Neues Rot für schöneres Weiß

Presseinformation der LMU München vom 23.06.2014

LMU-Chemiker entwickeln einen neuartigen roten Leuchtstoff, der weiße LED-Lampen heller macht.

Einem Team von Wissenschaftlern um Wolfgang Schnick, Inhaber des Lehrstuhls für Anorganische Festkörperchemie an der LMU, ist es in Kooperation mit Dr. Peter Schmidt von der Philips Technologie GmbH Aachen gelungen, ein neues Material für Leuchtdioden zu entwickeln. „Seine außergewöhnlichen Leuchteigenschaften könnten den LED-Markt revolutionieren“, sagt Schnick. Über ihre Ergebnisse berichten die Forscher aktuell in der Fachzeitschrift Nature Materials.

Nach dem EU-Verbot von Glühlampen, die nur wenige Prozent der elektrischen Energie in Licht verwandeln, gelten Leuchtdioden (LEDs) als Lichtquelle der Zukunft. Sie erzeugen Licht durch Anregung von Elektronenübergängen in halbleitenden Festkörpern. Im Gegensatz zu den umstrittenen Energiesparlampen, die giftiges Quecksilber enthalten, sind sie ökologisch unbedenklich und zudem sehr effizient, senken also den Energieverbrauch.

Jede LED kann immer nur eine Lichtfarbe erzeugen. Schnick und sein Team haben jedoch bereits zuvor den technologischen Durchbruch geschafft, neuartige Leuchtstoffe zu entwickeln, die blaues Licht von LEDs in alle Farbkomponenten des sichtbaren Spektrums umwandeln, insbesondere in solche im roten Spektralbereich. Durch Farbmischung kann so weißes Licht in sehr hoher Qualität erzeugt werden. Für diese Entwicklung wurden sie 2013 für den Deutschen Zukunftspreis nominiert.

Neuer Leuchtstoff mit großem Potenzial

Weißes Licht wird erzeugt, indem einfarbige blaue LEDs mit verschiedenen keramischen Leuchtstoffen beschichtet werden. Diese können einen Teil des blauen Lichts absorbieren und in allen anderen Farben des sichtbaren Spektrums von Cyan bis Rot emittieren. Durch Mischung aller dieser Farbkomponenten entsteht dann weißes Licht. Hierbei werden allerdings extreme Anforderungen an die Leuchtstoffe gestellt. Sie brauchen nämlich eine hohe thermische Belastbarkeit und müssen mit sehr hoher Effizienz arbeiten.

„Bei kommerziell erhältlichen Weißlicht-LEDs muss man sich bisher noch zwischen möglichst hoher Effizienz und ausreichender Farbwiedergabe entscheiden“, sagt Schnick. Begrenzender Faktor sind hierbei vor allem die eingesetzten rot emittierenden Leuchtstoffe, da sie in besonderer Weise die Farbwiedergabe beeinflussen. Auch die Industrie hat seit vielen Jahren großen Bedarf an neuen Leuchtstoffen, deren Emissionen den tiefroten Spektralbereich abdecken, um höchste Effizienz und hervorragende Farbwiedergabe in Einklang zu bringen.

Das nun von Schnick, Schmidt und ihren Kollegen neu entdeckte nitridische Material Sr[LiAl3N4] zeigt nach gezielter Zugabe des Seltenerdmetalles Europium intensive und außergewöhnlich schmalbandige Lumineszenz im Roten bei Wellenlängen von etwa 650 nm und einer Halbwertsbreite von nur 50 nm. Erste LED-Prototypen mit diesem Leuchtstoff zeigten dabei im Vergleich zu handelsüblichen Weißlicht-LEDs eine um 14 % erhöhte Lichtausbeute bei trotzdem brillanter Farbwiedergabe. „Dieses neuartige Material übertrifft im Hinblick auf die einzigartigen Lumineszenzeigenschaften alle bisher für LEDs verwendeten tiefrot emittierenden Leuchtstoffe und zeigt sehr großes Potenzial für die industrielle Anwendung“, sagt Schnick.

Wissenschaftler am Lumileds Development Center Aachen (Philips Technologie GmbH) um Dr. Peter Schmidt sind derzeit damit beschäftigt, den neuen roten Leuchtstoff für die Produktion tauglich zu machen. Ihr Ziel ist es, den Weg zur nächsten Generation von helleren, energieeffizienteren weißen LEDs mit bester Farbwiedergabequalität zu ebnen. (nh)

Publikation:
Nature Materials 2014

Externer Link: www.uni-muenchen.de

Neue selbstheilende Kunststoffe entwickelt

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 24.03.2014

Forscher des KIT und Evonik Industries haben ein neuartiges Polymernetzwerk entwickelt, das sich bei relativ niedrigen Temperaturen sehr schnell und beliebig oft wiederholbar selbst heilt

