Drehung auch bei Kälte

Presseinformation der LMU München vom 22.11.2018

LMU-Chemiker haben den ersten molekularen Motor entwickelt, der nur mit Licht als Antrieb auskommt und temperaturunabhängig betrieben werden kann.

Molekulare Motoren, die durch externe Energiezufuhr hin gezielte Drehbewegungen ausführen, sind eine wichtige Grundlage für zukünftige Anwendungen in der Nanotechnologie. Vielversprechende Kandidaten für solche Motoren sind Moleküle, die unter Lichteinfluss ihre Struktur ändern. Allerdings benötigen alle bisherigen lichtgetriebenen molekularen Motoren zusätzliche, durch Wärme angetriebene Reaktionen und sind deshalb von der Umgebungstemperatur abhängig. LMU-Chemiker Henry Dube ist nun ein entscheidender Durchbruch gelungen: Mit seinem Studenten Aaron Gerwien hat er den ersten molekularen Motor entwickelt, der vollständig lichtgetrieben und damit temperaturunabhängig ist – bei tiefen Temperaturen ist er sogar schneller. Diese einzigartige Eigenschaft könnte die Einsatzmöglichkeiten zukünftiger Nanomaschinen wesentlich erweitern. Über ihre Ergebnisse berichten die Wissenschaftler im Journal of the American Chemical Society.

Grundvoraussetzung für einen funktionierenden molekularen Rotationsmotor ist eine durch Energiezufuhr erzeugte gerichtete Drehbewegung. Dabei führen mehrere Drehschritte zu einer vollständigen 360 Grad Rotation eines bestimmten Molekülteils um einen anderen. Um zu verhindern, dass sich das Molekül wieder zurückdreht, benötigen alle bisher entwickelten molekularen Motoren sogenannte Ratschenschritte: Darunter versteht man Zwischenschritte, die das Molekül nach einem Drehschritt so verändern, dass die Rückreaktion blockiert wird. Diese Ratschenschritte werden normalerweise durch Wärme induziert. Deshalb laufen die Motoren umso langsamer, je tiefer die Umgebungstemperaturen sind und bleiben bei Kälte schließlich stehen.

Der neue Motor basiert wie frühere von Dube entwickelte Motorsysteme auf dem Molekül Hemithioindigo. Dieses Molekül besteht aus zwei unterschiedlichen Kohlenwasserstoff-Hälften, die über eine chemische Doppelbindung miteinander verbunden sind. „Wir haben es nun geschafft, das Molekül so zu modifizieren, dass drei Teilreaktionen ausreichen, um eine vollständige Rotation des einen Molekülteils um den anderen zu erzielen“, sagt Dube. Alle drei Teilschritte der Drehung werden durch sichtbares Licht angetrieben und kommen ohne thermische Ratschen-Zwischenschritte aus. Alle drei Teilreaktionen werden durch Kühlung sogar effizienter, deshalb kann der neue Motor bei tieferen Temperaturen schneller werden anstatt langsamer. „Die Teilschritte bestehen aus drei unterschiedlichen Photoreaktionen, von denen wir zwei erst dieses Jahr zum ersten Mal direkt experimentell bewiesen haben“, erklärt Dube. Das einzigartige Verhalten des Motors und sein neuartiger Mechanismus werden es nach Überzeugung der Wissenschaftler in Zukunft ermöglichen, molekulare Maschinen zu bauen, die wegen ihrer Temperaturunempfindlichkeit neue Einsatzmöglichkeiten eröffnen werden, die mit herkömmlichen molekularen Motoren unmöglich sind.

Publikation:
Journal of the American Chemical Society 2018

Externer Link: www.uni-muenchen.de