Optimierung von Leiterplatten durch KI

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 04.05.2020

Die elektronische Revolution der Lebens- und Arbeitswelten wäre ohne sie kaum möglich: Leiterplatten bilden die Basis, auf der kleinste Bauteile miteinander interagieren. Da die Anwendungen immer zahlreicher und komplexer werden, nehmen die Anforderungen an Design und Qualitätssicherung zu – so müssen etwa Interferenzen ausgeschlossen und eine elektromagnetische Verträglichkeit gewährleistet werden. Das Fraunhofer-Institut für Angewandte Informationstechnik FIT kann durch modulare KI-Plattformen Leiterplatten optimal designen und überprüfen – und damit den Aufwand um bis zu 20 Prozent reduzieren.

Leiterbahnen werden so eng und geschickt wie möglich für eine Anwendung geplant, ohne dadurch einen Ausfall zu riskieren. Basis dafür ist bisher das Erfahrungswissen der beteiligten Ingenieure, deren Designs in Versuchen getestet werden müssen. Die Ergeb­nisse daraus werden zudem nicht stringent dokumentiert, so dass fehleranfällige Designs auch mehrmals Tests durchlaufen. Dieser aufwändige Prozess führt zu hohen Kosten.

Bisher hoher Aufwand in der Qualitätskontrolle

Die fertig entwickelten Designs stellen danach hohe Anforderungen an die Produktion. Daher wird jede einzelne Leiterplatte überprüft, zumeist über eine Automatische Optische Inspektion (AOI). Dabei wird über eine Bildanalyse verglichen, ob die Platine so wie geplant produziert wurde, und so technische Fehlstellen detek­tiert. Dieses Verfahren erzeugt momentan allerdings eine hohe True-negativ-Rate, d.h., viele funktionierende Platinen werden als fehlerhaft klassifiziert.

Diese müssen dann alle per Hand kontrolliert werden. Dies geschieht sowohl vi­suell, als auch messtechnisch. Die Überprüfung verursacht wiederum hohe Kosten, denn bei einer zu hohen True-negativ-Rate werden fehlerfrei Bauteile aussortiert. Bei einer zu klei­nen Rate sind die Folgekosten durch den Einsatz von Fehlteilen hoch. Eine optimierte True-negativ-Rate durch menschliche Kontrolle ist schwierig, da auch menschliche Schwächen einfließen.

Selbstlernend zum optimalen Auswahlprozess

Wie ein zukünftiger Überprüfungsprozess aussehen kann, zeigt die Entwicklung des Fraunhofer FIT. Eine Kamera macht wie bei einer herkömmlichen AOI Aufnahmen von ge­druckten Leiterplatten. Daraus wird die Entscheidungsqualität von Algorithmen optimiert. Entscheidend ist dabei die Eingabe qualitativ-hochwertiger Trainingsdaten. Dafür füttern zunächst Experten die Module für Ma­chine Learning und Deep Learning mit einer guten Datenauswahl.

»Diese modulare Bauweise ermöglicht, aneinander gekoppelte Algorithmen einzusetzen, die sich selbst verbessern. Durch laufende automatisierte Kontrollen der Bauteile fließen Daten zurück in den Algorithmus und sind Grundlage für einen Selbstlernpro­zess im Modul Künstliche Intelligenz«, so Timo Brune, Projektleiter beim Fraunhofer FIT. »Dieses permanente Feedbacksystem verbessert die Datengrundlage und optimiert die True-negativ-Rate. Dadurch können nach ersten Schätzungen aus der Industrie rund 20 Prozent an Produktionsressourcen eingespart werden.«

Das Training der Module kann der Anwender selbst mit seinen Prozess- und Produktionsdaten übernehmen. Das Unternehmen bleibt so immer im Besitz seiner Daten, die nicht etwa an ex­terne Server geschickt werden müssen. Der »Baukasten« aus Algorith­men kann in be­liebiger Kombination auf spezifische Probleme angewandt werden.

Intelligente Entwicklung neuer Bauteile

Die trainierten Algorithmen lassen sich dann auch bereits beim Design neuer Leiterplatten einsetzen. Die Anordnung von Bauteilen auf der Leiterplatte muss dann nicht mehr im Trial-and-Error-Verfahren kosten- und zeitintensiv erfolgen. Der Algorithmus hilft, aus der Vielzahl möglicher Varianten die mit optimaler Funktionalität vorherzusagen.

