Innsbrucks Quantencomputer unterstützen Quantensoftware-Tool Qiskit

Medieninformation der Universität Innsbruck vom 05.11.2019

Die Quantencomputer von Alpine Quantum Technologies GmbH und Universität Innsbruck unterstützen nun Qiskit, eine führende Open-Source-Programmiersprache, die ursprünglich von IBM entwickelt und von Wissenschaftlern aus aller Welt weiterentwickelt wurde. Qiskit besitzt eine Vielzahl von Algorithmen und Anwendungen, die nun über die Cloud auf den Quantencomputern in Innsbruck verfügbar sind.

Quantencomputer werden Anwendungen in der Chemie, Logistik, Finanzen und vielen anderen Bereichen finden. Aktuell gibt es einen Wettlauf zwischen verschiedenen Technologien zur Realisierung eines Quantencomputers – darunter gespeicherte Ionen, supraleitende Schaltungen, einzelne Photonen und viele mehr. Im Gegensatz zur Vielfalt der technischen Ansätze gibt es nur sehr wenige Quantenprogrammiersprachen, wobei Qiskit das am häufigsten verwendete Entwicklungskit für Quantensoftware ist. Qiskit enthält eine große Bibliothek von Algorithmen, Routinen und Anwendungen. Bislang konzentrierte sich Qiskit vor allem auf die supraleitende Plattform – was sich nun ändert.

Innsbruck und IBM

Im Anschluss an ein internationales Qiskit-Camp in der Schweiz haben Studierende der Universität Innsbruck und Mitarbeiter von Alpine Quantum Technologies (AQT) mit IBM an der Erweiterung der Fähigkeiten von Qiskit gearbeitet. Quantenentwickler können nun auf Knopfdruck Verschränkung erzeugen und untersuchen, neue Quantenalgorithmen entwickeln und neuartige Quantenanwendungen auf Geräten von IBM, AQT und der Universität Innsbruck realisieren. „Als wir Qiskit im März 2017 auf den Markt brachten, war unser Ziel ehrgeizig, aber einfach – eine offene Softwareplattform zu schaffen, um Quantenprogramme zu erstellen, sie auf verschiedene Geräte abzubilden und sie auf Simulatoren und verschiedenen Arten von echter Hardware auszuführen“, sagte Dr. Walter Riess, Manager von IBM Q Europe und IBM Research. „Diese offene Strategie hat es uns nun ermöglicht, unsere Community über unsere eigenen supraleitenden Qubit-Geräte hinaus auf Ionenfallen mit AQT auszudehnen, die die Qiskit-Schnittstelle für ihr Gerät in nur drei Tagen entwickelt und ausgeführt haben.“ Dr. Philipp Schindler von der Universität Innsbruck erklärt: „Mehrere unserer Forschungspartner setzen Qiskit bereits ein. Durch die Integration der Innsbrucker Quantencomputer als Backend in Qiskit können unsere Partner ihre Ideen direkt auf unseren Geräten umsetzen. Das wird unsere wissenschaftliche Forschung deutlich stärken.“ Neben der Grundlagenforschung profitieren auch anwendungsorientierte Entwickler von diesen neuen Möglichkeiten. Das Quantencomputer-Startup AQT in Innsbruck hat eine wachsende Anzahl von Kunden mit unterschiedlichen Interessen. AQT-Geschäftsführer Dr. Thomas Monz freut sich „unseren Kunden mitzuteilen, dass wir Qiskit nun als Programmiersprache unterstützen. Qiskit wird uns und unseren Partnern die Entwicklung neuer Anwendungen erleichtern.“ Thomas Monz und Philipp Schindler sind überzeugt, dass die Unterstützung von Qiskit dem Standort Innsbruck helfen wird, die Zahl der Forschungspartner und Kunden zu erhöhen.

Externer Link: www.uibk.ac.at

Weltrekord-Material macht aus Wärme Elektrizität

Presseaussendung der TU Wien vom 14.11.2019

Ein neuartiges Material erzeugt aus Temperaturunterschieden sehr effizient elektrischen Strom. Damit können sich Sensoren und kleine Prozessoren kabellos selbst mit Energie versorgen.

