Selbstheilende Kupferschichten sorgen für Innovationssprung bei der Herstellung von Smartphones

Pressemitteilung der Universität des Saarlandes vom 12.11.2013

Wie ein Nervensystem verbinden elektronische Leiterplatten die Bauteile von Smartphones. Strom und Abwärme werden dort über komplexe, dreidimensionale Kupferbahnen geleitet. Die Herstellung dieser hauchdünnen Kupferverbindungen auf großflächigen Leiterplatten ist anspruchsvoll. Ein entscheidender Innovationssprung ist dabei Saarbrücker Materialwissenschaftlern um Professor Frank Mücklich gelungen. Mit einer selbstheilenden Kupferschicht, die dünner als ein Zehntel einer Haaresbreite ist, konnten sie das Verkupfern der Leiterplatten wesentlich erleichtern. Für diese patentierte Erfindung wurden den Forschern in Hamburg der Innovationspreis 2013 des Deutschen Kupferinstitutes verliehen.

„Damit Smartphones immer flacher und leistungsfähiger werden, müssen auch ihre elektronischen Bauelemente schrumpfen und auf filigrane Weise miteinander vernetzt werden. Eine elektronische Leiterplatte ist heute ein äußerst komplexes, dreidimensionales Gebilde“, sagt Frank Mücklich, Professor für Funktionswerkstoffe der Universität des Saarlandes und Leiter des Steinbeis-Forschungszentrums für Werkstofftechnik (MECS). Für die großflächige und präzise Fertigung von Leiterplatten wird das Galvanik-Verfahren genutzt. Die Leiterplatte wird dabei in eine kupferhaltige Säure, den Elektrolyt, getaucht. Dann fließt extrem starker elektrischer Strom durch die Platte und transportiert das Kupfer auf die Oberfläche und in winzige Bohrlöcher, die für spätere Bauteile und Kontakte vorgesehen sind. „Die Leiterplatte wird dadurch mit einer gleichmäßigen Kupferschicht überzogen, die dünner ist als ein Zehntel des Durchmessers eines menschlichen Haares“, erklärt der Materialforscher.

Die Leiterplatten werden dabei von säureresistenten Titanklammern gehalten, die den Strom auf die Platte leiten. „Diese Halterungen müssen eine enorme elektrische Energie auf wenigen Quadratmillimetern aushalten. Der extrem starke Strom schädigt sie bei jedem Durchlauf durch Funkenbildung, ähnlich wie ein Blitzeinschlag“, beschreibt Frank Mücklich das grundsätzliche Problem von modernen Galvanik-Anlagen. Gemeinsam mit den Materialwissenschaftlern Dominik Britz und Christian Selzner untersuchte er die Schädigungsvorgänge nicht nur im Elektronenmikroskop, sondern mit Hilfe von Tomographen auch in Nanodimensionen und sogar auf atomarer Ebene. „Wir mussten dabei erkennen, dass die bisherige Strategie nicht zum Erfolg führt. Es reicht nicht, immer neue Werkstoffe mit noch höherer Widerstandskraft gegen diese zerstörerischen, viele tausend Grad heißen Funken zu entwickeln“, erläutert Mücklich. Denn auch sehr teure Edelmetalle wie Platin konnten diesen Prozess letztlich nur verzögern, aber nicht aufhalten. Stattdessen fanden die Materialforscher ein äußerst sparsames und zuverlässiges Verfahren. „Dieses ähnelt der Heilung von Wunden, mit der unser Körper zeitlebens die Haut regeneriert“, vergleicht Frank Mücklich.

Wie in einem Karussell wandern die Kontakte jetzt in der Produktionsanlage im Kreis herum und werden genauso wie die Leiterplatten immer wieder mit einer neuen dünnen Kupferschicht überzogen. „Damit erzeugen wir eine recycelbare Verschleißschicht auf den Kontakten, heilen aufgetretene Schäden sofort aus und verbessern ganz nebenbei sogar die Leitfähigkeit der Halterungen um ein Vielfaches“, sagt der Materialforscher. Durch das neue Verfahren müssen die Halterungen in Zukunft nicht mehr aufwändig in den Produktionsstätten ausgebaut und ersetzt werden. Da in jeder der rund 600 Produktionsanlagen weltweit etwa 200 Halterungen im Einsatz sind, spart der Hersteller jetzt jährlich mehrere Millionen Euro. Professor Mücklich kann sich vorstellen, dass sich die selbst erneuernden Schutzschichten nach diesem Prinzip auch für andere Anwendungen einsetzen lassen. „Wenn Bauteile während der Produktion stark beansprucht werden, sollte man nicht nur über Hightech-Werkstoffe wie Titan nachdenken, sondern auch vergleichsweise alte, aber nicht weniger geeignete Materialien wie Kupfer oder Kupferlegierungen in die Überlegungen einbeziehen“, sagt Mücklich.