Der Ansatz des Fraunhofer FIT, modulare, sich selbst verbessernde Algorithmus-Plattfor­men für Design und Qualitätskontrolle von Leiterplatten einzusetzen, ist auch für viele weitere elektrische Systeme vorteil­haft. Auch dort wer­den Prozesse so optimiert, dass Zeit- und Produktionskosten in sig­nifikanter Weise ein­gespart werden können.

Externer Link: www.fraunhofer.de

Smartphones schnell und sicher mit Licht desinfizieren

Presseinformation der Fraunhofer-Gesellschaft vom 06.04.2020

Forscherinnen und Forscher am Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB, Institutsteil Angewandte Systemtechnik-AST haben eine innovative Lösung zum Desinfizieren von Smartphones entwickelt. Diese können damit innerhalb weniger Sekunden von Bakterien und Viren wie SARS-CoV-2 befreit werden. Statt teurer Chemie kommt dabei sogenanntes UVC-Licht zum Einsatz. Weitere Einsatzfelder sind denkbar.

Smartphones, Tablets und ähnliche mobile Wegbegleiter werden täglich unzählige Male in die Hand genommen. Meist spielen hygienische Aspekte dabei allerdings eine eher untergeordnete Rolle. Im klinischen Bereich sieht es jedoch anders aus. Hier werden Tablets und Smartphones inzwischen vielseitig genutzt und gehen auch von Hand zu Hand. Eine Desinfektion ist daher zur Verhinderung von Erregerübertragungen unbedingt nötig. Der Einsatz von chemischen Mitteln verbietet sich hier allerdings, da die fettabweisende Beschichtung der Displays hierdurch zerstört wird. Dafür haben Forscherinnen und Forscher vom Fraunhofer IOSB-AST aus Ilmenau eine technische Innovation entwickelt: Sie sieht von außen wie eine handelsübliche Mikrowelle aus. Im Inneren kommen aber so genannten UVC-LEDs – Leuchtdioden, die mit ultraviolettem Licht arbeiten – mit einer Wellenlänge von 269nm zum Einsatz.

Insgesamt sind zwei separate UVC-LED-Module mit jeweils 10 UVC-LEDs für die Ober- und Unterseite des Smartphones verbaut. Jede UVC-LED besitzt eine Leistung von 100 Milliwatt, sodass die Gesamtstrahlleistung zwei Watt beträgt. So wird in nur wenigen Sekunden eine Bestrahlungsdosis von 800 J/m² erreicht, was eine effiziente Inaktivierung von Bakterien und Viren ermöglicht.

Smartphones werden mit der Lösung aber nicht nur einfach per Licht desinfiziert, son-dern über einen NFC-Reader auch identifiziert, die applizierte Dosis über einen Sensor erfasst und protokolliert. Somit ist jeder Desinfektionsvorgang validierbar und dem jeweiligen Gerät eindeutig zuzuordnen. Ein LCD-Display informiert den Nutzer über die wichtigsten Funktionen. Weiterhin können nachgelagerte IT-Systeme per W-LAN und Webinterface integriert werden.

»Seit vielen Jahren arbeiten wir im Rahmen des BMBF-Programms ›Advanced UV for Life‹ an sehr unterschiedlichen Anwendungen für UVC-Technologien im Bereich der Desinfektion. LEDs bieten dabei große Vorteile, was wir am Beispiel der Smartphone-Desinfektion hervorragend demonstrieren können«, erklärt Ingenieur Thomas Westerhoff vom Fraunhofer IOSB-AST.

Die Anwendungsgebiete der Handydesinfektion reichen dabei vom klinischen Bereich über die private und gewerbliche Nutzung bis hin zum Eventmarkt. Der Prototyp wird voraussichtlich im September 2020 auf der IFAT, der Weltleitmesse für Wasser-, Abwasser-, Abfall- und Rohstoffwirtschaft in München, präsentiert werden.

Für die kommerzielle Verwertung sucht das Fraunhofer IOSB-AST noch Partner aus der Wirtschaft.

Externer Link: www.fraunhofer.de

Besser hören – nicht nur auf Partys

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.03.2020

Den meisten Menschen fällt es nicht leicht, sich in einer belebten Umgebung auf eine spezifische Stimme zu konzentrieren. Besonders schwierig ist dies für Schwerhörige. Ein neuartiges Konzept für Hörhilfen, entwickelt unter Beteiligung von Fraunhofer-Forscherinnen und -Forschern, soll künftig die Sprachverständlichkeit in komplexen Situationen verbessern und es erleichtern, einem einzelnen Sprecher zu folgen.