Thermoelektrische Materialien können Wärme direkt in elektrische Energie umwandeln. Das liegt am sogenannten Seebeck-Effekt: Wenn zwischen den beiden Enden eines solchen Materials ein Temperaturunterschied besteht, wird elektrische Spannung generiert und Strom kann fließen. Wie viel elektrische Energie bei einer gegebenen Temperaturdifferenz gewonnen werden kann, wird mit Hilfe des sogenannten ZT-Wertes gemessen: Je höher der ZT-Wert eines Materials ist, umso besser sind seine thermoelektrischen Eigenschaften. Beste bisherige Thermoelektrika kamen auf ZT-Werte von etwa 2,5 bis 2,8. Am Christian Doppler Labor für Thermoelektrische Materialien an der TU Wien gelang es nun, ein völlig neues Material zu entwickeln, mit einem ZT-Wert von 5 bis 6. Es handelt sich dabei um eine dünne Schicht aus Eisen, Vanadium, Wolfram und Aluminium, aufgetragen auf einem Silizium-Kristall.

Das neue Material ist so effektiv, dass man es in Zukunft verwenden könnte, um Sensoren oder auch kleine Computerprozessoren mit Energie zu versorgen. Anstatt kleine elektrische Geräte an Kabeln anzuschließen, könnten sie ihren eigenen Strom aus Temperaturdifferenzen generieren. Im Fachjournal „Nature“ wurde es nun erstmals präsentiert.

Elektrizität und Temperatur

„Ein gutes thermoelektrisches Material muss einen großen Seebeck-Effekt besitzen und daneben zwei Anforderungen erfüllen, die schwer miteinander vereinbar sind“, sagt Prof. Ernst Bauer vom Institut für Festkörperphysik der TU Wien. „Einerseits soll es elektrischen Strom möglichst gut leiten; andererseits soll aber Wärme möglichst schlecht transportiert werden.“ Das ist eine Herausforderung, denn gewöhnlich hängen elektrische Leitfähigkeit und Wärmeleitfähigkeit eng miteinander zusammen.

Am Christian-Doppler-Labor für Thermoelektrizität, das Ernst Bauer 2013 an der TU Wien eröffnete, wurde in den letzten Jahren intensiv an unterschiedlichen thermoelektrischen Materialien für unterschiedliche Einsatzzwecke gearbeitet. Und dabei stieß man nun auf ein ganz besonders bemerkenswertes Material – eine Kombination aus Eisen, Vanadium, Wolfram und Aluminium.

„Die Atome in diesem Material sind normalerweise streng regelmäßig angeordnet, in einem sogenannten flächenzentrierten kubischen Gitter“, sagt Ernst Bauer. „Der Abstand zwischen zwei Eisenatomen ist immer gleich groß, dasselbe gilt für die anderen Atomsorten. Der ganze Kristall ist daher völlig regelmäßig aufgebaut.“ Wenn man das Material allerdings als dünne Schicht auf Silizium aufträgt, passiert etwas Erstaunliches: Die Struktur verändert sich radikal. Zwar bilden die Atome auch auf Silizium immer noch ein kubisches Muster, allerdings mit raumzentrierter Anordnung. Daher ist die Verteilung der unterschiedlichen Atomsorten nun völlig zufällig. „Da können zwei Eisenatome nebeneinandersitzen, die Plätze daneben sind von Vanadium oder Aluminium besetzt, und es gibt keine Regel mehr, die vorschreibt, an welchen Orten im Kristall wieder das nächste Eisenatom zu finden ist“, erklärt Bauer.

Durch diese Mischung aus Regelmäßigkeit und Unregelmäßigkeit der Atomanordnung verändert sich auch die elektronische Struktur, die bestimmt, wie sich Elektronen im Festkörper bewegen. „Die elektrische Ladung bewegt sich dann auf eine andere Weise durch das Material, sodass sie von Streuprozessen geschützt ist. Man spricht hier von sogenannten Weyl-Fermionen“, sagt Ernst Bauer. Auf diese Weise erreicht man einen sehr geringen elektrischen Widerstand. Gitterschwingungen hingegen, die die Wärme von Orten hoher zu Orten niedriger Temperatur transportieren, werden durch diese Unregelmäßigkeiten im Kristallaufbau gestört. Die Wärmeleitfähigkeit sinkt. Das ist wichtig, wenn aus einem Temperaturunterschied dauerhaft elektrische Energie gewonnen werden soll – denn wenn Temperaturunterschiede sehr schnell ausgeglichen werden könnten, hätte bald das gesamte Material überall dieselbe Temperatur und der thermoelektrische Effekt käme zum Erliegen.

