Ursache für erbliche Netzhauterkrankung geklärt

Pressemitteilung der Universität Regensburg vom 13.08.2010

Regensburger Wissenschaftler entschlüsseln Mechanismus der Genablesung in Sehzellen

Die Netzhaut des menschlichen Auges besteht – neben einer Vielzahl anderer Zellen – aus lichtempfindlichen Sehzellen, von denen etwa 120 Millionen Stäbchen- und ca. sechs Millionen Zapfenzellen sind. Diese lichtempfindlichen Sehzellen nehmen Lichtreize wahr und wandeln sie in elektrische Impulse um, die dann wiederum im Gehirn zur eigentlichen Sehwahrnehmung verarbeitet werden. Defekte in Stäbchen- und Zapfenzellen sind als erbliche Netzhauterkrankungen bekannt und können zu einer fortschreitenden Erblindung führen.

Bislang war nur in Ansätzen bekannt, wie die Produktion von Proteinen in den Sehzellen gesteuert wird, um die Funktion der Sehzellen zu sichern. Ein internationales Forscherteam, bestehend aus deutschen und US-amerikanischen Wissenschaftlern, konnte nun unter Federführung des Instituts für Humangenetik der Universität Regensburg (Priv.-Doz. Dr. Thomas Langmann und Prof. Dr. Bernhard Weber) aufzeigen, dass praktisch alle für Stäbchen- und Zapfenzellen relevanten Gene durch das Zellkernprotein CRX („Cone Rod Homeobox“) gesteuert werden. So gewährleistet CRX unter anderem auch das kontrollierte „Ablesen“ bzw. die Produktion essentieller Proteine wie der Sehfarbstoffe.

„FAM161A Gen“ – die Ursache für Retinitis

Auf dieser Grundlage konnten die Regensburger Forscher weitere Gene und Gendefekte als Ursache für erbliche Netzhauterkrankungen beim Menschen identifizieren. So gelang in Zusammenarbeit mit Wissenschaftlern aus Hamburg und Lausanne der Nachweis, dass Mutationen im sogenannten „FAM161A Gen“ die Ursache für die Retinitis Pigmentosa vom Typ 28 (RP28) sind. Bei dieser Erkrankung sterben die Sehzellen ab dem Kindesalter ab und es kommt schon sehr früh zur Nachtblindheit und einer Einschränkung des Gesichtsfelds bis hin zum Tunnelblick. Retinitis Pigmentosa führt in einem späteren Stadium in der Regel auch zur Erblindung der Betroffenen.

Für das Regensburger Forscherteam wird es nun darum gehen, die Funktion des bisher unerforschten „FAM161A Gens“ in der Netzhaut näher zu untersuchen. Darüber hinaus ist das Auffinden weiterer CRX-gesteuerter „Krankheitsgene“ erklärtes Ziel. Die Ergebnisse der Forscher sind vor Kurzem in den beiden renommierten Fachzeitschriften „Genome Research“ und „American Journal of Human Genetics“ erschienen.

Literaturangaben:

Corbo JC, Lawrence KA, Karlstetter M, Myers CA, Abdelaziz M, Dirkes W, Weigelt K, Seifert M, Benes V, Fritsche LG, Weber BHF, Langmann T: CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors. „Genome Research“ (doi 10.1101/gr.109405.110)

Langmann T, Di Gioia AD, Rau I, Stöhr H, Maksimovic NS, Corbo JC, Renner AB, Zrenner E, Kumaramanickavel G, Karlstetter M, Arsenijevic Y, Weber BHF, Gal A, Rivolta C: Nonsense mutations in FAM161A cause RP28-associated recessive Retinitis Pigmentosa. „American Journal of Human Genetics“ (doi:10.1016/j.ajhg.2010.07.018)

Externer Link: www.uni-regensburg.de

Vom Schwamm zum Säuger: Auf der Suche nach gemeinsamen Vorfahren

Presseinformation der Universität Göttingen vom 05.08.2010

Forscherteam mit Wissenschaftlern der Universität Göttingen entschlüsselt Schwamm-Genom

(pug) Einer internationalen Gruppe von Wissenschaftlern ist es gelungen, die Genomsequenz eines Hornkieselschwamms teilweise zu entschlüsseln. Dabei fanden die Forscher heraus, dass das Genom von Amphimedon queenslandica, der im australischen Great Barrier Reef lebt, eine erstaunliche Ähnlichkeit zum Genom komplexerer Tiere einschließlich Säugetieren aufweist. Die Ergebnisse ihrer Forschung haben die Wissenschaftler nun in der renommierten Fachzeitschrift Nature veröffentlicht. An dem Projekt sind neben 31 anderen Wissenschaftlern auch Juniorprofessor Dr. Daniel Jackson und Prof. Dr. Mario Stanke von der Universität Göttingen beteiligt.