Etwa 15 Millionen Deutsche sind laut Schätzungen des Deutschen Schwerhörigenbunds e.V. schwerhörig. Betroffene können Gespräche, vor allem in lauten Umgebungen, nur schlecht verstehen. Besonders in Unterhaltungen mit mehreren Personen fällt es ihnen schwer, einzelne Stimmen herauszuhören. Ihnen gelingt es nicht, sich auf einen Sprecher zu konzentrieren und störende Signale auszublenden – Experten bezeichnen dieses Manko als Cocktailparty-Effekt.

Derzeitig verfügbare Hörgeräte sind nicht in der Lage, eine Schnittstelle zwischen Ohr und Gehirn herzustellen und Schwerhörige beim selektiven Hören zu unterstützen. »Beim normal Hörenden funktioniert die Verbindung zwischen Gehirn und Ohr. Der Zuhörer weiß daher, auf welche Richtung er sich konzentrieren muss. Bei Schwerhörigen ist diese Fähigkeit stark beeinträchtigt. Auch Highend-Hörhilfen können noch nicht die Quelle hervorheben, die der Nutzer gerade hören will, besonders wenn zwei Personen gerade gleichzeitig sprechen«, erläutert Dr. Axel Winneke, Wissenschaftler am Fraunhofer-Institut für Digitale Medientechnologien IDMT in Oldenburg. »Daher benötigt man die entsprechende Information aus dem Gehirn. Über die Hirnaktivität kann man erkennen, wem der Schwerhörige zuhört. Das lässt sich per Elektroenzephalografie (EEG) messen«. Die EEG-Analyse wird im Projekt mEEGaHStim federführend vom Fraunhofer IDMT-HSA und der Universität Oldenburg durchgeführt. Hier entwickeln der Wissenschaftler und sein Team gemeinsam mit Partnern aus Industrie und Forschung ein System, das die Sprachverständlichkeit in komplexen Situationen für Hörgeschädigte verbessert. Eine Kombination aus EEG, Audiosignalverarbeitung und Elektrostimulation der Hörareale soll dies leisten. Der Trick: Eine Gehirn-Computer-Schnittstelle misst mittels EEG die Aktivität des Gehirns. Anhand der Daten lässt sich feststellen, in welche Richtung bzw. auf welche Sprachquelle der Hörgeschädigte seine Aufmerksamkeit richtet. Diese Information wird an das Hörgerät weitergeleitet, das dann ein Richtmikrofon – den sogenannten Beamformer – entsprechend ausrichtet. Der Beamformer verstärkt das vom Hörer bevorzugte Audiosignal und blendet die unerwünschten Geräuschquellen, z.B. andere Sprecher, aus. Eine dritte Komponente, die transkraniale Elektrostimulation (tES), soll dann mit diesem Sprachsignal die Hörareale elektrisch stimulieren. Mit dieser Methode der Neurowissenschaft beeinflussen die Forschenden die Aktivität des Hörzentrums beziehungsweise des auditiven Kortex‘ mit sehr kleinen Strömen gezielt, um so zusätzlich die Sprachverständlichkeit zu optimieren. Die erforderliche Hardware und Methodik zur Stimulation entwickelt im Projekt der Partner neuroConn GmbH gemeinsam mit der Universität Oldenburg.

Hearable der Zukunft

Im Projekt wurde bereits in Designstudien visualisiert, wie die neue Hörhilfe aussehen könnte. Aufbau und Konzept orientieren sich an der Interaktion mit dem Gerät. Das Design hat dabei den Anspruch, die Hörhilfe als positiven Zugewinn für den Träger zu inszenieren, entgegen einer immer noch weit verbreiteten Stigmatisierung. Künftig könnten die im Vorhaben entwickelten Komponenten inklusive Sensorik in einen tragbaren Bügel integriert werden. Denkbar ist es auch, verfügbare Hörgeräte durch die neuen Module zu ergänzen und mit einem EEG-Sensor auszustatten. »Unser aktueller Prototyp liegt noch nicht in Form einer tragbaren Hörhilfe vor, er muss noch deutlich miniaturisiert werden«, so Winneke. In ersten Probandentests mit normal Hörenden hat das Prinzip der EEG-basierten Hörunterstützung bereits gut funktioniert. Studien mit Schwerhörigen sind in Planung.

