Raum-Zeit-Kristall: Wichtiges Puzzleteil auf dem Weg zu neuen optischen Materialien

Pressemitteilung des Karlsruher Institut für Technologie vom 12.11.2024

Forschende des KIT konstruieren maßgeschneiderte Materialien für die optische Informationsverarbeitung. Photonische Raum-Zeit-Kristalle sind Materialien, die drahtlose Kommunikation oder Lasertechnologien leistungsfähiger und effizienter machen könnten. Sie zeichnen sich durch die periodische Anordnung spezieller Materialien aus, in drei Raumrichtungen wie auch in der Zeit, und ermöglichen so eine präzise Kontrolle der Lichteigenschaften. Forschende des Karlsruher Instituts für Technologie (KIT) haben nun zusammen mit Partnern der Aalto University, der University of Eastern Finland und der Harbin Engineering University in China gezeigt, wie sich solche vierdimensionalen Materialien für die praktische Anwendung nutzen lassen. Über ihre Arbeit berichten sie im Fachmagazin Nature Photonics. (DOI: 10.1038/s41566-024-01563-3).

Photonische Zeitkristalle bestehen aus Materialien, die im Raum überall gleich beschaffen sind, deren Eigenschaften sich aber zeitlich periodisch ändern. Durch diese zeitliche periodische Änderung lässt sich die spektrale Zusammensetzung von Licht gezielt verändern und verstärken, beides sind entscheidende Faktoren für die optische Informationsverarbeitung. „Dies eröffnet neue Freiheitsgrade, birgt aber auch viele Herausforderungen“, sagt Professor Carsten Rockstuhl vom Institut für Theoretische Festkörperphysik und Institut für Nanotechnologie des KIT. „Die vorliegende Studie ebnet den Weg, diese Materialien für informationsverarbeitende Systeme einzusetzen, in denen alle Lichtfrequenzen genutzt und verstärkt werden sollen.“

Vierdimensionalen photonischen Kristallen ein Stück näher

Die zentrale Kenngröße eines photonischen Zeitkristalls ist seine Bandlücke im Impulsraum. Zur Erläuterung: Der Impuls ist ein Maß dafür, in welche Richtung sich das Licht ausbreitet. Eine Bandlücke beschreibt, in welche Richtungen sich das Licht ausbreiten muss, damit es verstärkt wird: Je breiter die Bandlücke, desto größer ist die Verstärkung. „Bisher müssen wir in photonischen Zeitkristallen für eine große Bandlücke die zeitlich periodische Änderung der Materialeigenschaften, etwa den Brechungsindex, intensivieren. Nur dann wird Licht überhaupt verstärkt“, erklärt Puneet Garg, einer der beiden Erstautoren der Studie. „Da die Möglichkeiten hierfür bei den meisten Materialien begrenzt sind, ist dies eine große Herausforderung.“

Als Lösung kombinierte das Forschungsteam die photonischen Zeitkristalle mit einer zusätzlichen räumlichen Struktur und konstruierte somit „photonische Raum-Zeit-Kristalle“: Es baute photonische Zeitkristalle aus Silizium-Kugeln ein, die das Licht „einfangen“ und etwas länger halten als bisher möglich. So reagiert das Licht wesentlich besser auf die zeitlich periodische Änderung der Materialeigenschaften. „Wir sprechen hier von Resonanzen, die die Wechselwirkung von Licht und Materie verstärken“, sagt Xuchen Wang, ebenfalls Erstautor. „In so optimal abgestimmten Systemen erstreckt sich die Bandlücke fast über den gesamten Impulsraum, das heißt: Das Licht wird unabhängig von seiner Ausbreitungsrichtung verstärkt. Dies könnte das fehlende Puzzleteil auf dem Weg zur praktischen Nutzung solcher neuen optischen Materialien sein.“

„Wir freuen uns sehr über diesen Durchbruch bei den photonischen Materialien und sind gespannt auf die langfristigen Auswirkungen unserer Forschung“, sagt Rockstuhl. „So kann das enorme Potenzial der modernen optischen Materialforschung ausgeschöpft werden. Die Idee ist nicht auf Optik und Photonik beschränkt, sondern kann für viele Systeme in der Physik angewandt werden und potenziell neue Forschungen in verschiedenen Bereichen anregen.“

