Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.05.2017
Hitze gehört zu den schlimmsten Feinden der Elektronik. Sie kann die Funktionalität stören, sie lässt elektronische Bauteile schneller altern und kann diese sogar zerstören. Fraunhofer-Forscher haben einen Kondensator entwickelt, der Temperaturen von bis zu 300 Grad Celsius aushält. Sie nutzen dabei einen neuartigen Materialmix – und einen besonderen 3D-Trick.
Hitze, Staub und Feuchtigkeit schaden elektronischen Bauteilen. Gegen Staub und Feuchtigkeit lassen sich diese gut schützen. Doch die Hitze bleibt ein Problem, denn sie entsteht im Bauteil selbst. Überall, wo Strom fließt, wird auch Hitze generiert. Und nicht immer ist in der elektronischen Komponente genügend Platz, um die Abwärme mit Kühlrippen oder Ventilatoren abzuleiten. Noch schwieriger wird es, wenn das Gerät in einer heißen Umgebung arbeitet, beispielsweise ein Bohrmeißel in der Ölindustrie, der in einigen Tausend Metern Tiefe mit hoher Geschwindigkeit rotiert. Dabei entstehen Temperaturen von bis zu 250 Grad. Hinzu kommt die enorme mechanische Belastung für die elektronischen Komponenten.
Für dieses Problem hat das Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS eine Lösung parat. Die Forscher haben einen Kondensator entwickelt, der Temperaturen von bis zu 300 Grad verkraftet. Zum Vergleich: Herkömmliche Elektronik kann nur Temperaturen von bis zu 125 Grad widerstehen.
Kondensatoren speichern Ladungsträger und zählen zu den am häufigsten verwendeten passiven Bauelementen in der Elektronik. Der Aufbau eines Kondensators ist simpel: Zwei leitfähige Platten fungieren als Plus- beziehungsweise Minus-Elektrode, dazwischen liegt eine isolierende Schicht, das sogenannte Dielektrikum. Um die Hitzebeständigkeit zu verbessern, nutzt das Team um Dorothee Dietz, Wissenschaftlerin am Fraunhofer IMS, einen neuartigen Materialmix und einige konstruktive Kniffe.
3D-Trick für mehr Fläche
Bei der Fertigung der leitenden Metallschichten werden winzige Löcher in die Grundfläche geätzt, um die Fläche zu vergrößern. Der 3D-Trick erhöht die Kapazität und ermöglicht es gleichzeitig, ein dickeres Dielektrikum zu verwenden. Eine dickere Schicht wiederum widersteht hohen Temperaturen besser und kann unkontrollierte Leckströme im Kondensator vermindern.
Auch bei der Produktion des isolierenden Dielektrikums gehen die Experten neue Wege. Sie verwenden Tantalpentoxid, eine Verbindung aus dem Metall Tantal und Sauerstoff, sowie Aluminiumoxid. Der Materialmix speichert die Ladungsträger besser als das üblicherweise verwendete Siliziumoxid und bewirkt so einen höheren Kapazitätsbelag des Kondensators. In der Elektrotechnik werden diese besonders leistungsfähigen Materialien deshalb auch als High-k-Dielektrika bezeichnet.
Außerdem verwenden die Fraunhofer-Forscher ein elektrisch hochleitfähiges Silizium sowie das besonders robuste und hitzebeständige Ruthenium. »Mit unserem Materialmix und den konstruktiven Tricks können wir einen Kondensator herstellen, der äußerst robust und hitzebeständig ist, ohne an Leistung zu verlieren«, erklärt Dorothee Dietz.
Extrem präzise: Schichten mit nur einer Atomlage
Doch die Hochtemperatur-Fähigkeit ist nicht der einzige Vorteil der Halbleiter aus dem Fraunhofer-Labor. Hergestellt werden die Kondensatoren nämlich im Metall-Oxid-Halbleiter-Verfahren (MOS). Dabei werden Schichten mit jeweils nur einer Atomlage Dicke verarbeitet (Atomic Layer Deposition). So lässt sich die Gesamtdicke der Schichten exakt einstellen. »Das macht die Produktion sehr flexibel. Der Hersteller kann Bauteile genau nach den Vorgaben des Kunden anfertigen, ohne den Prozessablauf verändern zu müssen«, sagt Dietz.
Das Know-how im Bereich der Hochtemperaturelektronik lässt sich auf viele andere passive oder aktive Bauelemente wie Widerstände, Dioden oder Transistoren anwenden. Die am Fraunhofer IMS etablierte Technologie eignet sich auch für komplette integrierte Schaltungen. Damit kann der Kondensator nicht nur im Bohrmeißel, sondern ebenso in Einspritzanlagen von Motoren oder Flugzeugturbinen verbaut werden – also überall da, wo extrem hitzebeständige und robuste Bauteile gefragt sind.
Externer Link: www.fraunhofer.de