Das Forscherteam kam zu überraschenden Erkenntnissen: Obwohl Schwämme primitiv aussehen und auf der untersten Entwicklungsstufe vielzelliger Lebewesen stehen, unterscheidet sich die Zusammensetzung ihres Erbguts nicht wesentlich von denen höher entwickelter Tiere. Die Wissenschaftler erhoffen sich nun durch das Studium von A. queenslandica tiefere Einsichten darüber, wie die Erbanlagen eines möglichen „universellen Vorfahren“ aller Tiere ausgesehen haben könnten – sozusagen an der Schnittstelle zwischen Schwamm und komplexeren Tieren mit echten Geweben.

Das Sequenzieren des Genoms von A. queenslandica wurde den Forschern allerdings durch einige biologische Besonderheiten erschwert. Zum einen mussten sie eine ausreichende Menge reiner DNA gewinnen. Da Schwämme jedoch häufig aus einer Mischung aus Schwamm- und Bakterienzellen bestehen, haben die Wissenschaftler Embryonen und Larven des Hornkieselschwamms von einem erwachsenen Schwamm isoliert. Im nächsten Schritt wurden die Chromosomen, Molekülketten aus etwa 170 Millionen Nukleotiden, in kleinere Stücke zerbrochen, um sie sequenzieren zu können.

In einem komplexen Verfahren hat Juniorprofessor Jackson vom Courant Forschungszentrum Geobiologie der Universität Göttingen nun eine sogenannte DNA-Bibliothek erstellt. Darin sind die Teile der DNA „archiviert“, die die Bauanleitung für Eiweiße des Schwamms enthalten. Diese Bibliothek ist relativ frei von sogenannter Junk-DNA, deren Funktion bisher unbekannt ist, und erhöht damit die Qualität der Genomsequenz. Prof. Stanke, bis Juni dieses Jahres am Institut für Mikrobiologie und Genetik der Universität Göttingen tätig, hat ein Computerprogramm entwickelt, das basierend auf einem mathematischen Modell gelernt hat, welche DNA-Abschnitte zu einem Gen gehören. Die so vorhergesagten Eiweißsequenzen wurden dann mit denen anderer Tiere verglichen. Dabei lässt eine signifikante Ähnlichkeit darauf schließen, dass das entsprechende Gen bereits in gemeinsamen Vorfahren einen Vorläufer hatte, von dem die heutigen Gene abstammen.

Indem die Wissenschaftler das Genom von A. queenslandica mit denen anderer Tiere wie einem Wurm, einer Fruchtfliege oder einer Maus verglichen, konnten sie nachvollziehen, wie bestimmte Gene die Entwicklung eines Organismus kontrollieren, sich evolutionär verändert und entwickelt haben. Dabei fand das Forscherteam heraus, dass die „Kern-Bauanleitung“, die die Entwicklung eines komplexen Tieres steuert, auch im Genom eines Schwamms enthalten ist. Dazu zählen wichtige Kennzeichen von Mehrzelligkeit bei Tieren, wie regulierter Zellzyklus und Zellwachstum und der programmierte Zelltod. Viele dieser Gene, die mit dem Aufkommen von Komplexität bei Tieren in Verbindung gebracht werden, sind nach Ansicht der Forscher mit Krebs verknüpft – einer Krankheit gestörter Mehrzelligkeit.

Originalveröffentlichung:
Srivastava et al.: The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. DOI: 10.1038/nature09201.

Externer Link: www.uni-goettingen.de

Universität Freiburg: Medizin aus Moos

Pressemitteilung der Universität Freiburg vom 21.07.2010

Menschliches Protein im Moosbioreaktor produziert

Diabetiker benutzen in Bakterien produziertes Insulin zur Behandlung ihrer Stoffwechselstörung. Auch sonst sind gentechnisch hergestellte Proteine in der Medizin auf dem Vormarsch: Sie werden sowohl in der Diagnose als auch in der Therapie eingesetzt. Früher wurde Insulin aus Schlachthausabfällen gewonnen, heute wird es gentechnisch in Bakterien produziert. Komplexere Proteine müssen jedoch in komplexeren Organismen synthetisiert werden. Dies geschieht meistens in Bioreaktoren mit tierischen Zelllinien. Alternativ hierzu entwickelt der Freiburger Biotechnologe Prof. Dr. Ralf Reski das Kleine Blasenmützenmoos Physcomitrella patens zu einem sicheren und kostengünstigen Medizinlieferanten.