Das Forschungsprojekt wurde in dem Sonderforschungsbereich „Waves: Analysis and Numerics“ durchgeführt, gefördert von der Deutschen Forschungsgemeinschaft (DFG), und ist eingebettet in den Helmholtz-Forschungsbereich Information.

externer Link: https://www.kit.edu/

Supraleitung: Rätsel der Fermi-Bögen gelöst

Pressemitteilung der Technischen Universität Wien vom 24.10.2024

In bestimmten Materialien kann sich elektrische Ladung nur in ganz bestimmten Richtungen bewegen. An der TU Wien zeigte man nun: Das lässt sich durch magnetische Effekte erklären.

Hochtemperatur-Supraleitung gehört zu den großen Rätseln der modernen Physik: Manche Materialien leiten elektrischen Strom völlig ohne Widerstand – allerdings nur bei sehr kalten Temperaturen. Würde man ein Material finden, das auch bei Raumtemperatur noch supraleitend bleibt, wäre das eine technische Revolution. Auf der ganzen Welt arbeitet man daher an einem besseren, umfassenderen Verständnis der Effekte in solchen Materialien.

Ein wichtiger Schritt gelang nun an der TU Wien. Gerade bei einer besonders interessanten Klasse von Hochtemperatur-Supraleiten, den sogenannten Cupraten, gibt es nämlich einen sehr überraschenden Effekt: Unter bestimmten Bedingungen können sich die Elektronen in diesen Materialien nur in bestimmte Richtungen bewegen, in andere Richtungen hingegen nicht. Die erlaubten Richtungen lassen sich als Kurven darstellen, man spricht von „Fermi-Bögen“. Mit Hilfe von Laserlicht, das Elektronen gezielt aus dem Material herausschlägt, können diese Bögen sichtbar gemacht werden. Einem Team am Institut für Festkörperphysik der TU Wien gelang es nun, theoretische und numerische Modelle zu entwickeln, die diesen Effekt erklären: Er kommt durch die magnetischen Wechselwirkungen zwischen den Elektronen unterschiedlicher Atome zustande.

Viele offene Fragen bei Hochtemperatur-Supraleitung
Erklärungsansätze für Supraleitung gibt es schon lange: Bereits 1972 wurde der Nobelpreis für die sogenannte „BCS-Theorie“ vergeben, mit der man Supraleitung in Metallen mathematisch beschreiben kann. Doch gerade bei besonders interessanten Materialien, die Supraleitung auch noch bei vergleichsweisen hohen (wenn auch für menschliche Maßstäbe immer noch recht niedrigen) Temperaturen erlauben, versagt diese Theorie. Zu diesen Materialien zählen auch die Cuprate – kupferhaltige Verbindungen, die heute zu den meisterforschten supraleitenden Materialien gehören.

„Bei diesen Materialien stößt man auf eine ganze Reihe unerklärter Phänomene, die oft eng miteinander zusammenhängen“, sagten Alessandro Toschi, der das Forschungsprojekt zusammen mit Karsten Held koordinierte. Eines dieser Phänomene sind eben diese „Fermi-Bögen“.

Man kann den Hochtemperatur-Supraleitern zusätzliche Elektronen hinzufügen und dann messen, wie sich diese Elektronen im Material bewegen – oder aus Perspektive der Quantenphysik formuliert: welche Quantenzustände diese Elektronen annehmen können. Bei solchen Messungen stieß man auf eine Überraschung: „Das Material erlaubt nur bestimmte Impulsrichtungen“, erklärt Matthias Reitner (TU Wien). „Das heißt, nur in bestimmte Richtungen können sich die Elektronen überhaupt bewegen.“ Die quantenphysikalisch erlaubten Zustände liegen auf einer Kurve (einem Fermi-Bogen), die an bestimmten Stellen abrupt endet – ein äußerst untypisches Verhalten, das sich mit üblichen theoretischen Modellen nicht erklären lässt.

