Was Elektronen zum Zittern bringt

Pressemitteilung der Universität Regensburg vom 20.01.2014

Elektronenbewegungen in Halbleitern erzeugen Strahlung mit Rekordbandbreite

Moderne Hochgeschwindigkeitselektronik basiert auf winzigen Halbleiter-Strukturen, in denen Elektronen mit Hilfe von elektrischen Feldern auf immer höhere Geschwindigkeiten beschleunigt werden. Bald schon dürften Feldstärken erreicht werden, die zu einer neuen Klasse von Quantenphänomenen führen. Physiker der Universitäten Regensburg, Marburg und Paderborn haben nun nachgewiesen, dass sich Elektronen unter diesen Bedingungen nicht mehr monoton in eine Richtung bewegen, sondern extrem schnelle Oszillationen ausführen, die Licht über einen superbreiten Spektralbereich ausstrahlen. Die Ergebnisse wurden in der Fachzeitschrift „Nature Photonics“ veröffentlicht (DOI: 10.1038/nphoton.2013.349).

Vor 85 Jahren beschrieb Felix Bloch, einer der Väter der modernen Festkörperphysik, die Bewegungen von Elektronen in einem Festkörper mit quantenmechanischen Wellen. Die Bewegungen sind dabei mit den Bewegungen von Wellen auf dem Wasser vergleichbar: Treffen sie auf ein Hindernis, etwa einen Stein, dann werden sie gestreut und auf der Wasseroberfläche bildet sich ein Muster kleiner Wellen aus. In einem Festkörper führt die enorme Anzahl periodisch angeordneter Atome zu einem hochkomplexen Streumuster der Elektronen und zu einer überraschenden Vorhersage: In einem starken elektrischen Feld sollten sich Elektronen demnach nicht – wie intuitiv erwartet – gleichförmig in eine Richtung bewegen, sondern beginnen zu oszillieren. Dieses merkwürdige Verhalten konnte aber bislang nur in künstlichen Modellsystemen beobachtet werden, weil die Wellennatur der Elektronen durch ihre Wechselwirkung untereinander sowie mit dem Atomgitter eines natürlichen Festkörpers schnell „verwischt“ wird.

Einem Team um Prof. Dr. Rupert Huber vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg ist es nun in einem bahnbrechenden Experiment gelungen, elektrische Felder in der Größenordnung von 10 Milliarden Volt pro Meter mit einer Präzision von billiardstel Sekunden an Halbleiter anzulegen und die Oszillation der Elektronen zu beobachten, bevor sie verwischt. Die Forscher nutzen dazu eine erst vor kurzem in Betrieb genommene Hochfeld-Terahertzquelle an der Universität Regensburg. Sie kann ultrakurze Lichtblitze im infraroten Spektralbereich mit Rekordintensitäten und präzise kontrollierbarem Feldverlauf erzeugen. Der Trick ist dabei, das schwingende elektrische Feld eines solchen Lichtblitzes als kurzzeitige Vorspannung zu verwenden. Mit einer extrem schnellen Zeitlupenkamera konnten die Wissenschaftler zudem zeigen, dass die oszillierenden Elektronen elektromagnetische Strahlung vom Mikrowellen- bis zum Ultraviolett-Bereich ausstrahlen.

Zur Erklärung dieser Messdaten entwickelten die Arbeitsgruppen von Prof. Dr. Stephan W. Koch und Prof. Dr. Mackillo Kira an der Universität Marburg gemeinsam mit Prof. Dr. Torsten Meier von der Universität Paderborn ein quantenmechanisches Modell, das die komplexen Vorgänge im Halbleiter nachbildet und die experimentellen Daten eindeutig als dynamische Bloch-Oszillationen identifiziert.

Die Ergebnisse vermitteln einen spektakulären Einblick in eine Quantenwelt, die für künftige Generationen von Halbleiterbauelementen entscheidend werden dürfte. Was vielleicht noch wichtiger ist: Sie zeigen, dass sich elektrische Ströme auf Zeitskalen einzelner Lichtschwingungen kontrollieren lassen. Die Elektronik der Zukunft könnte also auch bei optischen Taktraten funktionieren. Nicht zuletzt emittieren Bloch-Oszillationen ultrakurze Lichtblitze im infraroten Spektralbereich in einer Rekordbandbreite. Diese Lichtquelle dürfte demnach ein wertvolles Forschungsinstrument für die Ultrakurzzeitphysik werden. (Alexander Schlaak)

Titel der Originalpublikation:
O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch und R. Huber, „Sub-cycle Control of Terahertz High-Harmonic Generation by Dynamical Bloch Oscillations“, Nature Photonics (2014)

Externer Link: www.uni-regensburg.de