Quantensimulator überflügelt Computer

Presseaussendung der Universität Innsbruck vom 16.07.2021

In der Fachzeitschrift Nature haben Innsbrucker Physiker um Andreas Läuchli gemeinsam mit Kollegen in Frankreich einen Quantensimulator für große Vielteilchensysteme präsentiert. Die Wissenschaftler konnten mit dem Simulator antiferromagnetische Materiezustände mit bis zu 200 Atomen erzeugen. Mit klassischen Simulationen lassen sich solche Festkörperphänomene kaum mehr untersuchen.

Quanteneigenschaften in Festkörpern lassen sich nur sehr schwer analysieren. Quantensimulatoren bieten hier neue Möglichkeiten: Mit ihnen können die Wechselwirkungen einzelner Teilchen in einem Vielteilchensystem unter sehr gut kontrollierten Bedingungen studiert werden. Gemeinsam mit Experimentalphysikern am Laboratoire Charles Fabry der Universität Paris-Saclay hat das Team um Andreas Läuchli vom Institut für Theoretische Physik der Universität Innsbruck nun einen Quantensimulator mit bis zu 200 Atomen präsentiert. „Im Vergleich zu bisher verfügbaren Systemen stellt dies einen Meilenstein dar“, freut sich Andreas Läuchli. „Wir kommen hier in eine Größenordnung, in der klassische Computersimulationen an ihre Grenzen stoßen.“

Materialproben von beliebigem Zuschnitt

Das Experiment der französischen Physiker kann bis zu 200 Rubidium-Atome mit optischen Pinzetten einfangen und miteinander zur Wechselwirkung bringen. Mit Hilfe der Pinzetten lassen sich dabei beliebige Anordnungen erzeugen. Die Atome werden zunächst in den Grundzustand gekühlt und dann mit Hilfe von Laserlicht einzeln angeregt. Die Anregung in den sogenannten Rydberg-Zustand, bei dem die Elektronenwolke um den Atomkern eine riesige Ausdehnung erreicht, führt zur Wechselwirkung zwischen benachbarten Atomen. Auf diese Weise lässt sich zum Beispiel antiferromagnetische Materie nachbilden. Im Experiment wurden Antiferromagneten auf Quadratgittern und Dreiecksgittern erzeugt. „Die Dreiecksgitter sind unsere Spezialität“, betont Michael Schuler, der zur Zeit der Entstehung der Studie Post-Doc an der TU Wien war. „Hier konnten wir sogar zwei unterschiedliche antiferromagnetische Zustände erzeugen.“

Quantensimulator überlegen?

An der Universität Innsbruck haben die Theoretiker um Andreas Läuchli die untersuchten Materiezustände mit Hilfe von Computersimulationen auf Hochleistungsrechnern überprüft. „Die Ergebnisse zeigen eine hohe Übereinstimmung mit dem Experiment“, sagt Alexander Eberharter. Diese Überprüfung am Computer kommt freilich an ihre Grenzen: Während die Simulation für 100 Teilchen auf dem Hochleistungsrechner LEO der Universität Innsbruck bereits mehrere Wochen gedauert hat, liefert der Quantensimulator Ergebnisse für 200 Teilchen in weniger als einem Tag. Mit der Größe der erzeugten Gitter und der damit steigenden Anzahl von Teilchen, wächst der Aufwand für die Computersimulation exponentiell an. „Die nächste Generation von Experimenten mit einigen Hundert Atomen wird somit in einen Bereich vorstoßen, in dem Computersimulationen mit einem vertretbaren Aufwand keine exakten Ergebnisse mehr liefern können.“ Unabhängig davon bleiben die Simulationen der Theoretischen Physiker für die Beschreibung und Validierung der Experimente wichtig. Auch liefern sie Hinweise, in welchen Bereichen der Quantensimulator weiter verbessert werden kann.

Optimierungsprobleme lösen

Der auf Rydberg-Atomen basierende Quantensimulator bietet nicht nur die Möglichkeit, Phänomene der Festkörperphysik im Detail zu studieren. „Es gibt zahlreiche Vorschläge, auch von Kollegen an unserem Institut, solche Systeme für die Lösung von Optimierungsproblemen einzusetzen“, sagt Andreas Läuchli. Ob dies tatsächlich möglich ist, bleibt vorerst noch offen. „Mit der aktuellen Arbeit haben wir jedenfalls einen wichtigen Schritt in diese Richtung gemacht.“

Die Arbeit wurde unter anderem vom österreichischen Wissenschaftsfonds FWF und der Europäischen Union finanziell unterstützt.