Für ihre Materialanalysen nutzen die Saarbrücker Wissenschaftler verschiedene dreidimensionalen Verfahren, um zum Beispiel die so genannte Elektroerosion an den Werkstoffen, die durch starke Stromflüsse ausgelöst wird, zu bewerten. „Wir haben dafür hoch auflösende Elektronenmikroskope sowie die Nano-Tomographie und Atomsonden-Tomographie eingesetzt. Die dabei erfassten Bildserien werden anschließend im Computer wieder zum exakten räumlichen Abbild zusammengefügt – bis hin zum einzelnen Atom“, erläutert Professor Mücklich. Bei der Suche nach robusten Materialien setzen die Wissenschaftler auch das Laserstrahlauftragsschweißen (Lasercladding) ein, um in mikroskopischen Lagen verschiedene Materialien auf einen Werkstoff aufzutragen. Außerdem bearbeiten die Saarbrücker Wissenschaftler Materialoberflächen mit dem so genannten Laserinterferenz-Verfahren, um Werkstoffe zum Beispiel härter und widerstandsfähiger zu gestalten.

Hintergrund: Innovationspreis des Deutschen Kupferinstituts

Der Innovationspreis des Deutschen Kupferinstituts wird jedes Jahr für ein neues Verfahren verliehen, das die deutsche Kupferindustrie im internationalen Wettbewerb voranbringt. Professor Frank Mücklich erhielt den Innovationspreis gemeinsam mit seinen wissenschaftlichen Mitarbeitern Dominik Britz und Christian Selzner für ihren „wegweisenden Beitrag für die Entwicklung innovativer Produkte aus Kupfer und Kupferlegierungen“, so die Jury. Der mit 2.500 Euro dotierte Innovationspreis wurde auf der Jahrestagung des Deutschen Kupferinstituts in Hamburg verliehen.

Externer Link: www.uni-saarland.de

Neue Spiegeltechnologie direkt aus dem Quantenphysiklabor

Pressemeldung der Universität Wien vom 18.10.2013

Quantenphysiker an der Universität Wien liefern ein weiteres Beispiel dafür, wie aus fundamentaler Forschung unerwartet technologische Innovationen entstehen können. Das Start-Up-Unternehmen „Crystalline Mirror Solutions“ (CMS) ist spezialisiert auf die Herstellung von Hochleistungs-Spiegeln für präzise optische Messungen. Das Unternehmen, gegründet von Garrett Cole und Markus Aspelmeyer, ist ein Spin-Off der Quantenforschung an der Fakultät für Physik der Universität Wien und dem Vienna Center for Quantum Science and Technology (VCQ).

Die präzisesten Messungen von Zeit und Raum basieren heutzutage auf Laserlicht, das in sogenannten optischen Resonatoren zwischen hochreflektierenden Spiegeln hin- und hergeworfen wird. Die erreichbare Genauigkeit dieser Messungen ist durch die Eigenschaften der Resonatorspiegel fundamental beschränkt. Als besonders große Hürde der letzten zehn Jahre stellte sich dabei die thermische Bewegung der optischen Beschichtungen heraus, die die reflektierenden Elemente der Spiegel bilden. Diese mechanische Bewegung prägt der Messung ein unvermeidbares „thermisches Rauschen“ auf.

„Unsere Spiegel sind ein großer Sprung nach vorne in der Technologie optischer Beschichtungen“, erläutert Garrett Cole, Mitbegründer und Geschäftsführer von Crystalline Mirror Solutions.

