Fluorid-Shuttle steigert Speicherkapazität

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 19.10.2011

KIT-Forscher entwickeln neues Konzept für wiederaufladbare Batterien

Ein neues Konzept für wiederaufladbare Batterien haben Forscher des KIT entwickelt. Basierend auf einem Fluorid-Shuttle – der Übertragung von Fluorid-Anionen zwischen den Elektroden – verspricht es ein Mehrfaches der Speicherkapazität, wie sie bei Lithium-Ionen-Batterien möglich ist. Auch die Betriebssicherheit lässt sich erhöhen, da auf Lithium verzichtet werden kann. In der Zeitschrift „Journal of Materials Chemistry“ stellen Dr. Maximilian Fichtner und Dr. Munnangi Anji Reddy die Fluorid-Ionen-Batterie erstmals vor.

Lithium-Ionen-Batterien sind weit verbreitet – doch ihre Speicherkapazität ist begrenzt. In Zukunft werden, vor allem für mobile Anwendungen, Batteriesysteme mit höherer Energiedichte gefragt sein, die bei geringerem Gewicht mehr Energie speichern können. Wissenschaftler des KIT forschen daher auch an alternativen Systemen. Ein völlig neues Konzept für Sekundärbatterien, das auf Metallfluoriden basiert, haben Dr. Maximilian Fichtner, Leiter der Gruppe Energiespeichersysteme, und Dr. Munnangi Anji Reddy am Institut für Nanotechnologie (INT) des KIT entwickelt.

Metallfluoride lassen sich einerseits als Konversionsmaterialien in Lithium-Ionen-Batterien einsetzen. Sie ermöglichen aber auch lithiumfreie Batterien mit fluoridhaltigem Elektrolyten, Anode aus Metall und Kathode aus Metallfluorid, die eine deutlich höhere Speicherkapazität und verbesserte Sicherheitseigenschaften aufweisen. Dabei übernimmt das Fluorid-Anion anstelle des Lithium-Kations den Ladungstransfer. An Kathode und Anode kommt es jeweils zur Bildung eines Metallfluorids oder zu dessen Reduktion. „Da sich mehrere Elektronen pro Metallatom übertragen lassen, erlaubt dieses Konzept außerordentlich hohe Energiedichten – bis zu zehn Mal so hoch wie bei gegenwärtigen Lithium-Ionen-Batterien“, erklärt Dr. Maximilian Fichtner.

Die KIT-Forscher arbeiten nun daran, Materialdesign und Batteriearchitektur weiterzuentwickeln, um die Anfangskapazität sowie die Zyklenfestigkeit der Fluorid-Ionen-Batterie zu verbessern. Eine weitere Herausforderung liegt in der Weiterentwicklung des Elektrolyten: Der bis jetzt eingesetzte Feststoffelektrolyt eignet sich nur für Anwendungen bei erhöhten Temperaturen. Ziel ist daher, einen geeigneten Flüssigelektrolyten zur Anwendung bei Raumtemperatur zu finden. (or)

Veröffentlichung:
M.Anji Reddy and M. Fichtner: Batteries based on fluoride shuttle. Journal of Materials Chemistry. 2011, Advance Article. DOI: 10.1039/C1JM13535J.

Externer Link: www.kit.edu