Strom für das „Internet of Things“

„Eine derart dünne Schicht kann natürlich keine beliebig großen Energiemengen generieren – aber dafür ist sie extrem kompakt und anpassungsfähig“, sagt Ernst Bauer. „Wir wollen damit eine Energieversorgung für Sensoren und kleine elektronische Anwendungen ermöglichen.“ Der Bedarf dafür wird immer größer: Im „Internet of Things“ werden unterschiedlichste Geräte online miteinander verknüpft, damit sie ihr Verhalten automatisch aufeinander abstimmen. Besonders zukunftsträchtig ist das in großen Produktionsanlagen, wo eine Maschine dynamisch auf den Zustand der anderen reagieren soll.

„Wenn man in einer Fabrik eine große Anzahl an Sensoren benötigt, kann man die nicht alle verkabeln, das würde irgendwann ein unüberblickbares Chaos ergeben“, meint Bauer. „Viel klüger ist es, wenn sich die Sensoren ganz von selbst mit Energie versorgen, etwa über ein kleines, effizientes thermoelektrisches Element, dass die Abwärme einer Maschine nutzt. Damit kann auch gleich ein kleiner Prozessor betrieben werden, der die Daten auswertet und dann per WLAN zur zentralen Steuereinheit schickt.“

Genau diesen Markt soll das neue thermoelektrische Material nun voranbringen. Die Forschungsarbeiten finden im Rahmen des Christian-Doppler-Labors für Thermoelektrizität an der TU Wien statt. Unternehmenspartner ist die Firma AVL Graz, wissenschaftliche Partner das „National Institute of Material Science, NIMS“, Japan und der „Chinese Academy of Sciences“, China. Gemeinsam mit dem Unternehmenspartner wurden bereits zwei Patente eingereicht – mit Unterstützung der Forschungs- und Transfersupports der TU Wien. (Florian Aigner)

Originalpublikation:
B. Hinterleitner et al., Thermoelectric performance of a metastable thin-film Heusler alloy, Nature (2019)

Externer Link: www.tuwien.ac.at

Quanteninternet nimmt Gestalt an

Presseaussendung der Universität Innsbruck vom 29.08.2019

Ein Team um den Innsbrucker START-Preisträger Ben Lanyon hat erstmals ein mit Materie verschränktes Lichtteilchen über ein 50 Kilometer langes Glasfaserkabel übertragen. Dies ebnet den Weg für die praktische Nutzung von Quantennetzwerken und bedeutet einen Meilenstein auf dem Weg zu einem zukünftigem Quanteninternet.

Das Quanteninternet verspricht absolut abhörsichere Kommunikation und leistungsstarke verteilte Sensornetzwerke für Forschung und Technologie. Weil Quanteninformation nicht kopiert werden kann, ist eine Informationsübertrag über ein klassisches Netzwerk aber nicht möglich. Die Quanteninformation muss mittels Quantenteilchen übertragen werden, und dafür braucht es spezielle Schnittstellen. An diesen wichtigen Knotenpunkten eines zukünftigen Quanteninternets forscht der Innsbrucker Experimentalphysiker Ben Lanyon, der für seine Forschungen 2015 mit dem österreichischen START-Preis ausgezeichnet wurde. Nun ist seinem Team am Institut für Experimentalphysik der Universität Innsbruck und am Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften ein Rekord für die Übertragung von Quantenverschränkung zwischen Materie und Licht gelungen. Erstmals konnte über Glasfaserkabel eine Distanz von 50 Kilometern überwunden werden. „Das ist um zwei Größenordnungen weiter als es bisher möglich war und eine praktikable Distanz für den Bau von regionalen Quantennetzwerken“, freut sich Ben Lanyon.

Licht für Übertragung umgewandelt

Lanyons Team nutzte ein in einer Ionenfalle gefangenes Kalziumatom als Ausgangspunkt für das Experiment. Mit Laserstrahlen schreiben die Forscher einen Quantenzustand in das Ion ein und regen es gleichzeitig zur Aussendung eines Photons an, in dessen Polarisation Quanteninformation gespeichert ist. Die Quantenzustände des Atoms und des Lichtteilchens werden dabei verschränkt. Die Herausforderung besteht nun darin, das Photon durch Glasfaserkabel zu übertragen. „Denn das vom Kalziumion emittierte Photon besitzt eine Wellenlänge von 854 Nanometern und wird vom Glasfaserkabel sehr rasch absorbiert“, erklärt Ben Lanyon. Sein Team schickt deshalb das Lichtteilchen zunächst durch einen nichtlinearen Kristall, der mit einem starken Laser angestrahlt wird. Dabei wird die Wellenlänge des Photons auf den optimalen Wert für lange Strecken umgewandelt: die aktuelle Standardwellenlänge des Telekommunikationsnetzes von 1550 Nanometern. So schicken die Innsbrucker Forscher das Photon durch eine 50 Kilometer lange Glasfaserleitung. Messungen zeigen, dass Atom und Lichtteilchen auch nach der Wellenlängenänderung und der langen Reise noch verschränkt sind.