Ein eigens entwickelter Beschichtungsprozess ermöglicht die Verbindung von hoch-reflektierenden monokristallinen Halbleiterfilmen mit nahezu beliebigen optischen Bauteilen. Dadurch können die einzigartigen Eigenschaften von Halbleiter-Einkristallen erstmals für optische Präzisionsmessungen genutzt werden. Garrett Cole erklärt: „Verglichen mit früheren Technologien lässt sich das Messrauschen durch diese einzigartige Kombination sofort um einen Faktor 10 reduzieren – und wir wissen, dass wir noch besser werden können.“ Ein internationales Patent ist bereits angemeldet und bringt das junge Unternehmen in eine strategisch hervorragende Position als weltweit einzige Anbieter dieser neuen Beschichtungstechnologie.

Die Verbesserung der Messgenauigkeit und Stabilität von optischen Präzisionsmessungen hat weitreichendes Anwendungspotential: angefangen bei Experimenten der Grundlagenforschung bis hin zu fortgeschrittenen Anwendungen wie chemische Spurenanalyse, Trägheitsnavigationssysteme und Breitbandkommunikation. Erste erfolgreiche Messungen an den neuen kristallinen Spiegeln wurden in Zusammenarbeit mit der Universität Wien und JILA, dem Joint Institute der Universität von Colorado-Boulder und dem „National Institute of Standards and Technology“, in Boulder, Colorado (USA), durchgeführt und erst kürzlich in der August-Ausgabe von Nature Photonics vorgestellt („Tenfold reduction of Brownian noise in high-reflectivity optical coatings“; doi: 10.1038/nphoton.2013.174). Die Ergebnisse sind bereits auf großes Echo gestoßen, sowohl von Seiten der Wissenschaft als auch von möglichen Industriepartnern.

Bei einer kürzlich in Elba abgehaltenen Tagung zum Thema „Gravitationswellendetektoren“ wurde die von CMS entwickelte kristalline Beschichtungstechnologie  einstimmig zum „spannendsten Ergebnis der Tagung“ erklärt. Derzeit arbeitet CMS mit wissenschaftlichen Partnern an den führenden nationalen Metrologie-Instituten Deutschlands und der USA, der Physikalisch-Technischen Bundesanstalt (PTB) in Braunschweig und dem National Institute for Standards (NIST) in Boulder daran, mit neuen optischen Resonatoren die präziseste Uhr der Welt zu bauen.

Start-up in Österreich leicht gemacht

„Die ursprüngliche Idee für diese Spiegeltechnologie hatten wir eher zufällig während unserer aktuellen Forschung an makroskopischen Quantenphänomenen in mechanischen Systemen hier an der Fakultät für Physik – sozusagen ein klassisches ‚Abfallprodukt'“, so Markus Aspelmeyer. „Die Universität Wien war dann besonders hilfreich, die wichtigen Kontakte ‚außerhalb des Elfenbeinturms‘ herzustellen“.

Nach der Beratung durch INiTS (das Wiener Gründungszentrum der Stadt Wien, der Universität Wien und der Technischen Universität Wien), erhielt CMS eine Förderung sowohl durch das von der AWS abgewickelte JITU-Preseed Programm des BMWFJ, als auch durch die neu gegründete Proof of Concept-Initiative des European Research Council (ERC), welches letztendlich zur Gründung der Firma führte. „Die frühe Unterstützung durch AWS und ERC hat es uns erlaubt, sehr rasch einen ersten Prototypen zu entwickeln. Nachdem sich die Technologie dann als funktionstüchtig erwiesen hatte, waren wir von dem großen Interesse der Fachwelt an unseren Spiegeln sehr überwältigt, aber auch überfordert. Die einzige Möglichkeit, die Nachfrage erfüllen zu können, war, die Technologie auszugliedern und ein eigenes Start-Up zu gründen“, erläutert Markus Aspelmeyer: „Das ist ein wunderbares Beispiel dafür, wie zweckfreie Grundlagenforschung durchaus auch kurzfristig High-Tech-Produkte für Industrie und Wissenschaft generieren kann“.

Externer Link: www.univie.ac.at

Gemeinsam stärker in der Quantenwelt

Presseinformation der LMU München vom 15.10.2013

LMU-Wissenschaftler haben einen bisher unbekannten Effekt entdeckt, der einen Störfaktor bei der Nutzung von Quanteneffekten ausbremsen kann – dies könnte besonders die Quanteninformationsverarbeitung entscheidend voranbringen.