Externer Link: www.uibk.ac.at

Hochtemperatur-Supraleitung verstehen – mit ultratiefen Temperaturen

Presseaussendung der TU Wien vom 21.07.2021

Eine überraschende Entdeckung an der TU Wien könnte helfen, das Rätsel der Hochtemperatur-Supraleitung zu lösen: Ein berühmtes „Strange Metal“ stellte sich als Supraleiter heraus.

Bei tiefen Temperaturen verlieren bestimmte Materialien ihren elektrischen Widerstand und können Strom völlig verlustfrei leiten – dieses Phänomen, die Supraleitung, ist zwar schon seit 1911 bekannt, doch bis heute ist es nicht vollständig verstanden. Und das ist schade, denn ein Material, das auch bei hohen Temperaturen immer noch supraleitende Eigenschaften hätte, würde wohl eine technologische Revolution auslösen.

An der TU Wien gelang nun eine Entdeckung, die ein wichtiger Schritt in diese Richtung sein könnte: Ein Festkörperphysik-Forschungsteam untersuchte ein ungewöhnliches Material – ein sogenanntes „Strange Metal“ aus Ytterbium, Rhodium und Silizium. Strange Metals zeigen einen ungewöhnlichen Zusammenhang zwischen elektrischem Widerstand und Temperatur. Bei diesem Material ist dieser Zusammenhang in einem besonders großen Temperaturbereich zu sehen, und der zugrundeliegende Mechanismus ist bekannt. Entgegen bisheriger Annahmen stellte sich nun heraus, dass dieses Material außerdem ein Supraleiter ist und die Supraleitung eng mit dem Strange-Metal-Verhalten in Verbindung steht. Das könnte der Schlüssel zum Verständnis von Hochtemperatur-Supraleitung auch in anderen Materialklassen sein.

Strange Metal: linearer Zusammenhang von Widerstand und Temperatur

Bei gewöhnlichen Metallen steigt der elektrische Widerstand bei tiefen Temperaturen mit dem Quadrat der Temperatur. Bei manchen Hochtemperatur-Supraleitern ist die Situation aber völlig anders: Bei tiefen Temperaturen, unterhalb der sogenannten supraleitenden Sprungtemperatur, zeigen sie überhaupt keinen elektrischen Widerstand, und oberhalb dieser Temperatur steigt der Widerstand linear statt quadratisch mit der Temperatur. Man spricht in diesem Fall von „Strange Metals“ – von „seltsamen Metallen“.

„Man hat daher in den letzten Jahren bereits vermutet, dass dieser lineare Zusammenhang zwischen Widerstand und Temperatur eine ganz wichtige Bedeutung für die Supraleitung hat“, sagt Prof. Silke Bühler-Paschen, die am Institut für Festkörperphysik der TU Wien den Forschungsbereich „Quantum Materials“ leitet. „Doch leider kannte man bisher kein geeignetes Material, um das wirklich gut untersuchen zu können.“ Bei Hochtemperatur-Supraleitern ist der lineare Zusammenhang zwischen Temperatur und Widerstand meist nur in einem relativ kleinen Temperaturbereich nachweisbar und außerdem können verschiedene komplizierte Effekte, die bei höheren Temperaturen unweigerlich auftreten, diesen Zusammenhang auf komplizierte Weise beeinflussen.

Viele Experimente wurden mit einem exotischen Material (YbRh2Si2) durchgeführt, in dem das Strange-Metal-Verhalten in einem extrem weiten Temperaturbereich sichtbar ist – doch erstaunlicherweise schien gerade aus diesem extremen „Strange Metal“-Zustand heraus keine Supraleitung zu entstehen. „Es gab bereits theoretische Überlegungen, um zu begründen, warum Supraleitung hier einfach nicht möglich ist“, sagt Silke Bühler-Paschen. „Wir beschlossen trotzdem, uns dieses Material noch einmal näher anzusehen.“

Rekordverdächtige Kälte

An der TU Wien steht ein besonders leistungsfähiges Tieftemperaturlabor zur Verfügung. „Dort können wir Materialien bei extremeren Bedingungen untersuchen als das anderen Forschungsgruppen bisher möglich war“, erklärt Silke Bühler-Paschen. So konnte man zunächst zeigen, dass in YbRh2Si2 der lineare Zusammenhang zwischen Widerstand und Temperatur sogar in einem noch größeren Temperaturbereich gegeben ist als bisher gedacht – und dann gelang die entscheidende Entdeckung: Bei extrem tiefen Temperaturen von nur einem Millikelvin wird aus dem Strange Metal ein Supraleiter.