Ob Kratzer im Autolack oder Risse im polymeren Material: Selbstheilende Werkstoffe können sich selbst reparieren, indem sie nach Beschädigungen ihre ursprüngliche molekulare Struktur wiederherstellen. Wissenschaftler des Karlsruher Instituts für Technologie und Evonik Industries entwickelten eine chemische Vernetzungsreaktion, durch die sich bei milder Erwärmung innerhalb kurzer Zeit gute Heilungseigenschaften des Materials erreichen lassen. Die Ergebnisse ihrer Forschung veröffentlichen sie nun im Fachmagazin Advanced Materials. DOI:10.1002/adma.201306258

Die Karlsruher Forschungsgruppe um Christopher Barner-Kowollik nutzt zum Herstellen selbstheilender Materialien die Möglichkeit, funktionalisierte Fasern oder kleine Moleküle durch eine umkehrbare chemische Reaktion zu einem Netzwerk zu verknüpfen. Diese sogenannten schaltbaren Netzwerke lassen sich – nach einer Beschädigung – in ihre Ausgangsbausteine zerlegen und wieder neu zusammenfügen. Dieser Ansatz hat den Vorteil, dass sich der Selbstheilungsmechanismus beliebig oft auslösen lässt, zum Beispiel durch Hitze, Licht oder durch die Zugabe einer Chemikalie. „Unsere Methode ist vollkommen katalysatorfrei, sie benötigt keinerlei Zusatzstoff“, sagt Professor Barner-Kowollik. Als Inhaber des Lehrstuhls für Präparative Makromolekulare Chemie am KIT befasst sich der Wissenschaftler mit Synthesen von makromolekularen chemischen Verbindungen.

In rund vierjähriger Forschung hat der von Barner-Kowollik geleitete Arbeitskreis gemeinsam mit dem Projekthaus Composite der Creavis, der strategischen Innovationseinheit von Evonik, ein neuartiges Polymernetzwerk entwickelt. Bei vergleichsweise geringen Temperaturen von 50˚C bis 120˚C zeigt das Netzwerk in wenigen Minuten sehr gute Heilungseigenschaften. Die benötigte Zeit zu verringern und die äußeren Bedingungen, unter denen der Heilungsprozess abläuft, zu optimieren, gehört zu den wesentlichen Herausforderungen der Forschung an selbstheilenden Materialien. Einen Erfolg sehen die KIT-Forscher in der großen Zahl der intermolekularen Bindungen, die sich in dem von ihnen entwickelten Heilungszyklus beim Abkühlen in sehr kurzer Zeit wieder schließen. Zudem bestätigten mechanische Tests wie Zugversuche und das Prüfen der Zähigkeit, dass sich die ursprünglichen Eigenschaften des Materials vollständig wiederherstellen lassen. „Es ließ sich nachweisen, dass die Testkörper nach der ersten Heilung sogar stärker gebunden sind als vorher“, so Barner-Kowollik.

Die selbstheilenden Eigenschaften lassen sich auf die große Bandbreite der bekannten Kunststoffe übertragen. Neben der Selbstheilung erhält das Material eine weitere vorteilhafte Eigenschaft: Da es bei höheren Temperaturen fließfähiger wird, lässt es sich gut umformen. Ein Anwendungsbereich ist zum Beispiel die Teileproduktion aus faserverstärktem Kunststoff für die Automobil- oder Luftfahrtindustrie.

Zum Konsortium, das die neuartige Vernetzungsreaktion entwickelt hat, gehören als Industriepartner das Chemieunternehmen Evonik Industries, sowie unter anderem das Leibniz-Institut für Polymerforschung in Dresden und die Australian National University, Canberra, an. (af)

Publikation:
Kim K. Oehlenschlaeger, Jan O. Mueller, Josef Brandt, Stefan Hilf, Albena Lederer, Manfred Wilhelm, Robert Graf, Michele L. Coote, Friedrich G. Schmidt and Christopher Barner-Kowollik: Adaptable Hetero Diels-Alder Networks for Fast Self-Healing under Mild Conditions. Advanced Materials, 2014. DOI:10.1002/adma.201306258.

Externer Link: www.kit.edu

Feste Flüssigkeiten

Presseinformation der Ruhr-Universität Bochum vom 18.02.2014

Chemiker entwickeln neuartige Funktionsmaterialien für die Wärmespeicherung

Kooperation von Forschern aus Bochum und Cambridge

Chemiker der Ruhr-Universität Bochum und der Universität Cambridge haben neuartige Metall-Organische Netzwerke entwickelt. Ähnlich einer Flüssigkeit weisen sie eine sehr große thermische Expansion auf, sie sind dennoch Feststoffe. Der thermische Expansionskoeffizient gibt an, wie stark sich ein Material bei Temperaturänderungen ausdehnt oder zusammenzieht. Das verblüffende Phänomen beruht auf dem Wechselspiel der starken und schwachen Kräfte zwischen den geordneten und den ungeordneten molekularen Bausteinen des neuen Materials. Die Forscher berichten darüber in der Zeitschrift „Advanced Functional Materials“.