Noch größere Distanzen im Blick

Als nächsten Schritt zeigen Ben Lanyon und sein Team, dass ihre Methode dazu geeignet ist, Ionen über eine Distanz von 100 und mehr Kilometern zu verschränken. Zwei Knoten senden ein verschränktes Photon über eine Distanz von 50 Kilometern zu einer Zwischenstation, wo die Lichtteilchen so vermessen werden, dass sie ihre Verschränkung mit den Ionen verlieren, wodurch diese wiederum miteinander verschränkt würden. Da nun ein 100 Kilometer langer Abstand zwischen den Schnittstellen möglich ist, wäre es vorstellbar in den kommenden Jahren das weltweit erste Intercity-Licht-Materie-Quantennetzwerk zu bauen: Nur eine Handvoll Ionenfallensysteme würden benötigt, um beispielsweise ein Quanteninternet zwischen Innsbruck und Wien aufzubauen.

Lanyons Team ist Teil der Quantum Internet Alliance, einem internationalen Projekt im Rahmen des Quantum Flagship der Europäischen Union. Die aktuellen Ergebnisse wurden im Nature Fachmagazin Quantum Information veröffentlicht. Finanziell unterstützt wurden die Forschungen unter anderem durch den österreichischen Wissenschaftsfonds FWF und die Europäische Union.

Publikation:
Light-matter entanglement over 50 km of optical fibre. V. Krutyanskiy , M. Meraner, J. Schupp, V. Krcmarsky, H. Hainzer and B. P. Lanyon. npj Quantum Information 2019 DOI: 10.1038/s41534-019-0186-3 (Open Access)

Externer Link: www.uibk.ac.at

Langsame Elektronen gegen den Krebs

Presseaussendung der TU Wien vom 20.08.2019

Bei der Ionentherapie nutzt man komplizierte atomphysikalische Effekte, um Krebszellen zu zerstören. An der TU Wien identifizierte man nun einen Mechanismus, der das deutlich erleichtert.

In der Krebstherapie verwendet man heute oft Ionenstrahlen: Elektrisch geladene Atome werden auf den Tumor geschossen, um Krebszellen zu zerstören. Dabei sind es allerdings gar nicht die Ionen selbst, die den entscheidenden Schaden anrichten. Wenn Ionen durch festes Material dringen, können sie einen Teil ihrer Energie auf viele einzelne Elektronen verteilen, die sich dann mit recht niedriger Geschwindigkeit weiterbewegen – und genau diese Elektronen zerstören dann die DNA der Krebszellen.

Dieser Mechanismus ist vielschichtig und noch nicht vollständig verstanden. An der TU Wien konnte nun gezeigt werden, dass ein bisher in diesem Zusammenhang wenig beachteter Effekt eine wesentliche Rolle spielt: Durch den sogenannten interatomaren Coulomb-Zerfall kann ein Ion zusätzliche Energie an umliegende Atome abgeben. Dadurch wird sehr lokal eine erstaunlich große Anzahl von Elektronen frei – und zwar genau mit der passenden Energie, um die DNA der Krebszellen optimal zu schädigen. Um die besondere Wirksamkeit der Ionentherapie zu verstehen und weiter zu verbessern, muss dieser Mechanismus unbedingt mitberücksichtigt werden. Das Ergebnis wurde nun im Fachjournal „Journal of Physical Chemistry Letters“ publiziert.

Ein schnelles Teilchen – oder viele langsame

Wenn ein geladenes Teilchen mit hoher Geschwindigkeit durch ein Material dringt – zum Beispiel durch menschliches Gewebe – dann richtet es entlang seines Pfades ein großes atomphysikalisches Durcheinander an: „Eine ganze Kaskade von Effekten kann dadurch ausgelöst werden“, sagt Janine Schwestka, Erstautorin der aktuellen Publikation, die derzeit im Team von Prof. Friedrich Aumayr und Dr. Richard Wilhelm an ihrer Dissertation arbeitet. Wenn sich das Ion zwischen anderen Atomen hindurchbewegt, können diese und weitere Teilchen ionisiert werden, schnelle Elektronen fliegen herum, die dann wieder mit anderen Teilchen zusammenstoßen. Letztendlich kann ein schnelles, geladenes Ion einen Teilchenschauer aus hunderten Elektronen mit jeweils viel niedrigerer Energie auslösen.