Mobile Neurotechnologie

Die am Ohr getragene EEG-Messung eignet sich auch für andere Anwendungsszenarien, beispielsweise um die Höranstrengung von Mitarbeitern am Arbeitsplatz zu erfassen. Die Technologie lässt sich zudem im medizinischen Umfeld einsetzen, insbesondere in der Neurologie, um neurologische Erkrankungen wie Epilepsie zu überwachen. »Denkbar ist es etwa, Patienten mithilfe von tragbarer EEG-Sensorik auch außerhalb der Klinik beobachten zu können. Im Projekt mEEGaHStim messen wir die Gehirnaktivität, um ein Hörgerät anzusteuern, aber man kann die Hirnströme natürlich ebenfalls bei neurologischen Störungen analysieren«, sagt Winneke. Der Forscher ist Mitarbeiter der Gruppe »Mobile Neurotechnologien« am Fraunhofer IDMT am Standort in Oldenburg. Diese arbeitet daran, Multi-Sensor-Plattformen zur Elektroenzephalografie (EEG) in konkreten Anwendungsszenarien verfügbar zu machen – beispielsweise in Gesundheitsanwendungen oder am sicherheitskritischen Arbeitsplatz, um die Analyse von Hirnaktivitäten alltagstauglich zu machen.

Externer Link: www.fraunhofer.de

Das hörende Auto der Zukunft

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 03.02.2020

Wer heute ein neues Auto kauft, muss auf Features wie ferngesteuertes Einparken, automatisches Spurhalten oder Müdigkeitserkennung nicht verzichten. Autonome Fahrzeuge werden zukünftig auch über einen Hörsinn verfügen. Forscherinnen und Forscher am Fraunhofer-Institut für Digitale Medientechnologie IDMT in Oldenburg haben erste Prototypen für das Erkennen von Außengeräuschen wie Sirenen entwickelt.

Moderne Fahrzeuge verfügen über zahlreiche Fahrerassistenzsysteme, die den Autofahrer entlasten, ihm etwa beim Einparken helfen oder den toten Winkel überwachen. Kamera, Lidar und Radar erfassen die relevanten Objekte in der Umgebung, sie fungieren quasi als Augen. Was den Automobilen bislang noch fehlt, ist der Hörsinn, sprich Systeme, die in der Lage sind, Außengeräusche wahrzunehmen und einzuordnen. Sie werden künftig im Zusammenspiel mit intelligenten Radar- und Kamerasensorik die Grundlage für das autonome Fahren bilden. Um das »hörende Auto« zu realisieren, entwickeln Forscherinnen und Forscher am Fraunhofer IDMT in Oldenburg KI-basierte Technologien zur akustischen Ereigniserkennung.

»Für autonome Fahrzeuge existieren externe akustische Wahrnehmungssysteme bisher nicht, trotz Ihres hohen Anwendungspotenzials. Sie signalisieren beispielsweise im Bruchteil einer Sekunde, wenn ein Fahrzeug mit eingeschaltetem Martinshorn naht. So weiß das autonome Fahrzeug, das es ausweichen muss, damit eine Rettungsgasse gebildet werden kann«, sagt Danilo Hollosi, Gruppenleiter Akustische Ereignisdetektion am Fraunhofer IDMT in Oldenburg. Neben der Sirenenerkennung gibt es zahlreiche weitere Szenarien, wo ein akustisches Frühwarnsystem unerlässlich ist: beim Einbiegen in Spielstraßen, aber auch zum Erkennen von gefährlichen Situationen oder Fehlern – etwa wenn ein Nagel im Reifen steckt. Darüber hinaus kann das System die Zustandsüberwachung des Fahrzeugs übernehmen oder per Spracherkennung als Notrufsäule fungieren.