„Damit ist unser Material optimal geeignet, um herauszufinden, auf welche Weise das Strange-Metal-Verhalten zur Supraleitung führt“, sagt Silke Bühler-Paschen.

Paradoxerweise sorgt gerade die Tatsache, dass das Material erst bei sehr tiefen Temperaturen supraleitend wird, dafür, dass sich damit Hochtemperatur-Supraleitung besonders gut erforschen lässt: „Die Mechanismen, die zu Supraleitung führen, sind bei diesen extrem niedrigen Temperaturen besonders gut sichtbar, weil sie dort nicht von anderen Effekten überlagert werden. In unserem Material ist dies die Lokalisierung eines Teils der Leitungselektronen an einem quantenkritischen Punkt. Es erscheint wahrscheinlich, dass derselbe Mechanismus auch für das Verhalten von Hochtemperatur-Supraleitern wie den berühmten Cupraten verantwortlich ist“, sagt Silke Bühler-Paschen. (Florian Aigner)

Originalpublikation:
D.H. Nguyen et al., Superconductivity in an extreme strange metal, Nature Communications (2021).

Externer Link: www.tuwien.at

Isolatoren: Sicher unter Höchstbelastung

Presseaussendung der TU Graz vom 10.06.2021

Isolatorketten verbinden das stromführende Leiterseil mit dem Freileitungsmast. Forscher der TU Graz simulierten erstmals, wann und unter welchen Bedingungen unterschiedliche Belastungen auf diese Ketten wirken. Freileitungen werden damit noch sicherer.

Sie sind klein und unscheinbar, spielen bei der Betriebssicherheit von Hochspannungsleitungen aber im wahrsten Sinne des Wortes eine „tragende Rolle“: Isolatorketten. Sie verbinden das stromführende Leiterseil mit dem Strommast. Durch ihre geringe Leitfähigkeit verhindern sie, dass der Stromkreis über den Mast geschlossen und ein Kurzschluss verursacht wird. Zudem tragen sie das gesamte Gewicht der Leiterseile mitsamt der durch Wind oder Eis verursachten Zusatzlasten. Die Last, die dabei von einer Isolatorkette auf den Mast bzw. auf dessen Ausleger wirkt, kann mehr als 40 Tonnen (>400kN) betragen. Bricht ein Strang einer Mehrfachkette (sogenannter Primärbruch), müssen die übrigen Stränge den hochdynamischen Stoß abfangen, um einen Komplettbruch zu vermeiden. Nur so wird gewährleistet, dass der notwendige Sicherheitsabstand zum Boden beibehalten werden kann und das Leiterseil weiter sicher am Mast hängt. Denn fällt ein 380kV-Freileitungsseil auf den benachbarten Ausleger oder auf den Boden, stellt das ein immenses Risiko dar.

Erstmalige Simulation komplexer Lastumlagerungen

Christian Landschützer, Forscher am Institut für Technische Logistik der TU Graz, hat gemeinsam mit seinem Team solche hochdynamischen Lastumlagerungsprozesse simuliert – also den Vorgang angefangen vom Primärbruch einer Isolatorkette, über die daraus resultierenden Schwingungen bis zum Zeitpunkt, an dem sich alle Leiterseile wieder in Ruhelage befinden. Untersucht wurden Dreifachabspannketten (das sind drei parallele Isolatorstränge) der Weizer Firma Mosdorfer. In diesen Ketten hat Mosdorfer ein selbst entwickeltes und patentiertes Dämpferelement als Schutzvorrichtung verbaut. Bricht ein Isolatorstrang, soll das Dämpferelement die stoßartige Belastung auf ein beherrschbares Niveau reduzieren, dass die verbleibenden Isolatorenstränge nicht auch brechen und das Herabfallen des Leiterseils aufgrund dieses Sekundärbruches somit verhindern.