Aus dem Alltag sind wir gewohnt, dass schnelle Objekte dramatischere Auswirkungen haben als langsame: Ein mit voller Wucht getretener Fußball richtet im Porzellanladen größeren Schaden an als ein sanft gerollter. Auf atomarer Ebene trifft das aber nicht zu: „Die Wahrscheinlichkeit, dass ein langsames Elektron einen DNA-Strang zerstört, ist viel größer. Ein sehr schnelles Elektron hingegen fliegt meistens einfach am DNA-Molekül vorbei, ganz ohne Spuren zu hinterlassen“, erklärt Janine Schwestka.

Von einer Elektronenschale zur anderen

Das Team der TU Wien nahm nun einen ganz besonderen Effekt genauer unter die Lupe – den interatomaren Coulomb Zerfall. „Die Elektronen des Ions können unterschiedliche Zustände annehmen. Je nachdem, wie viel Energie sie haben, befinden sie sich in einer der inneren Schalen, nahe am Atomkern oder in einer äußeren Schale“, sagt Janine Schwestka. Nicht alle möglichen Elektronen-Plätze sind besetzt. Wenn eine Elektronenschale im mittleren Energiebereich frei ist, dann kann ein Elektron aus einer Schale mit hoher Energie dorthin überwechseln. Dabei wird Energie frei – und die kann nun über den interatomaren Coulomb-Zerfall an das Material abgegeben werden: „Das Ion überträgt diese Energie auf mehrere Atome in der direkten Umgebung gleichzeitig. Aus all diesen Atomen wird jeweils ein Elektron herausgelöst, aber weil die Energie auf mehrere Atome aufgeteilt wird, handelt es sich dabei um lauter recht langsame Elektronen“, erklärt Schwestka.

Xenon und Graphen

Mit Hilfe eines ausgeklügelten Versuchsaufbaus konnte man nun zeigen, wie wirkmächtig dieser Prozess ist: Mehrfach geladene Xenon-Ionen wurden auf eine Graphen-Schicht geschossen. Elektronen aus den äußeren Xenon-Schalen wechseln auf eine Position in einer anderen Schale mit kleinerer Energie, dafür werden aus zahlreichen Kohlenstoff-Atomen der Graphen-Schicht Elektronen herausgelöst, die dann von einem Detektor aufgefangen werden, um ihre Energie messen zu können. „Tatsächlich konnten wir auf diese Weise zeigen, dass der interatomare Coulomb-Zerfall einen sehr wichtigen Beitrag zur Entstehung zahlreicher freier Elektronen im Material leistet“, sagt Prof. Friedrich Aumayr.

Um die Wechselwirkung von Ionenstrahlen mit festen Materialien oder organischem Gewebe richtig zu beschreiben, muss dieser Effekt unbedingt berücksichtigt werden. Wichtig ist das einerseits für die Optimierung von Ionenstrahltherapien zur Bekämpfung von Krebs, aber auch für andere wichtige Bereiche – etwa für die Gesundheit der Besatzung von Raumstationen, wo man ständigem Teilchenbombardement der kosmischen Strahlung ausgesetzt ist. (Florian Aigner)

Originalpublikation:
J. Schwestka et al., Charge-Exchange-Driven Low-Energy Electron Splash Induced by Heavy Ion Impact on Condensed Matter, J. Phys. Chem. Lett.201910XXX4805-4811

Externer Link: www.tuwien.ac.at

Knobeln auf dem Quanten-Schachbrett

Medieninformation der Universität Innsbruck vom 10.07.2019

Physiker der Universität Innsbruck schlagen ein neues Modell vor, mit dem die Überlegenheit von Quantencomputern gegenüber klassischen Supercomputern bei der Lösung von Optimierungsaufgaben gezeigt werden könnte. Sie demonstrieren in einer aktuellen Arbeit, dass schon wenige Quantenteilchen genügen würden, um das mathematisch schwierige Damenproblem im Schach auch für größere Schachbretter zu lösen.