Nun gelang es seiner Gruppe unter Leitung von Dr. Eva Decker erstmals, im Moosbioreaktor ein menschliches Protein zu produzieren, dessen Fehlen bei 50 Millionen Menschen zu altersbedingter Blindheit führt. Es bekam von den zuständigen EU Behörden den Status eines Arzneimittels für seltene Leiden zugesprochen. Dieser offizielle „orphan drug“-Status bedeutet, dass Entwicklung und Zulassung solcher Arzneimittel behördlich besonders gefördert werden. Bei vielen Menschen nimmt die Menge dieses Proteins im Alter ab – mit schwerwiegenden Konsequenzen. „Mit dem Komplementfaktor H haben wir im Moos ein Protein produziert, das sonst im Blut vorkommt und wichtig ist für das Immunsystem“, sagt Eva Decker. „Eine zu geringe Menge dieses Proteins bei älteren Menschen ist die Hauptursache der altersabhängigen Makuladegeneration (AMD), die besonders in Industrieländern ein Problem ist.“

Biochemiker vom Freiburger Zentrum für Biosystemanalyse um Dr. Andreas Schlosser zeigten mithilfe von Hochleistungs-Massenspektrometern, dass der vom Moos produzierte Faktor H vollständig vorliegt. Infektionsbiologen vom Hans-Knöll-Institut in Jena um Prof. Dr. Peter F. Zipfel wiesen nach, dass Faktor H aus Moos im Biotest voll funktionstüchtig ist. „Da es Faktor H gegenwärtig nicht in der Apotheke zu kaufen gibt, ist eine Behandlung der AMD mit diesem Protein nicht möglich“, sagt Peter Zipfel. „Bisher konnte man Faktor H kaum gentechnisch produzieren. Ich bin überzeugt, dass der Moosbioreaktor hierfür erstmals eine interessante Option bietet.“

„Es wird aber noch dauern, bis es Medikamente aus Moos in der Apotheke zu kaufen gibt“, sagt Ralf Reski, Mitglied im Innovationsrat Baden-Württemberg. „Mit Methoden der Systembiologie und der Synthetischen Biologie optimieren wir den Moosbioreaktor weiter. Die Durchführung klinischer Studien und der Aufbau einer industriellen Produktion sind jedoch langwierig und teuer. Deshalb sind sie Aufgabe von Unternehmen, nicht der universitären Forschung.“

Die Arbeiten wurden gefördert vom Bundesministerium für Bildung und Forschung, der Freiburger Initiative für Systembiologie und dem Exzellencluster BIOSS.

Originalveröffentlichung:
Annette Büttner-Mainik, Juliana Parsons, Hanna Jérôme, Andrea Hartmann, Stephanie Lamer, Andreas Schaaf, Andreas Schlosser, Peter F. Zipfel, Ralf Reski, Eva L. Decker (2010): Production of biologically active recombinant human Factor H in Physcomitrella. Plant Biotechnology Journal, doi: 10.1111/j.1467-7652.2010.00552.x.

Externer Link: www.uni-freiburg.de

CSI im Dienst der Cellulose-Synthese

Presseinformation der Max-Planck-Gesellschaft vom 14.07.2010

Neu entdecktes Protein ist an der Bildung von Cellulose beteiligt

Getreide, Gemüse und Obst sind wichtige Energielieferanten der menschlichen Ernährung. Den Hauptbestandteil von Pflanzen – die Cellulose in der Zellwand – können wir allerdings gar nicht verwerten. Selbst bei Wiederkäuern, die Cellulose verdauen können, spielt die Verdaulichkeit der Zellwand eine entscheidende Rolle für die Futterverwertung. Wissenschaftler arbeiten deshalb daran, pflanzliche Zellwände zur Energiegewinnung zu nutzen und die Verdaulichkeit von Futter zu erhöhen. Dafür müssen sie zunächst verstehen, wie Pflanzenzellen ihre Zellwand aus Cellulose aufbauen und welche Gene und Proteine daran beteiligt sind. Wissenschaftler am Max-Planck-Institut für Molekulare Pflanzenphysiologie in Potsdam-Golm haben nun zusammen mit Kollegen aus den USA ein bislang unbekanntes Protein entdeckt, das zur Cellulose-Produktion benötigt wird. (PNAS, 1. Juli 2010, online vorab veröffentlicht)