Es waren die weltweit ersten Untersuchungen dieser Art. Bisher wurden solche Simulationen nur sehr vereinfacht durchgeführt. Plastische Verformungen wurden vernachlässigt oder gar nicht abgebildet, da alle Bauteile bisher relativ steif waren. „Aufgrund des dritten Isolatorenstranges und des Dämpferelements mussten wir uns erstmals in den dreidimensionalen Bereich begeben und zwei Simulationsmethoden miteinander koppeln; ein Detailniveau, das softwareseitig und aufgrund der notwendigen Rechnerleistung erst seit wenigen Jahren überhaupt möglich ist“, erklärt Landschützer und schildert die weiteren Herausforderungen: „Um die Lastumlagerung vollständig abbilden zu können, mussten wir ein Mehrkörpersimulationsmodell sowie Modelle nach der Finite-Element-Methode (numerisches Verfahren zur Berechnung des Strukturverhaltens einzelner Objektbereiche, Anm.)  erstellen und diese dann miteinander koppeln, damit sie zeitsynchron den hochdynamischen Vorgang (dieser dauert nur ca. 0,2 Sekunden) berechnen können.“ Einerseits wurden die Seildynamik und das Bewegungsverhalten der Isolatorenstränge modelliert. Andererseits wurde die plastische Verformung des Dämpferelements abgebildet. Und das Team des Instituts für Technische Logistik hat zu jeder einzelnen Kette den Bruch aller drei Isolatorstränge, sowohl auf der Mast- als auch auf der Seilseite simuliert.

Geringerer Testaufwand und Kostenersparnisse

In den Simulationen konnten die Forscher des Instituts für Technische Logistik ganz genau zeigen, wann und unter welchen Bedingungen unterschiedliche Belastungen auf die Isolatorstränge wirken. Dadurch können diese nun höher ausgelastet bzw. schlanker dimensioniert werden, da die Belastungen durch die Simulation besser bekannt sind. Landschützer: „Unterm Strich bedeutet das einen effizienten Materialeinsatz und eine Kostenoptimierung in der Produktion.“

Kosten werden auch auf anderer Ebene eingespart: Bislang wurden die Isolatorketten in einer Versuchsanlage getestet, die es in Europa in dieser Form nur einmal gibt. Die Versuche werden dort im Maßstab eins zu eins durchgeführt und verursachen zusätzliche (Material-)Kosten, bei einer gleichzeitig stark limitierten Anzahl an Versuchsvarianten. „Unsere Ergebnisse beweisen, dass die Simulationsmethode aufwendige Versuche ersetzen kann – bei gleichbleibender Qualität, mehr Flexibilität und höherem Erkenntnisgewinn“, freut sich Landschützer. Der Technologe geht davon aus, dass die Methode zukünftig auch in anderen Anwendungsbereichen zum Einsatz kommt. Er lädt interessierte Unternehmen zur Kontaktaufnahme mit dem Institut für Technische Logistik der TU Graz ein. (Christoph Pelzl)

Externer Link: www.tugraz.at

Das Metallgebiss des Borstenwurms

Presseaussendung der TU Wien vom 09.06.2021

Metallatome sind für die bemerkenswerte Stabilität von Borstenwurm-Kiefern verantwortlich, zeigen Experimente der TU Wien. Das könnte der Schlüssel für neue Hochleistungsmaterialien sein.

Borstenwürmer finden sich fast überall wo es Meerwasser gibt, und das schon seit hunderten Millionen Jahren. Trotzdem haben sie Besonderheiten, die erst jetzt entschlüsselt werden konnten: Ihre Kiefer sind aus bemerkenswert stabilem Material aufgebaut, und das Geheimnis dieser Stabilität kann man nun durch Experimente an der TU Wien in Kooperation mit den Max Perutz Labs erklären.

Eine entscheidende Rolle spielen Metallatome, die vom Wurm in die Proteinstruktur des Materials eingebaut werden. Sie machen das Material hart und gleichzeitig biegsam – ganz ähnlich wie man das von gewöhnlichen Metallen kennt. Nun soll an dieser Materialklasse weitergeforscht werden, mit dem Ziel, neuartige, industriell nutzbare Materialien auf natürliche Weise herzustellen.