Ausgangsfrage

Flüssigkeiten reagieren sensibel auf Wärme oder Kälte. Je nach Art der Temperaturänderung steigt oder fällt der gefärbte Alkoholfaden im Thermometer. Hundertmal weniger empfindlich sind dagegen feste Stoffe, Beton oder Stahl zum Beispiel. Dennoch kommt kein Bauwerk ohne Dehnungsfugen aus. Besonders ungewöhnlich verhält sich Wasser, denn es dehnt sich beim Gefrieren aus. Eis schwimmt, Seen frieren von der Oberfläche her zu, und bei 4 °C hat Wasser seine größte Dichte. Kann es feste Stoffe geben, die sich wie Flüssiges verhalten, wenn ihnen heiß oder kalt wird? Und wenn das möglich wäre, was könnte man damit anfangen?

Extreme thermische Expansion

Die Forscher aus Bochum und Cambridge haben einen Trick angewandt, um die thermische Expansionsfähigkeit von sogenannten Metal-Organischen Netzwerken gezielt zu erhöhen. An den geordneten, organischen Baueinheiten des festen Rahmenwerkes wurden zusätzliche Molekülgruppen angebracht. Diese füllen die nanometer-großen Porenräume des Netzwerks teilweise aus. Die Gruppen verhalten sie sich wie eine ungeordnete Flüssigkeit, aber sie können wegen der Bindung an die Porenwände den Raum nicht verlassen. So überträgt sich ihre Wärmebewegung auf das Netzwerk. Beim Erwärmen bläht sich das feste Material schlagartig um ca. 20% auf. Jedoch bleibt seine kristalline Eigenschaft erhalten. Der Vorgang ist vollständig umkehrbar. Temperaturabhängige Röntgenbeugung und kalorimetrische Messungen ergaben extrem große thermische Expansionskoeffizienten, wie man sie bisher nur von Flüssigkeiten kannte, nicht aber von Feststoffen. Die Art der Seitengruppen hat großen Einfluss auf den Effekt. So spielen Länge und chemischer Charakter die entscheidende Rolle. Durch die gezielte Synthese von „Festen Lösungen“, die verschiedene Seitenketten in zufälliger Verteilung und beliebigen Verhältnissen im Netzwerk vereinen, können thermischen Eigenschaften der Materialien noch genauer kontrolliert werden. Die Erkenntnisse legen Grundlagen für Anwendungen in der Wärmespeicherung und -übertragung sowie der Sensorik.

Flexible Netzwerke

Metall-Organische Netzwerke (kurz MOFs, aus dem Englischen: Metal-Organic Frameworks) sind hochgeordnete (kristalline) Festkörper mit einer dreidimensionalen Netzwerkstruktur. Sie sind aufgebaut aus Metallionen (Knotenpunkte) und verknüpfenden organischen Molekülen (Verbinder; engl. Linker). Die Materialien zeichnen sich durch unvergleichlich hohe Porenvolumina und innere Oberflächen aus. Sie besitzen großes Potenzial für Anwendungen in der Brennstoffspeicherung, bei der Kohlenstoffdioxid-Abtrennung sowie bei der Katalyse. MOFs können flexibel sein und auf äußere Einflüsse mit strukturellen Änderungen reagieren. Bei Aufnahme von Gastmolekülen (z. B. Lösungsmittel oder Gase) „blähen“ die flexiblen MOFs ihre Struktur auf; das erhöht das Speichervermögen.

Projektförderung

Die Fördermittel für die Arbeiten stammen von der Deutsche Forschungsgemeinschaft (SPP 1362 „Metal-Organic Frameworks“, EXC 1069 Exzellenzcluster „Ruhr Explores Solvation“), dem European Research Council, der Ruhr-University Research School und der Fonds der Chemischen Industrie. (Arne Dessaul)

Titelaufnahme:
S. Henke, A. Schneemann, R. A. Fischer (2013): Massive Anisotropic Thermal Expansion and Thermoreponsive Breathing in Metal-Organic Frameworks Modulated by Linker Functionalization, Advanced Functional Materials, 23, 5990-5996; DOI: 10.1002/adfm.201301256

