Der Grammatik biologischer Zellen auf der Spur

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 16.03.2016

Chemiker entwickeln MOSAIC-Methode, um nicht nur einzelne Zellsignale, sondern das räumliche Zusammenwirken unterschiedlicher Signale zu entschlüsseln

Zellen im Körper tauschen eine Vielzahl von Signalen mit ihrer Umgebung aus. Defekte Signalwege können die Funktion von Zellen beeinträchtigen und Krankheiten auslösen. Heutzutage kennt man jedoch kaum mehr als die Vokabeln der zellulären Sprache, nicht aber wie „Worte“ in „Sätzen“ zusammenwirken. Wäre die Zell-Grammatik bekannt, könnte man die komplexen Abläufe in Zellen erst wirklich verstehen. Forscher des KIT haben im Fachmagazin Angewandte Chemie eine Methode vorgestellt, um die Grammatik der Zellsignale zu entschlüsseln. DOI: 10.1002/anie.201509772

„Rezeptoren auf Zellmembranen reagieren auf eine Vielzahl von Signalmolekülen. Diese bilden das Vokabular der Kommunikation“, erklärt Christof Niemeyer vom Institut für Biologische Grenzflächen des KIT. In der Regel werden mehrere, räumlich verteilte Rezeptoren gleichzeitig angesprochen, so wie auch in der menschlichen Sprache mehrere Worte pro Satz genutzt werden. Die genaue Bedeutung des einzelnen Wortes erschließt sich erst im Zusammenspiel aller Satzbausteine. „Mit unserer neuen MOSAIC-Methode können wir nun gezielt nicht nur Vokabeln, sondern ganze Sätze der Zellsprache entschlüsseln.“

Um eine einzelne Zelle mit einem definierten Satz anzusprechen, haben Niemeyer und sein Team zunächst die gewünschten Signalmoleküle mit einer Genauigkeit von 5 Nanometern auf einer Art Stecktafel fixiert, die etwa 100 Nanometer lang ist. Anschließend wurden Dutzende dieser Stecktafeln auf dem Zellträger aufgebracht. Damit ist es nun erstmals möglich, auf einer größeren Fläche viele Moleküle mit Nanometergenauigkeit zu positionieren. „Entscheidend war, dass wir sowohl die Selbstorganisation von Molekülen als auch eine mikroskopische Drucktechnik in der MOSAIC-Methode vereinen konnten“, so Niemeyer.

Die Stecktafeln setzen die Wissenschaftler aus langen DNA-Molekülen nach einem genauen Bauplan zusammen. Das DNA-Molekül faltet sich dann selbstorganisiert zu einer 100 Nanometer langen und 50 Nanometer breiten Platte, welche an den definierten Plätzen die gewünschten Signalmoleküle aufnehmen kann. Auf dem Zellträger werden ebenfalls aus DNA-Stücken die passenden Fundamente für die Stecktafeln gedruckt. Diese spezifischen Fundamente sind wenige Mikrometer im Durchmesser und lassen sich auf einer Fläche bis zu einem Quadratzentimeter aufdrucken. Durch die Wahl der passenden DNA-Sequenzen haften die Stecktafeln in der richtigen Orientierung auf dem richtigen Fundament. Um die Funktionsweise der MOSAIC-Methode (Multiscale Origami Structures as Interfaces for Cells) zu beweisen, haben die Forscher in der ersten Studie gezeigt, dass die Modellzelllinie MCF7 auf unterschiedlich dicht besetzte Stecktafeln unterschiedlich reagiert.

„Viele Krankheiten wie Krebs oder Autoimmun-Erkrankungen lassen sich auf die Fehlfunktion von Rezeptoren und Signalen in Zellen zurückführen. Komplexe Signalwege zu verstehen, legt also die Grundlagen für kommende Therapieansätze und Medikamentenentwicklungen“, betont Niemeyer. (kes)

Publikation:
Multiscale Origami Structures as Interface for Cells (pages 15813–15817), Alessandro Angelin, Simone Weigel, Ruben Garrecht, Dr. Rebecca Meyer, Jens Bauer, Ravi Kapoor Kumar, Dr. Michael Hirtz and Prof. Dr. Christof M. Niemeyer, DOI: 10.1002/anie.201509772

Externer Link: www.kit.edu