Wie die Welt und das Universum im Großen funktionieren, wird durch die Gesetze der klassischen Physik beschrieben. Dabei sind der Zustand eines Systems und damit dessen Zukunft eindeutig durch die Orte und Geschwindigkeiten der einzelnen Teilchen bestimmt. Auf mikroskopischer Ebene, wo sich die Dynamik auf sehr kleinen Energieskalen abspielt – etwa wenn man Atome oder die Elektronen in einem Festkörper betrachtet – öffnen sich neue Dimensionen: Hier kommen die Gesetze der Quantenphysik zum Tragen. Das bedeutet, dass sich verschiedene klassische Zustände überlagern und Ort und Geschwindigkeit eines Teilchens nur mit Hilfe von Wahrscheinlichkeiten beschrieben werden können.

„Damit steht dem System eine viel größere Menge von möglichen Zuständen zur Verfügung. Es ist wesentlich komplexer und schwieriger zu beschreiben, bietet aber auch mehr Möglichkeiten für technische Anwendungen“, sagt der LMU-Physiker Dr. Thomas Barthel. Eine mögliche Anwendung, in die viele Hoffnungen gesetzt werden, sind etwa Quantencomputer: Die Miniaturisierung unserer normalen Computer stößt an ihre Grenzen, weil die Leiterbahnen so eng und klein werden, dass Quanteneffekte relevant werden. Mit Quantencomputern versucht man einen Paradigmenwechsel einzuleiten, bei dem Quanteneffekte nicht mehr limitierende Störungen darstellen, sondern gezielt ausgenutzt werden, um bisher unerreichte Rechnerleistungen zu erzielen.

Allerdings gibt es bei der Nutzung von Quanteneffekten eine Schwierigkeit: Wenn ein quantenmechanisches System nicht komplett abgeschirmt ist, sondern in Wechselwirkung mit seiner Umwelt tritt, werden seine quantenmechanischen Eigenschaften zerstört. In dem Moment, in dem im Labor ein Quantensystem – etwa ein Atom – gemessen wird, entscheidet sich das System für einen Zustand, sodass die Überlagerung irreversibel verschwindet. Bei einer Kopplung des Quantensystems an seine Umgebung passiert dies ganz ähnlich. Die Umwelt macht eine Art Messung und lässt die Quanteninformation zerfallen. „Dann folgt unser System den Gesetzen der normalen – langweiligen – klassischen Mechanik“, sagt Barthel.

Vielfalt verschwindet in Vielteilchensystemen langsamer

Dieses Phänomen wird Dekohärenz genannt und ist der Feind jedes Experimentators, der die quantenmechanischen Eigenschaften eines Systems untersuchen oder für technische Zwecke ausnutzen möchte. Typischerweise erfolgt der Zerfall der quantenmechanischen Eigenschaften exponentiell mit der Zeit. In ihrer neuen Studie haben Barthel und sein Kollege Dr. Zi Cai nun untersucht, was passiert, wenn nicht die typischen einfachen Quantensysteme (z.B. ein einzelnes Elektron oder Ion) untersucht werden, sondern sogenannte Vielteilchensysteme mit sehr großer Teilchenzahl. Dazu gehören etwa Elektronen in einem Festkörper. „Dabei haben wir entdeckt, dass sich das Zerfallsgesetz der Quanteninformation qualitativ ändern kann“, erklärt Barthel: Besteht das Quantensystem aus sehr vielen Teilchen, die untereinander wechselwirken, kann die Zerfallszeit gegen unendlich gehen. In diesem Fall folgt der Zerfall einem Potenzgesetz – und ist damit sehr viel langsamer als in einfachen Systemen. Indem die Teilchen zusammenarbeiten, können sie also den zerstörerischen Einfluss der Umwelt minimieren.

Damit haben die Wissenschaftler einen bisher unbekannten fundamentalen Effekt entdeckt, der für zukünftige Experimente und technische Anwendungen von großer Bedeutung ist. „Mit unserer Studie liefern wir allgemein das Handwerkszeug, um die Dekohärenz in Quantenvielteilchensystemen tunen zu können – dies ist insbesondere für das Feld der Quanteninformationsverarbeitung ein wichtiger Fortschritt“, betont Barthel. Unter anderem könnte man den neu entdeckten Effekt bei der Realisierung von Quantencomputern und bei der Simulation von Quantensystemen mithilfe anderer gut kontrollierbarer Quantensysteme ausnutzen. (göd)

Publikation:
Physical Review Letters 2013

Externer Link: www.uni-muenchen.de

Zukunftsmaterial Graphen wird Computerchip-kompatibel

Presseaussendung der TU Wien vom 16.09.2013

An der TU Wien wird erforscht, welche technologischen Möglichkeiten Graphen bietet. Nun gelang es, Graphen-Lichtdetektoren mit gewöhnlichen Halbleiterchips zu kombinieren.