Das Damenproblem ist eine schachmathematische Aufgabe, die schon den großen Mathematiker Carl Friedrich Gauß beschäftigt hat, für die er aber erstaunlicher Weise nicht die richtige Lösung fand. Es geht dabei um die Frage, wie acht Damen so auf einem klassischen Schachbrett mit 8 x 8 Feldern angeordnet werden können, dass sich keine davon gegenseitig schlagen können. Mathematisch kann noch relativ einfach ermittelt werden, dass es 92 verschiedene Möglichkeiten gibt, die Damen aufzustellen. Auf einem Schachbrett mit 25 x 25 Feldern sind es schon über 2 Billiarden Möglichkeiten. Allein die Berechnung dieser Zahl verschlang insgesamt 53 Jahre an CPU-Zeit.

Noch schwieriger wird die Aufgabe, wenn einige Damen bereits auf dem Feld stehen und bestimmte Diagonalen nicht besetzt werden dürfen. Vor kurzem wurde gezeigt, dass mit diesen zusätzlichen Einschränkungen das Problem mit 21 Damen durch klassische mathematische Algorithmen nicht mehr in angemessener Zeit gelöst werden kann. „Ich bin zufällig auf dieses Thema gestoßen und dachte mir, hier könnte die Quantenphysik ihre Vorteile ausspielen“, erzählt Wolfgang Lechner vom Institut für Theoretische Physik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften. Gemeinsam mit Helmut Ritsch und den Doktoranten Valentin Torggler und Philipp Aumann entwickelte Lechner ein Quanten-Schachbrett, auf dem das Damenproblem mit Hilfe der Quantenphysik experimentell gelöst werden könnte.

Aus Atomen werden Schachdamen

„Als Schachbrett kann ein optisches Gitter aus Laserstrahlen genutzt werden, in das einzelne Atome geladen werden“, erklärt Helmut Ritsch, der ebenfalls am Innsbrucker Institut für Theoretische Physik forscht. „Über die Einstellung der Wechselwirkung zwischen den Teilchen, können wir aus den Atomen Schachdamen machen, die sich nach den Schachregeln verhalten, sich also in allen Bewegungsrichtungen des Spiels aus dem Weg gehen.“ Diese Abstoßung der Teilchen wird mit Hilfe von Lasern erzeugt, die in den Bewegungsrichtungen eingestrahlt werden. Über einen optischen Resonator – zwei Spiegel oberhalb und unterhalb des optischen Gitters – wird diese Wechselwirkung noch einmal deutlich verstärkt und ist damit über deutlich größere Distanzen wirksam.

„Man könnte dieses Spiel auch mit sich entsprechend abstoßenden Billardkugeln spielen“, sagt Ritsch. „Weil es aber so viele Möglichkeiten gibt, würde das sehr, sehr lange dauern. Es ist deshalb entscheidend, dass die Atome sehr stark abgekühlt werden und deren Quanteneigenschaften zum Tragen kommen. Weil sie dann wie Wellen funktionieren, können die Teilchen viele Möglichkeiten gleichzeitig austesten und es zeigt sich sehr rasch, ob es eine nach Schachregeln gültige Lösung für die vorgegebenen Bedingungen gibt.

Quantenüberlegenheit nachweisen

Die Antwort auf die Frage, ob es unter den jeweils vorgegebenen Einschränkungen eine Lösung gibt, kann aus dem von den Atomen abgestrahlten Licht sehr leicht abgelesen werden. Die konkrete Anordnung der Atom-Damen könnte im Prinzip mittels Atommikroskopie ermittelt werden, ein Verfahren, das an vergleichbaren Aufbauten bereits erfolgreich demonstriert wurde.

Simulationen auf klassischen Computern deuten stark darauf hin, dass das von den Innsbrucker Theoretikern entworfene Experiment aufgrund der Quanteneigenschaften der Teilchen sehr viel rascher zu einem Ergebnis führen würde, als jeder mathematische Algorithmus auf einem klassischen Computer das schaffen könnte. „Damit ließe sich die Überlegenheit von Quantencomputern für die Berechnung von bestimmten Optimierungsproblemen mit diesem Experiment erstmals eindeutig nachweisen“, resümiert Wolfgang Lechner. „Die Kontrolle weniger Dutzend Atome gehört heute im Labor schon zum Standard, weshalb die Umsetzung dieser Idee vielleicht schon bald Realität werden könnte.“

Die Arbeit ist im Fachmagazin Quantum erschienen und wurde vom österreichischen Wissenschaftsfonds FWF, der Hauser-Raspe-Stiftung und der Europäischen Union finanziell unterstützt.

Publikation:
A Quantum N-Queens Solver. Valentin Torggler, Philipp Aumann, Helmut Ritsch, and Wolfgang Lechner. Quantum 3, 149 (2019)

Externer Link: www.uibk.ac.at