Antiferromagnetisches Schachbrettmuster
Dem Team der TU Wien – Paul Worm, Matthias Reitner, Karsten Held und Alessandro Toschi – gelang es nun aber, dieses überraschende Verhalten theoretisch zu erklären. Man entwickelte aufwändige Computersimulationen, aber auch ein analytisches Modell, welches das Phänomen mit einer einfachen Formel beschreibt.

„Der Schlüssel für den Effekt ist eine antiferromagnetische Wechselwirkung“, sagt Matthias Reitner. Antiferromagnetismus bedeutet, dass sich die magnetische Richtung eines Atoms vorzugsweise entgegengesetzt zur Richtung des Nachbaratoms ausrichtet. „In den Cupraten, die wir modelliert haben, handelt es sich um eine antiferromagnetische Wechselwirkung mit langer Reichweite“ sagt Matthias Reitner. Die magnetischen Momente der Elektronen auf verschiedenen Atomen richten sich also über größere Distanzen so aus, dass die magnetische Ausrichtung der Elektronen immer abwechselnd mal in die eine, dann in die andere Richtung zeigt – ähnlich wie beim Schachbrett, auf dem jedes Feld anders gefärbt ist als seine direkten Nachbarfelder.“ Das Forschungsteam konnte zeigen, dass dieses magnetische Muster in weiterer Folge zu dem merkwürdigen richtungsabhängigen Verhalten der Elektronen führt.

„Damit konnten wir zum ersten Mal ein theoretisches Modell für das abrupte Ende der Fermi-Bögen präsentieren und erklären, warum die Bewegung von Elektronen in solchen Materialien nur in bestimmten Richtungen möglich ist“, sagt Paul Worm. „Dieser Fortschritt hilft uns nicht nur, einige der ungeklärten Rätsel der Hochtemperatursupraleiter besser zu verstehen, sondern er könnte auch die künftige Forschung an Materialien mit ähnlichen unkonventionellen Eigenschaften weiter vorantreiben.“

Externer Link: www.tuaustria.at

Atome, die miteinander Pingpong spielen

Presseaussendung der TU Wien vom 16.01.2024

Eine Art „Quanten-Pingpong“ entwickelte ein Team der TU Wien: Durch eine passende Linse kann man zwei Atome dazu bringen, ein einzelnes Photon hochpräzise hin und her zu spielen.

Atome können Licht aufnehmen und wieder aussenden – das ist ein ganz alltägliches Phänomen. Meistens aber gibt ein Atom ein Lichtteilchen in alle möglichen Richtungen ab, dieses Photon dann wieder einzufangen ist gar nicht so einfach.

An der TU Wien konnte man nun aber rechnerisch zeigen: Durch eine besondere Linse lässt sich erreichen, dass ein einzelnes Photon, das von einem Atom abgegeben wird, von einem zweiten Atom mit praktisch hundertprozentiger Sicherheit wieder absorbiert wird. Dieses zweite Atom nimmt das Photon jedoch nicht nur auf, sondern schießt es gleich zum ersten Atom wieder zurück: Die Atome spielen sich das Photon punktgenau immer wieder gegenseitig zu – wie beim Pingpong.

Wie man eine Welle zähmt

„Wenn ein Atom irgendwo im freien Raum ein Photon aussendet, dann ist die Abstrahlrichtung vollkommen zufällig. Damit ist es praktisch unmöglich, ein anderes entferntes Atom dazu zu bringen, dieses Photon wieder aufzufangen“, sagt Prof. Stefan Rotter vom Institut für Theoretische Physik der TU Wien. „Das Photon breitet sich als Welle aus, wodurch niemand sagen kann, in welche Richtung es sich genau bewegt. Es ist somit purer Zufall, ob das Lichtteilchen von einem zweiten Atom wieder absorbiert wird oder nicht.“

Anders sieht die Sache aus, wenn man das Experiment nicht im freien Raum durchführt, sondern in einem abgeschlossenen Bereich. Ähnliches kennt man aus der Akustik, von sogenannten Flüsterräumen: Wenn in einem elliptischen Raum zwei Menschen genau in den Brennpunkten der Ellipse stehen, dann können sie einander perfekt hören. Die eine Person flüstert leise, die Schallwellen werden von der elliptischen Wand exakt so reflektiert, dass sie einander am Aufenthaltsort der zweiten Person treffen – die zweite Person kann das leise Geflüster somit wunderbar hören, auch wenn es sehr leise war.