Pflanzliche Zellen besitzen im Unterschied zu Zellen von Tieren eine Zellwand aus verschiedenen Zuckerpolymeren, deren Hauptbestandteil Cellulose ist. Sie gibt der Pflanze ihre Stabilität, schützt sie vor Krankheitserregern und ist an der Samenkeimung und der Fruchtreife beteiligt. Pflanzen bestehen zu 35 bis 50% ihres Trockengewichts aus Cellulose – es ist damit das häufigste Biopolymer der Erde.

Cellulose wird durch einen Protein-Komplex direkt an der Plasmamembran synthetisiert. Die einzige bisher bekannte Komponente dieses Komplexes ist die Cellulose-Synthase (CESA). Dieses Enzym kommt in Pflanzenzellen in verschiedenen Formen mit jeweils unterschiedlichem Aufbau vor. Genetische Studien weisen darauf hin, dass drei dieser Formen – CESA1, CESA3 und CESA6 – für die Synthese der primären Zellwand benötigt werden, während CESA4, CESA7 und CESA8 für die Synthese der sekundären Zellwand erforderlich sind. Die primäre Zellwand bildet sich während des Zellwachstums und ist besonders flexibel und dehnbar. Die sekundäre Zellwand entsteht dagegen nach Abschluss des Wachstums und ist dicker und starrer ist als die primäre Zellwand.

Bislang war unbekannt, aus wie vielen CESA-Formen der Proteinkomplex besteht und ob noch weitere Proteine darin enthalten sind. Wissenschaftler um Staffan Persson am Max-Planck-Institut für Molekulare Pflanzenphysiologie haben in Zusammenarbeit mit Kollegen aus den USA das Cellulose Synthase-Interactive Protein – CSI1 – identifiziert, das an der Cellulose-Synthese beteiligt ist. CSI1 scheint mit dem CESA-Komplex verbunden zu sein, denn es interagiert mit den Cellulose-Synthasen der primären Zellwand (CESA1, 3 und 6). Die Forscher konnten zeigen, dass das Protein eine wichtige Rolle bei der Bildung von Cellulose spielt. „Pflanzen, die aufgrund einer Mutation kein CSI1 bilden können, produzieren nachweislich weniger Cellulose. Sie haben verkürzte und geschwollene Wurzeln und ihre Pollenkörner fallen in sich zusammen“, erklärt Staffan Persson.

Welche Funktion CSI1 bei der Cellulose-Synthese hat, wissen die Wissenschaftler allerdings noch nicht. Sie vermuten, dass das Protein die Geschwindigkeit der Cellulose-Produktion und die räumliche Ausrichtung der einzelnen Cellulose-Fibrillen beeinflusst. Deshalb wollen die Forscher als nächstes die genaue Rolle von CSI1 untersuchen. Die Erkenntnisse aus diesen weiterführenden Untersuchungen werden zu einem verbesserten Verständnis der Biosynthese von Zellwänden beitragen. Dieses Wissen könnte die Chancen auf eine bessere Zellwandverdaulichkeit in der Tierfütterung oder die Nutzung von Zellwänden zur Energiegewinnung erhöhen. [URS]

Originalveröffentlichung:
Ying Gu, Nick Kaplinsky, Martin Bringmann, Alex Cobb, Andrew Carroll, Arun Sampathkumar, Tobias I. Baskin, Staffan Persson und Chris R. Somerville
Identification of a cellulose synthase-associated protein required for cellulose biosynthesis
PNAS, 1. Juli 2010, online vorab veröffentlicht (doi: 10.1073/pnas.1007092107)

Externer Link: www.mpg.de

Protein mit doppeltem Lichtschalter

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 05.07.2010

Karlsruher Forscher entwickeln neuen fluoreszenten Marker für biotechnologische Anwendungen

Ein neues fluoreszentes Markerprotein haben Forscher um Professor Gerd Ulrich Nienhaus vom KIT entwickelt: Bei dem photoaktivierbaren Protein „mIrisFP“ lässt sich sowohl das Fluoreszenzlicht ein- und ausschalten als auch die Farbe des Lichts von Grün nach Rot verändern. Das Protein erlaubt dynamische Untersuchungen an Zellen und Organismen und eröffnet der zellbiologischen und molekularmedizinischen Forschung neue Möglichkeiten. In der Fachzeitschrift „Nature Methods“ stellen die Wissenschaftler nun ihre Entwicklung vor.
 