KI-basierte Algorithmen analysieren die Geräusche

Um das »hörende Auto« zu verwirklichen, bringen die Entwicklerinnen und Entwickler am Fraunhofer IDMT in Oldenburg spezielle Projekterfahrungen im Bereich Automotive sowie gruppenübergreifende Kompetenzen mit. Zu den Herausforderungen zählen die optimale Signalaufnahme durch Sensorpositionierung, die Signalvorverarbeitung und – verbesserung sowie die Störgeräuschbefreiung. Eigene Beamforming-Algorithmen ermöglichen die dynamische Lokalisation von sich bewegenden Schallquellen, wie beispielsweise das Martinshorn an einem Einsatzfahrzeug. Die Ereignis-Erkenner des IDMT wurden zuvor über Machine-Learning-Verfahren mit den akustischen Signaturen der relevanten Töne trainiert. Hierfür wurden eigens akustische Bibliotheken angelegt. So entstehen intelligente Sensorplattformen mit effektiver Erkennerleistung. Eigens entwickelte KI-basierte Algorithmen zur Audioanalyse ermitteln die Stör- und Zielgeräusche. »Wir wenden Methoden des Maschinellen Lernens an. Wir trainieren unsere Algorithmen mit unterschiedlichsten, zuvor erhobenen Geräuschen«, so Hollosi. Gemeinsam mit Industriepartnern wurden bereits erste Prototypen realisiert, die Mitte des kommenden Jahrzehnts marktreif sein sollen.

Die akustische Sensorik der IDMT-Forscherinnen und -Forscher setzt sich aus eingehausten Mikrofonen, Steuergerät und Software zusammen. Außen am Fahrzeug angebracht nehmen die Mikrofone den Luftschall auf. Die Sensoren leiten die Audiodaten an ein spezielles Steuergerät weiter, wo diese dann zu relevanten Metadaten weiterverarbeitet werden. In vielen anderen Anwendungsfällen, zum Beispiel im Sicherheitsbereich, in der Pflege oder bei Consumer-Produkten, verwerten smarte Sensoren die Audiodaten direkt und geben nur Metadaten weiter.

Die computerbasierten Verfahren zur Ereigniserkennung des Forscherteams lassen sich in angepassten Varianten auch in anderen Branchen und Märkten einsetzen, etwa zur Qualitätssicherung in der industriellen Produktion. Hier verarbeiten intelligente akustische Sensoren batteriebetrieben Audiosignale von Maschinen und Anlagen. Aus den Informationen, die drahtlos an eine Auswerteeinheit weitergeleitet werden, lassen sich Rückschlüsse auf den Zustand der Fertigungsanlagen ziehen und mögliche Schäden vermeiden. Automatische Spracherkenner ermöglichen berührungslose Dokumentationssysteme für professionelle Einsatzzwecke, beispielsweise in der Turbinenwartung.

Externer Link: www.fraunhofer.de

Dünger aus Klärschlamm

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.01.2020

Ab 2032 müssen große Kläranlagen Phosphate aus dem Klärschlamm, bzw. der Asche zurückgewinnen – das besagt die neue Abfall- und Klärschlammverordnung. Bisherige Technologien dazu sind jedoch chemikalien- und kostenintensiv. Eine neue Technologie bietet nun eine wirtschaftliche und umweltfreundliche Alternative. Fraunhofer-Forscherinnen und Forscher zeichnen für die Aufskalierung des Verfahrens verantwortlich.

Hobbygärtner dürften es kennen: Ohne Düngemittel gedeihen Blumen, Kohlrabi, Tomaten und Co. nur mäßig. Landwirte setzen beim Düngen vor allem auf phosphathaltige Präparate, schließlich ist Phosphor ein elementarer Bestandteil allen Lebens und wird auch von Pflanzen dringend benötigt. Was die Lieferkette von Phosphor angeht, existiert jedoch ein Nadelöhr – 75 Prozent der Phosphatlagerstätten liegen in Marokko und der westlichen Sahara. Wie kritisch das werden kann, zeigte sich in den Jahren 2008 und 2009: Durch Lieferengpässe und Spekulationen an den Rohstoffmärkten stieg der Phosphorpreis um 800 Prozent. Die Europäische Kommission nahm Phosphor daher in die Liste der 20 kritischen Rohstoffe auf. Auch die Bundesregierung reagierte: Ab 2023 müssen Betreiber großer Kläranlagen ein Konzept vorlegen, wie der Phosphor zurückzugewinnen ist. Zwar kann die Klärschlammasche auch direkt auf die Felder ausgebracht werden, allerdings können die Pflanzen den darin enthaltenen Phosphor nicht in nennenswertem Maße verwerten. Dazu kommt: Die Asche enthält auch Schadstoffe wie Schwermetalle, die nicht auf den Acker gelangen sollten. Zwar gibt es bereits erste Ansätze, den Phosphor über nasschemische Verfahren aus der Klärschlammasche zurückzugewinnen. Jedoch sind hierfür große Mengen an Chemikalien nötig.