„Prinzipiell könnte man so etwas auch für Lichtwellen bauen und zwei Atome an den Brennpunkten einer Ellipse positionieren“, sagt Oliver Diekmann, der Erstautor der aktuellen Publikation. „Aber praktisch gesehen müssen die beiden Atome dann ganz präzise an den Brennpunkten positioniert werden.“

Die Maxwell-Fischaugenlinse

Das Forschungsteam ließ sich daher eine bessere Strategie einfallen, die auf das Konzept der Fischaugen-Linse zurückgreift, das von James Clerk Maxwell, dem Begründer der klassischen Elektrodynamik, entwickelt wurde. Dabei handelt es sich um ein Material mit variierendem Brechungsindex. Während sich Licht in einem einheitlichen Medium wie Luft oder Wasser geradlinig fortbewegt, werden Lichtstrahlen in einer Maxwell-Fischaugenlinse gekrümmt.

„Auf diese Weise kann man erreichen, dass alle Strahlen, die von einem Atom ausgehen, auf einem krummen Pfad den Rand erreichen, dort reflektiert werden, und dann auf einem zweiten krummen Pfad zum Zielatom gelangen“, erklärt Oliver Diekmann. In diesem Fall funktioniert der Effekt viel effizienter als in einer simplen Ellipse und auch Abweichungen von der Idealposition der Atome sind möglich.

„Das Licht in dieser Maxwell-Fischaugenlinse hat verschiedene Schwingungsmoden gleichzeitig. Das ist ähnlich wie bei einem Musikinstrument, das zum Schwingen angeregt wird und verschiedene Obertöne gleichzeitig produziert“, sagt Stefan Rotter. „Wir konnten zeigen: Die Kopplung zwischen dem Atom und diesen unterschiedlichen Schwingungsmoden lässt sich auf eine Weise anpassen, dass es mit fast hundert Prozent Wahrscheinlichkeit zu einem Transfer des Photons von einem Atom auf das andere kommt – ganz anders als das im leeren Raum der Fall wäre.“

Wenn das Atom das Photon absorbiert hat, befindet es sich in einem Zustand höherer Energie, bis es dann nach sehr kurzer Zeit das Photon wieder abgibt. Dann beginnt das Spiel von vorne: Die beiden Atome tauschen ihre Rollen, das Photon wird vom Empfänger-Atom zum ursprünglichen Sender-Atom zurückgespielt – und immer so weiter.

Optimale Kontrolle für Quantentechnologien

Vorerst handelt es sich um theoretische Berechnungen, Praxistests sind aber mit bereits bestehender Technologie möglich. „In der Praxis könnte man die Effizienz sogar noch weiter erhöhen, indem man nicht nur zwei Atome verwendet, sondern zwei Gruppen von Atomen“, sagt Stefan Rotter. „Das Konzept könnte ein interessanter Startpunkt für Quantenkontroll-Systeme sein, mit denen man Effekte bei extrem starker Kopplung zwischen Licht und Materie genau studieren kann.“ (Florian Aigner)

Originalpublikation:
O. Diekmann, D. Krimer, and S. Rotter: Ultrafast Excitation Exchange in a Maxwell Fish-Eye Lens, Phys. Rev. Lett. 132, 013602 (2024).

Externer Link: www.tuwien.at

Dunkelheit macht Makro-Quanteneffekte sichtbar

Medieninformation der Universität Innsbruck vom 10.01.2024

Wie man eine winzige Glasperle dazu bringt, makroskopische Quanteneffekte zu zeigen

Schnell sein, Licht vermeiden und über eine kurvenreiche Rampe rollen: Das ist das Rezept für ein bahnbrechendes Experiment, das Innsbrucker Physiker in einem kürzlich in Physical Review Letters veröffentlichten Artikel vorschlagen. Damit soll ein Nanoteilchen, das sich in einem durch elektrostatische oder magnetische Kräfte erzeugten Potenzial bewegt, rasch und zuverlässig in einen makroskopischen Überlagerungszustand gebracht werden.