Information wird heute meist in Form von Licht übertragen – etwa in Glasfaserkabeln. Unsere Computerchips allerdings arbeiten elektronisch. Irgendwo zwischen optischem Daten-Highway und elektronischem Computerchip müssen also mit Hilfe von Licht-Detektoren Photonen in Elektronen konvertiert werden. An der TU Wien ist es nun gelungen, einen Graphen-Photodetektor direkt mit einem herkömmlichen Silizium-Chip zu kombinieren. Damit lässt sich Licht aus allen wichtigen Telekommunikations-Frequenzen in elektrische Signale umwandeln. Die Forschungsergebnisse werden nun im Fachjournal „Nature Photonics“ präsentiert.

Computer-Power aus Kohlenstoff?

Sowohl Forschung als auch die Industrie setzen große Hoffnungen in Graphen. Das Material, das aus einer einzelnen Schicht von sechseckig angeordneten Kohlenstoff-Atomen besteht, hat ganz besondere Eigenschaften. Schon vor zwei Jahren erkannte das Team rund um Thomas Müller am Institut für Photonik der TU Wien, dass sich Graphen bestens eignet, um aus Licht elektrischen Strom zu erzeugen. „Es gibt viele Materialien, die Licht in elektrische Signale umwandeln können. Graphen erlaubt aber eine ganz besonders schnelle Konversion“, erklärt Thomas Müller. Will man also große Datenmengen in kurzer Zeit übertragen, wird man in Zukunft wohl auf Graphen zurückgreifen.

Vom Beweis, dass sich das Material grundsätzlich dafür eignet bis zur Verwendung im Chip war es ein weiter Weg – doch nun ist es tatsächlich gelungen, einen Graphen-Photodetektor in einen Chip einzubauen. Neben dem Team der TU Wien war auch die Johannes Kepler Universität Linz an dem Projekt beteiligt.

„Ein dünner Lichtwellenleiter mit einem Querschnitt von etwa 200 mal 500 Nanometern leitet das optische Signal auf dem Silizium-Chip zu einer Graphen-Schicht. Diese wandelt das Licht in ein elektrisches Signal um, das dann direkt im Chip weiterverarbeitet werden kann“, erklärt Thomas Müller.

Vielseitig und kompakt

Es gab bereits Versuche, Photodetektoren aus anderen Materialien – etwa Germanium – direkt in Chips zu integrieren. Allerdings können diese Materialien nur Licht eines engen Wellenlängenbereiches verarbeiten. Wie das Forschungsteam zeigen konnte, kommt Graphen mit allen Licht-Wellenlängen, die heute in der Datenübertragung verwendet werden, gleichermaßen zurecht.

Der Graphen-Photodetektor ist nicht nur extrem schnell, er kann auch extrem kompakt gebaut werden. Auf einem Chip von einem Quadratzentimeter lassen sich 20.000 solcher Detektoren unterbringen – damit könnte man den Chip theoretisch über 20.000 verschiedene Informationskanäle mit Daten versorgen.

Mehr Geschwindigkeit, weniger Stromverbrauch

„Wichtig sind solche Technologien nicht nur für die Übermittlung von Daten über weite Strecken. Auch innerhalb von Computern gewinnt optische Datenübertragung an Bedeutung“, erklärt Thomas Müller. Wenn Großrechner mit vielen Prozessorkernen gleichzeitig arbeiten, muss viel Information zwischen diesen Kernen ausgetauscht werden. Wenn man mit Graphen ultraschnell zwischen elektrischem Strom und Licht wechseln kann, dann lassen sich diese Daten optisch übertagen. Das bringt mehr Geschwindigkeit und senkt den Energiebedarf. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Atome und Supraleiter als Quantenschnittstelle auf einem Mikrochip