Phosphor rückgewinnen: Kostengünstig, pflanzenverfügbar und umweltschonend

Einen alternativen Ansatz verfolgt die P-bac Technologie, die Experten der Firma Fritzmeier Umwelttechnik GmbH & Co. KG entwickelt und im Projekt »Phosphorrecycling – vom Rezyklat zum intelligenten langzeitverfügbaren Düngemittel – PRil« gemeinsam mit der Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS in Alzenau,und der ICL Fertilizers Deutschland GmbH vom Labormaßstab in den Technikumsmaßstab übertragen haben. Das Projekt wurde vom Bundesministerium für Ernährung und Landwirtschaft gefördert.

»Wir haben die Aufskalierung des Verfahrens im Bereich der Prozesswasserrezyklierung sowie der Reststoffverwertung, Wirtschaftlichkeitsbetrachtungen und Analytik begleitet«, erläutert Dr. Lars Zeggel, Projektleiter am Fraunhofer IWKS. »Der Phosphor, den wir über das neuartige Verfahren aus der Asche zurückgewinnen, hat eine Pflanzenverfügbarkeit von 50 Prozent, bezogen auf einen wasserlöslichen Phosphatdünger. Zum Vergleich: Das Phosphat in der reinen Klärschlammasche ist nahezu gar nicht pflanzenverfügbar.« Zudem ist das enthaltene Substrat weitgehend schadstofffrei, die relevanten Schadstoffe können um mehr als 90 Prozent reduziert werden. Auch was die Kosten angeht, kann sich das Düngemittel aus recyceltem Klärschlamm sehen lassen, wie eine Wirtschaftlichkeitsbetrachtung des Fraunhofer IWKS ergab: Etwa zwei Euro pro Kilogramm kostet das so hergestellte Phosphat, während der Preis bei der Herstellung über nasschemische Verfahren bei mindestens vier bis sechs Euro pro Kilogramm liegt. Zwar ist der Phosphor aus recycelten Quellen bislang noch teurer als der primäre Phosphor aus Marokko, der bei 70 Cent pro Kilogramm P2O5 liegt. Doch enthält der primäre Phosphor im Gegensatz zum recycelten zunehmend Schadstoffe wie Cadmium und Uran.

Bakterien machen es möglich

Das Verfahren, mit dem der Phosphor aus dem Klärschlamm zurückgewonnen wird, hat die Firma Fritzmeier entwickelt. Der Clou: Statt Chemikalien wie Schwefelsäure zur Klärschlammasche zu geben, überlassen die Experten Bakterien das Feld. Diese nehmen Kohlenstoffdioxid aus der Luft auf – schaffen somit also einen weiteren Vorteil – und stellen unter Zugabe von elementarem Schwefel selbst Schwefelsäure her, mit dem sie den Phosphor aus der Asche lösen. Andere Bakterien nehmen den Phosphor unter geschickt gewählten Lebensbedingungen auf, reichern ihn an und geben ihn unter anderen Lebensbedingungen wieder ab: Es fällt festes Eisenphosphat aus, das von der Laugungslösung abgetrennt werden kann.

Die Forscher des Fraunhofer IWKS widmeten sich unter anderem dem Prozesswasser. »Um ein Liter Klärschlammasche zu rezyklieren, sind etwa zehn Liter Prozesswasser nötig«, sagt Zeggel. Nach der Abtrennung des Phosphats lässt es sich direkt für die erneute Vermehrung der Bakterien verwenden, und muss erst nach einigen Zyklen entsalzt werden. »Wir haben die Membranfiltration soweit anpassen können, dass wir 98 Prozent des eingesetzten Sulfats – also den Schwefel – aus dem Wasser entfernen und letztendlich 75 Prozent des Prozesswassers im Kreis führen können«, fasst Zeggel zusammen. Damit reduziert sich die Menge des zu entsorgenden Prozesswassers erheblich und führt zu hohen Einsparungen an Energie. Das Verfahren ist somit nicht nur sehr umweltschonend, sondern es fällt auch ein großer Kostenfaktor weg. Denn die Energie, die zum Verdampfen des Wassers aufgewendet werden müsste, ist einer der größten Kostentreiber. Mit der Membranfiltration konnte das Forscherteam die Betriebskosten erheblich senken. Das Gesamtverfahren ist bereits im Hundert-Liter-Maßstab einsatzbereit.

Externer Link: www.fraunhofer.de