Die Grenze zwischen der Alltagswelt und der Quantenwelt ist noch immer unklar. Wird ein Teilchen durch Abkühlung auf den absoluten Nullpunkt zu einem Quantenobjekt, ist es umso stärker lokalisiert, je massiver es ist. Forscher unter der Leitung von Oriol Romero-Isart vom Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften (ÖAW) und dem Institut für Theoretische Physik der Universität Innsbruck schlagen ein Experiment vor, bei dem sich ein mit Laserlicht im Schweben gehaltenes Nanoteilchen, das auf seinen Grundzustand abgekühlt ist, einem nicht-optischen („dunklen“) Potenzial ausgesetzt wird, das durch elektrostatische oder magnetische Kräfte erzeugt wird. Die Forscher erwarten, dass dieses dunkle Potential rasch und zuverlässig einen makroskopischen Quantenüberlagerungszustand erzeugen wird.

Die Bewegung eines winzigen Glaskügelchen kann mittels Laserlicht auf seinen Grundzustand abgekühlt werden. Allein gelassen, von Luftmolekülen und einfallendem Licht bombardiert, heizen sich solche Glasperlen rasch auf und verlassen das Quantenregime, was jede Quantenkontrolle stark beschränkt. Um dies zu vermeiden, schlagen die Forscher um Oriol Romero-Isart vor, das Glaskügelchen im Dunkeln, bei ausgeschaltetem Licht, mit einem durch ungleichmäßige elektrostatische oder magnetische Kräfte gesteuerten Potential zu kontrollieren. Diese Methode ist nicht nur schnell genug, um eine Erwärmung durch streunende Gasmoleküle zu verhindern, sondern hebt auch die extreme Lokalisierung auf und sollte die Quanteneigenschaften eindeutig sichtbar machen.

In dem kürzlich in Physical Review Letters erschienenen Artikel wird auch diskutiert, wie dieser Vorschlag die praktischen Herausforderungen dieser Art von Experimenten umgeht. Zu diesen Herausforderungen gehören die Notwendigkeit schneller Versuchsdurchläufe, der minimale Einsatz von Laserlicht zur Vermeidung von Dekohärenz und die Möglichkeit, Versuchsdurchläufe mit demselben Teilchen rasch zu wiederholen. Diese Überlegungen sind entscheidend, um die Auswirkungen von niederfrequentem Rauschen und anderen systematischen Fehlern abzuschwächen.

Dieser Vorschlag wurde ausführlich mit den experimentellen Partnern von Q-Xtreme, einem von der Europäischen Union finanzierten ERC-Synergy-Grant-Projekt, diskutiert. „Die vorgeschlagene Methode orientiert sich an den aktuellen Entwicklungen in ihren Labors und sie sollten bald in der Lage sein, unser Protokoll mit ungekühlten Teilchen im klassischen Bereich zu testen, was sehr nützlich sein wird, um Rauschquellen zu messen und zu minimieren, wenn die Laser ausgeschaltet sind“, sagt das Theorie-Team um Oriol Romero-Isart. „Dieses Quantenexperiment stellt zwar eine sehr große Herausforderung dar. Wir glauben aber, dass es machbar sein sollte, da unser Vorschlag alle notwendigen Kriterien für die Erzeugung dieser makroskopischen Quantenüberlagerungszustände erfüllt.“

Originalpublikation:
Macroscopic Quantum Superpositions via Dynamics in a Wide Double-Well Potential. M. Roda-Llordes, A. Riera-Campeny, D. Candoli, P. T. Grochowski, and O. Romero-Isart. Phys. Rev. Lett. 132, 023601

Externer Link: www.uibk.ac.at

Quantenmaterialien: Supraleiter läuft unter Druck zur Hochform auf

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 07.11.2023

Publikation in Science: Quantenmechanische Anregungen der Elektronen in Strontiumruthanat erhöhen Supraleitung und erleichtern Verformung

Der Supraleiter Strontiumruthanat stellt die Wissenschaft vor viele Fragen. Forschende am Karlsruher Institut für Technologie (KIT) und am Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) in Dresden haben nun festgestellt, dass mechanischer Druck die Supraleitung erhöht und zugleich die Verformung des Materials erleichtert. Dies führen sie auf quantenmechanische Anregungen der Elektronen zurück. Ihre Arbeit trägt zum Verständnis des Wechselspiels von elastischen und elektronischen Eigenschaften bei. Die Forschenden berichten in der Zeitschrift Science.