Pressemitteilung der Universität Tübingen vom 29.08.2013

Tübinger Forscher entwickeln einen neuen Baustein für die Quantenelektronik

Die Gesetzmäßigkeiten der Quantenphysik bilden die Basis für die Entwicklung von Hardware für künftige Informationstechnologien. Informationsträger sind Quanten, die in Quantenbits, kurz Qubits, verarbeitet werden. Sie machen die Kommunikation abhörsicher und erlauben außerordentlich schnelle Recherchen in Datenbanken. Qubits sind jedoch recht instabil. Die Professoren József Fortágh, Dieter Kölle, und Reinhold Kleiner vom Physikalischen Institut der Universität Tübingen haben einen neuen elektronischen Baustein entwickelt, der dieser Eigenschaft Rechnung tragen soll: Ihr langfristiges Ziel ist es, Quantensuperpositionszustände wie zum Beispiel die gleichzeitige Überlagerung der klassischen Bits Null und Eins zu verarbeiten, zu übertragen und zu speichern. Über die ersten Forschungsergebnisse auf diesem Weg berichten die Wissenschaftler in der Zeitschrift „Nature Communications“ am 29. August 2013.

Die Tübinger Forscher wollen zwei Systeme koppeln, um von beiden die Vorteile zu nutzen: Supraleitende Schaltungen, die mit Standardtechnologien auf Mikrochips strukturiert werden, können Quanteninformationen schnell verarbeiten, sie jedoch nicht über längere Zeit speichern. Atome, die die kleinsten elektronischen Schaltkreise der Natur darstellen, können hingegen – gruppiert in einem Ensemble – als natürlicher Quantenspeicher dienen. „In der Kombination sollen künftig Informationen aus den supraleitenden Schaltkreisen in ein Atomensemble zur Speicherung übertragen werden“, erklärt József Fortágh.

Die Atome werden durch Magnetfelder über der Chipoberfläche gefangen und in der Schwebe gehalten. Da Supraleiter den elektrischen Strom ohne Widerstand leiten, klingt der Strom in einem supraleitenden Ring nie ab. Auf dieser Grundlage haben die Doktoranden Helge Hattermann, Daniel Bothner und der Postdoktorand Simon Bernon aus den beteiligten Arbeitsgruppen eine komplexe supraleitende Ringstruktur und einen besonders stabilen und störungsfreien Speicher für Atome konstruiert. Die Forscher überprüfen selbst in ihrem System, wie lange Quantenzustände von Atomen in dieser Falle überleben: Sie verwenden die Atome als Uhr.

Den Takt zur Definition der Sekunde gibt uns heute das Cäsiumatom mit etwa neun Milliarden Schwingungen pro Sekunde zwischen zweien seiner Quantenzustände vor. Rubidium, das Atom, das in Tübingen für die Experimente verwendet wird, dient als sekundärer Zeitstandard. Die Präzision einer Atomuhr rührt von der stetigen Überlagerung der Quantenzustände her. Wie nach dem Anstoßen des Pendels einer Schwarzwalduhr klingt auch bei einer Atomuhr die Schwingung nach einiger Zeit ab – nämlich dann, wenn die Quantensuperpositionszustände zerfallen.

Die auf dem supraleitenden Chip integrierte Atomuhr im Tübinger Laboratorium zeigt an, dass Quantensuperpositionszustände von Atomen am Chip über mehrere Sekunden lang erhalten bleiben. Im Vergleich dazu sind Quantenspeicher auf Festkörperbasis mit Kohärenzzeiten im Mikrosekundenbereich flüchtig. „Dieses Ergebnis ebnet den Weg zur Realisierung neuer quantenelektronischen Komponenten für die Informationsverarbeitung“, sagt József Fortágh. Als Nächstes planen die Forscher des CQ Center for Collective Quantum Phenomena an der Universität Tübingen Experimente an Atomen in supraleitenden Mikrowellenresonatoren, die als Datenbus zwischen integrierten Schaltungen und Atomen dienen könnten.

Die Forschungen werden von der Deutschen Forschungsgemeinschaft (DFG Sonderforschungsbereich TRR21) und dem Europäischen Forschungsrat (ERC) gefördert.

Originalpublikation:
S. Bernon, H. Hattermann, D. Bothner, M. Knufinke, P. Weiss, F. Jessen, D. Cano, M. Kemmler, R. Kleiner, D. Koelle & J. Fortágh: Manipulation and coherence of ultra-cold atoms on a superconducting atom chip. Nature Communications, Online-Veröffentlichung, DOI: 10.1038/ncomms3380

Externer Link: www.uni-tuebingen.de