Fluoreszente Proteine strahlen einfallendes Licht effizient wieder ab und machen dadurch Proteine in lebenden Zellen sichtbar. Als genetisch kodierte Fluoreszenzmarker lassen sie sich für Experimente in den Lebenswissenschaften vielfältig einsetzen: Wird das Gen eines bestimmten Proteins um die Erbinformation (DNS-Sequenz) für das fluoreszierende Protein erweitert, produziert die Zelle ein so genanntes Fusionsprotein, das durch ein charakteristisches Fluoreszenzleuchten zu erkennen ist.
 
Zunächst war nur das grün fluoreszierende Protein (GFP) einer pazifischen Qualle bekannt. In den vergangenen Jahren entdeckte die Forschung fluoreszierende Proteine in weiteren wirbellosen Meerestieren und identifizierte unter anderem auch photoaktivierbare Proteine, deren Fluoreszenz sich durch Lichteinstrahlung gezielt steuern lässt. Die Naturformen dieser Proteine eignen sich allerdings nicht für biotechnologische Anwendungen; sie müssen dafür aufwendig optimiert werden. Bisher ließ sich bei solchen Markerproteinen entweder die Fluoreszenz ein- und ausschalten oder aber die Farbe des Lichts verändern.
 
Die Forschergruppe um Gerd Ulrich Nienhaus am DFG-Centrum für Funktionelle Nanostrukturen (CFN) des KIT hat nun gemeinsam mit Wissenschaftlern der Universität Ulm, der University of Southampton/UK und der University of Illinois/USA ein als „mIrisFP“ bezeichnetes Markerprotein entwickelt. Es zeichnet sich durch die Kombination von zwei durch Licht steuerbaren Aktivierungsmodi aus: eine nicht umkehrbare Photokonversion von Grün nach Rot und eine umkehrbare Ein- und Ausschaltbarkeit der Fluoreszenz. Zudem ist mIrisFP monomer, das heißt es besteht aus nur einer Einheit, so dass es nicht zur Bildung von Proteinmolekülkomplexen kommt.
 
„Dadurch besitzt mIrisFP exzellente Eigenschaften für lebenswissenschaftliche Anwendungen“, erklärt Professor Nienhaus. „Besonders spannend sind sind dynamische Untersuchungen an lebenden Zellen und Organismen.“ Durch gezielte Lichteinstrahlung können bestimmte Zellen in frühen Embryonalstadien von Modellorganismen markiert und über Tage und Wochen hinweg verfolgt werden. Gezielte Markierungen von Zellkompartimenten werden mit Signalpeptiden erreicht, welche über gentechnische Modifikation auf DNS-Ebene an das fluoreszierende Protein angehängt werden. Besonders wichtig sind die erwähnten Fusionskonstrukte eines fluoreszenten Markerproteins mit einem zu untersuchenden Protein, um dieses sichtbar zu machen. Photoaktivierbare fluoreszente Proteine spielen außerdem eine Schlüsselrolle in der höchstauflösenden Fluoreszenzmikroskopie.
 
Mit mIrisFP lassen sich Abbildungen von Zellen mit räumlichen Auflösungen von 20 bis 30 Nanometern herstellen – weit unterhalb der Abbeschen Auflösungsgrenze von rund 200 Nanometern, die lange als physikalische Grenze galt und genauere Einblicke in die molekularen Prozesse in der lebenden Zelle verhinderte. In der Fachzeitschrift „Nature Methods“ stellt die Forschergruppe das neue Markerprotein vor und untersucht mit höchstauflösender Photoaktivierungs-Lokalisationsmikroskopie (PALM) molekulare Prozesse bei der Bewegung einer menschlichen Krebszelle. So lässt sich verfolgen, wie bestimmte mit mIrisFP sichtbar gemachte Proteine in einem Bereich der Zelle entfernt werden, um anschließend in einem anderen Bereich der Zelle wiederum in neue Strukturen eingebaut zu werden. (or)
 
Literatur:
A photoactivatable marker protein for pulse-chase imaging with superresolution. Jochen Fuchs, Susan Boehme, Franz Oswald, Per Niklas Hedde, Maike Krause, Jörg Wiedenmann & G Ulrich Nienhaus. Nature Methods. Published online: 4 July 2010; doi: 10.1038/nmeth.1477.

Externer Link: www.kit.edu