Supraleiter sind Materialien, die beim Unterschreiten einer bestimmten Temperatur, der sogenannten Sprungtemperatur, keinen elektrischen Widerstand aufweisen. Dies macht sie unter anderem für verschiedene Anwendungen der Energiewandlung und -verteilung interessant. Bei Strontiumruthanat (Sr2RuO4) hat die Wissenschaft noch nicht verstanden, wie es zur Supraleitung kommt. „Die konventionelle Theorie lässt sich auf Strontiumruthanat nicht anwenden. Doch die Quantenmechanik bringt uns weiter, denn mit ihr lassen sich nicht nur die Eigenschaften einzelner Atome und Moleküle, sondern auch die kollektiven Eigenschaften von Vielteilchensystemen beschreiben“, sagt Professor Jörg Schmalian, Leiter des Instituts für Theorie der Kondensierten Materie (TKM) des KIT sowie Leiter der Abteilung Theorie der Quantenmaterialien am Institut für QuantenMaterialien und Technologien (IQMT) des KIT.

Mechanischer Druck entlang einer Richtung erhöht Sprungtemperatur

Schmalian ist einer der Hauptautoren der in der Zeitschrift Science veröffentlichten Studie. Forschende an mehreren Instituten des KIT und am MPI CPfS hatten bereits 2022 in einer Publikation in der Zeitschrift Nature demonstriert, wie sich durch mechanisches Drücken entlang einer bestimmten Richtung die Sprungtemperatur von Strontiumruthanat deutlich erhöhen lässt und wie dabei das Anregungsverhalten der Elektronen verändert wird. Zusammen mit internationalen Partnern stellten die Forschenden aus Karlsruhe und Dresden nun fest, dass genau dieser Druck, der die Supraleitung stark erhöht, das Material mechanisch wesentlich weicher macht, sodass Verformungen erleichtert werden. Dies führen die Forschenden auf eine quantenmechanische Resonanz der Schwingungen der Elektronen zurück.

Vor rund 60 Jahren sagte der sowjetische Physiker Ilja M. Lifschitz ein mechanisches Aufweichen vorher, das heute als Lifschitz-Übergang bekannt ist. „Der Effekt, den wir nun identifiziert haben, ist jedoch mehr als tausendmal größer und lässt sich klar mit der Verstärkung von Supraleitung in Verbindung bringen. Das ist verblüffend, weil weniger als ein Prozent der insgesamt im Material existierenden Elektronen eine Reduktion der elastischen Konstanten um 20 Prozent erzwingen“, erläutert Schmalian.

Einige wenige stromführende Elektronen haben das Sagen

Um die Untersuchung des Wechselspiels von elastischen und elektronischen Eigenschaften geht es auch im von der Deutschen Forschungsgemeinschaft (DFG) geförderten Transregio ELASTO-Q-MAT, in dem das MPI CPfS und das KIT stark vertreten sind. Für die in Science publizierte Studie entwickelten Forschende des KIT ein Modell des Effekts, bei dem einige wenige der stromführenden Elektronen alle anderen beherrschen und das Material viel weicher machen können. Die Messungen dazu liefen am MPI CPfS in Dresden. „Ilja M. Lifschiz machte in seiner Theorie keinen Fehler“, betont Schmalian. „Unsere Studie bietet jedoch eine neue Perspektive und eröffnet die Möglichkeit, in Zukunft starke Quantenfluktuationen im Labor zu manipulieren und Materialien für einen gegebenen physikalischen Effekt zu optimieren.“ (or)

Originalpublikation:
H. M. L. Noad, K. Ishida, Y.-S. Li, E. Gati, V. Stangier, N. Kikugawa, D. A. Sokolov, M. Nicklas, B. Kim, I. I. Mazin, M. Garst, J. Schmalian, A. P. Mackenzie, and C. W. Hicks: Giant lattice softening at a Lifshitz transition in Sr2RuO4. Science, 2023. DOI: 10.1126/science.adf3348

Externer Link: www.kit.edu