Einzelne Metallatome

„Die Materialien, aus denen Wirbeltiere bestehen, sind mittlerweile gut erforscht“, sagt Prof. Christian Hellmich vom Institut für Mechanik der Werkstoffe und Strukturen der TU Wien. „Knochen etwa sind sehr hierarchisch aufgebaut: Es gibt organische und mineralische Anteile, winzige Strukturen ergeben größere Strukturen, die sich zu noch größeren Strukturen zusammenfügen.“

Bei Borstenwürmern ist das anders. Ihre Kiefer sind zwar äußerst stabil und unzerbrechlich, doch sie enthalten keine mineralischen Körnchen, wie man das von Wirbeltierknochen kennt. Stattdessen enthalten sie Metalle. Mit reinen Metallobjekten wie Goldzähnen oder künstlichen Hüften aus Titan hat das freilich nichts zu tun: Der Borstenwurm verwendet Metalle wie etwa Magnesium oder Zink in Form einzelner Atome, die in eine Proteinstruktur integriert sind.

„Dass im Borstenwurm-Kiefer Metallatome vorkommen, erklärt noch nicht seine ausgezeichneten Materialeigenschaften“, sagt Christian Hellmich. Die typischen Eigenschaften, die man von alltäglichen Metallen kennt – neben ihrer Härte und Elastizität vor allem ihre Zähigkeit – entstehen schließlich erst durch das Zusammenspiel vieler Atome. Es bilden sich Gleitflächen, entlang derer sich die Atome gegeneinander verschieben. Untersuchen kann man das mit sogenannten Nanoindentationsversuchen: Man belastet das Material auf eine genau definierte Weise und studiert dann, welche Verformungen sich daraus ergeben. Überraschenderweise zeigte sich, dass sich das Material des Borstenwurm-Kiefers dabei ganz ähnlich verhält wie Metall.

Ein uraltes Hochleistungsmaterial

„Das Bauprinzip, das die Kiefer von Borstenwürmern so erfolgreich gemacht hat, ist offenbar vor etwa 500 Millionen Jahren entstanden“, sagt Florian Raible von den Max Perutz Labs, einem Joint Venture der Universität Wien und der Medizinischen Universität Wien. „Die Metallionen werden direkt in die Proteinketten eingebaut und sorgen dann dafür, dass unterschiedliche Proteinketten zusammengehalten werden.“ So kann der Borstenwurm dreidimensionale Formen aus einer besonders stabilen Protein-Matrix herstellen.

Gleichzeitig ermöglicht diese Struktur auch Verformungen: Wenn das Material durch eine äußere Kraft belastet wird, können die Proteinketten aneinander vorübergleiten. Das Material erlaubt elastoplastische Verformungen, daher ist es nicht spröde und zerbrechlich.

„Genau diese Kombination aus hoher Festigkeit und Verformbarkeit ist normalerweise für Metalle charakteristisch“, sagt Luis Zelaya-Lainez, der als Erstautor der Studie die winzigen Kiefer mit materialwissenschaftlichen Techniken untersuchte. „Hier haben wir es zwar mit einem völlig anderen Material zu tun, aber interessanterweise sorgen trotzdem auch dort die Metallatome für Festigkeit und Verformbarkeit, wie bei einem Werkstück aus Metall.“

Während man industriell gefertigte Metalle allerdings nur unter großem Energieaufwand produzieren kann, gelingt dem Borstenwurm ein ähnliches Kunststück auf viel effizientere Weise. „Die Biologie könnte hier als Inspiration dienen, für völlig neuartige Werkstoffe“, hofft Hellmich. „Vielleicht ist es sogar möglich, auf biologische Weise Hochleistungsmaterialien herzustellen – viel effizienter und umweltfreundlicher als uns das heute gelingt.“

Ermöglicht wurde die gemeinsame Studie zwischen den Arbeitsgruppen um Hellmich und Raible unter anderem durch Forschungsgelder aus dem Innovationsfond „Research, Science and Society“ der Österreichischen Akademie der Wissenschaften, der neuartige Grundlagenforschung im Grenzbereich etablierter Forschungsfelder unterstützt. (Florian Aigner)

Originalpublikation:
L. Zelaya-Lainez et al., Jaws of Platynereis dumerilii: Miniature Biogenic Structures with Hardness Properties Similar to Those of Crystalline Metals, JOM (2021)

Externer Link: www.tuwien.at

Elektronenstrahlschmelzen bringt sprödes Metall in Form

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 07.04.2021

Forschenden des KIT ist es erstmals gelungen, Bauteile aus Wolfram für den Einsatz im Hochtemperaturbereich im 3D-Druck-Verfahren Elektronenstrahlschmelzen herzustellen.

