springen. Diese mobilen Ladungsträger sind es, die supraleitend werden, aber die Supraleitung lässt sich nur erklären, wenn man auch die immobilen Ladungsträger berücksichtigt.

„Es gibt eine Wechselwirkung zwischen den beweglichen und den unbeweglichen Ladungsträgern, durch die sich die Energie des Systems verändert“, sagt Barišić. „Die unbeweglichen Ladungsträger wirken als Klebstoff und binden Paare von mobilen Ladungsträgern aneinander, die sogenannte Cooper-Paare bilden. Die Bildung von Ladungsträger-Paaren ist die Grundidee hinter klassischen Supraleitern. Erst wenn die Ladungsträger gepaart werden, können sie supraleitend werden, und das Material transportiert die Ladung ohne jede Streuung und ohne jeden Widerstand.“

Das bedeutet, dass man die Zahl von mobilen und immobilen Ladungsträgern sorgfältig ausbalancieren muss, um Supraleitung zu erhalten. Gibt es zu wenige lokalisierte Ladungsträger, steht zu wenig „Klebstoff“ zum Koppeln der beweglichen Ladungsträger zur Verfügung. Gibt es hingegen zu wenige mobile Ladungsträger, dann gibt es nichts, was der Klebstoff koppeln könnte. In beiden Fällen wird die Supraleitung geschwächt oder bricht überhaupt zusammen. Dazwischen gibt es einen optimalen Bereich, in dem die Supraleitung bis hin zu bemerkenswert hohen Temperaturen erhalten bleibt. Die große Herausforderung war es, herauszufinden, wie sich diese Balance zwischen mobilen und immobilen Ladungsträgern kontinuierlich ändert, abhängig von der Temperatur oder der Dotierung des Materials mit anderen Atomen.

„Wir haben viele unterschiedliche Experimente mit Cupraten durchgeführt und riesengroße Datenmengen gesammelt. Nun können wir schließlich ein umfassendes phänomenologisches Bild der Supraleitung in Cupraten präsentieren“, sagt Neven Barišić. Fast gleichzeitig veröffentlichte er seine Ergebnisse nun in mehreren Fachjournalen, darunter „Science Advances“. Darin konnte nachgewiesen werden, dass Supraleitung graduell entstehen kann – ein wichtiger Schritt in Richtung des Ziels, Cuprate zu verstehen und noch bessere Supraleiter zu entwickeln.

Wenn es möglich wird, Materialien zu erzeugen, die auch bei Raumtemperatur noch supraleitend bleiben, hätte das weitreichende Konsequenzen für unsere Technologie. Man könnte elektronische Geräte bauen, die kaum noch elektrische Energie verbrauchen würden. Schwebende Züge könnten konstruiert werden, mit Hilfe von extrem starken supraleitenden Magneten, sodass billiger, ultraschneller Transport möglich werden würde. „Noch stehen wir nicht vor dem Ziel“, sagt Neven Barišić. „Aber ein tiefes Verständnis von Hochtemperatur-Supraleitung würde den Weg dorthin ebnen. Und ich glaube, dass wir nun gleich mehrere wichtige Schritte in diese Richtung genommen haben.“ (Florian Aigner)

Originalpublikation:
Pelc et al., Science Advances 25, Vol. 5, no. 1 (2019)

Externer Link: www.tuwien.ac.at