Wolfram hat mit 3.422 Grad Celsius den höchsten Schmelzpunkt aller Metalle. Ideal für den Einsatz dort, wo es richtig heiß wird, etwa für Weltraumraketendüsen, Heizelemente von Hochtemperaturöfen oder im Fusionsreaktor. Das Metall ist aber zugleich sehr spröde und daher schwer zu verarbeiten. Forschende des Karlsruher Instituts für Technologie (KIT) fanden nun einen innovativen Ansatz, wie sie „den Spröden geschmeidig machen“: Sie entwickelten für das Verfahren des Elektronenstrahlschmelzens neue Prozessparameter, um damit auch Wolfram verarbeiten zu können.

Das Metall Wolfram verfügt über Eigenschaften, die es als Werkstoff sehr attraktiv machen: Es ist sehr korrosionsbeständig, schwer wie Gold, als Wolframcarbid hart wie Diamant, und es hat mit 3.422 Grad Celsius den höchsten Schmelzpunkt aller Metalle. Allerdings ist dieses Metall bei Raumtemperatur sehr spröde. Aufgrund seiner Eigenschaften lässt sich Wolfram mit konventionellen Fertigungsmethoden nur schwer bearbeiten. Die Verarbeitung ist sehr kostspielig und zeitintensiv im Herstellungsprozess. Eine Alternative bietet der 3D-Druck, mit dem Bauteile so hergestellt werden können, dass sie kaum noch nachbearbeitet werden müssen. „Aktuell arbeiten wir an der additiven Fertigung von Bauteilen aus dem hochschmelzenden Metall Wolfram mit dem Verfahren Electron Beam Melting, kurz EBM, auch Elektronenstrahlschmelzen genannt“, erklärt Dr. Steffen Antusch vom Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK) des KIT. Das Forschungsteam konnte den EBM-Prozess erfolgreich für Wolfram anpassen. Die eigens entwickelten Prozessparameter erlauben nun den 3D-Druck von Bauteilen aus Wolfram. „Die Einsatzgebiete dieses Metalls sind beindruckend vielseitig. Durch seine speziellen Eigenschaften ist es für Hochtemperaturanwendungen in Energie- und Lichttechnik sowie für die Raumfahrt und die Medizintechnik ideal geeignet und damit für die moderne Hightech-Industrie unverzichtbar“, so Alexander Klein vom IAM-WK.

Vorwärmen erlaubt Verarbeiten von spröden Werkstoffen

EBM ist ein additives Fertigungsverfahren, bei dem die unter Vakuum beschleunigten Elektronen Metallpulver selektiv schmelzen und so Schicht für Schicht, also additiv, ein 3D-Bauteil erzeugen. Der wesentliche Vorteil dieses Verfahrens besteht in der verwendeten Energiequelle, dem Elektronenstrahl. Dieser ermöglicht das Vorwärmen des Metallpulvers sowie der Trägerplatte vor dem Schmelzen und reduziert damit Verformungen und Eigenspannungen. Dies erlaubt die Verarbeitung von Werkstoffen, die bei Raumtemperatur leicht brechen und bei hohen Temperaturen verformbar sind. Allerdings müssen die verwendeten Materialien elektrisch leitfähig sein. Für keramische Werkstoffe kommt das Verfahren daher nicht in Frage, da der EBM-Prozess auf dem Prinzip der elektrischen Ladung basiert. Das Vorwärmen des Metallpulvers vor dem Schmelzen reduziert Verformungen.

Leichtbauteile aus Titan für KA-RaceIng

Der EBM-Prozess wurde ursprünglich entwickelt, um Titanlegierungen sowie Materialien, die erhöhte Prozesstemperaturen erfordern, zu verarbeiten. Bisher wurden im Technik-Haus des KIT damit Leichtbauteile aus Titan, zum Beispiel für das Formula-Student-Projekt KA-RaceIng des KIT hergestellt.

Das IAM-WK forscht in den Forschungsprogrammen der Helmholtz-Gemeinschaft und des europäischen Fusionsprogrammes EUROfusion an Materialien und Prozessen, um Hochtemperaturwerkstoffe für zukünftige Anwendungen zum Beispiel in der Fusionsenergie oder auch in der Medizintechnik herstellen zu können. (rli)

Externer Link: www.kit.edu