Externer Link: www.ruhr-uni-bochum.de

Mit Hochdruck gegen Krebs-Gene

Pressemitteilung der Universität Regensburg vom 09.12.2013

Neues Verfahren zeigt die Schwächen von Onkogenen

Onkogene („Krebs-Gene“) sind gefährlich. Die daraus resultierenden mutierten Proteine existieren dauerhaft in ihrer aktivierten Form und begünstigen unkontrolliertes Zellwachstum und damit die Bildung von Tumoren. Eine Behandlung scheitert häufig daran, dass Proteine in mehreren räumlichen Anordnungen bzw. Konformationen vorkommen. Der Zugriff mit entsprechenden Wirkstoffen wird so erschwert. Ein spezielles Verfahren bietet neue Möglichkeiten: Regensburger Forscher haben mit Hilfe der Hochdruck-Kernspinresonanzspektroskopie eine Methode entwickelt, mit der verschiedene Protein-Konformationen identifiziert und untersucht werden können. Für neue Therapien gegen Krebs gilt es jetzt, die „schwächeren“ Protein-Konformationen zu stabilisieren und direkt anzugehen.

Im Rahmen ihrer Untersuchungen setzten die Forscher um Prof. Dr. Dr. Hans Robert Kalbitzer vom Institut für Biophysik und Physikalische Biochemie bei dem Protein Ras an, das als molekularer Schalter für die Ein- und Abschaltung zahlreicher Prozesse in den Zellen verantwortlich ist. Mutationen in Ras können allerdings dazu führen, dass der Schalter dauerhaft „angeschaltet“ bleibt und sich die Zellen unkontrolliert vermehren. Entsprechend finden sich in etwa 30 % aller menschlichen Tumoren Mutationen im Ras-Protein.

Wie alle anderen Proteine, die für die verschiedenen Prozesse der Signalübertragung in Zellen verantwortlich sind, existiert auch Ras in mehr als einer Konformation. Die einzelnen Konformationen eignen sich in unterschiedlicher Weise für eine sogenannte allosterische Hemmung, bei der die Wirkstoffe nicht an das aktive Zentrum des Proteins, sondern an eine andere Stelle – das allosterische Zentrum – anbinden.

Grundsätzliche thermodynamische Überlegungen lassen mindestens acht unterschiedliche funktionelle Konformationen des Ras-Proteins erwarten, die für eine allosterische Modulation oder auch Hemmung in Frage kommen. Dem Forscherteam gelang es bereits, vier davon durch die Kernspinresonanzspektroskopie unter Hochdruck-Bedingungen zu identifizieren.

„Doch damit ist das Potential der Hochdruck-Kernspinresonanzspektroskopie noch lange nicht ausgeschöpft. Mit der neuen Methode ist es prinzipiell möglich, auch für andere Proteine Strategien zur Hemmung von unerwünschten Protein-Protein-Interaktionen zu identifizieren“, erklärt Prof. Kalbitzer.

Die Ergebnisse der Regensburger Wissenschaftler sind vor kurzem in der renommierten Fachzeitschrift „Angewandte Chemie“ erschienen (DOI: 10.1002/anie.201305741). Mögliche Anwendungsbereiche liegen mittel- bis langfristig in der Entwicklung neuartiger Therapien gegen unterschiedliche Krebsarten. (Alexander Schlaak)

Externer Link: www.uni-regensburg.de

Neuartige LEDs weisen den Weg zu günstigeren Bildschirmen

Pressemitteilung der Universität Regensburg vom 08.11.2013

Einsatz z. B. in Smartphones oder auch als Leuchtfliesen fürs Bad denkbar / Kooperation der Universitäten Bonn und Regensburg

Forscher der Universitäten Bonn und Regensburg haben einen neuartigen Typus organischer Leuchtdioden (OLEDs) entwickelt. Die Mini-Lämpchen eignen sich für den Bau besonders energiesparender und kostengünstiger Bildschirme. Diese könnten etwa in Smartphones, Tablet-PCs oder TV-Geräten zum Einsatz kommen. Auch Anwendungen wie leuchtende Fliesen für Küche oder Bad sind denkbar. Die Wissenschaftler haben ihre Ergebnisse nun in der Zeitschrift „Angewandte Chemie“ vorgestellt (DOI: 10.1002/anie.201307601).

OLEDs kommen schon heute in den Displays von Smartphones oder Digitalkameras zum Einsatz. Sie ermöglichen ein besonders brillantes, kontrastreiches Bild, haben aber einen entscheidenden Nachteil: Sie können normalerweise nur ein Viertel der eingesetzten elektrischen Energie in Licht umwandeln. Diese Ausbeute lässt sich zwar erhöhen, indem man das Display mit kleinen Mengen Platin oder Iridium „verunreinigt“. Diese Elemente sind aber selten und teuer. Die Herstellung hochwertiger OLED-Displays war daher bislang eine relativ kostspielige Angelegenheit.

Das könnte sich in Zukunft ändern. Die Wissenschaftler aus Bonn, Regensburg und den USA haben nämlich einen neuen Typus von OLEDs hergestellt, der auch ohne Edelmetalle das Potenzial für hohe Lichtausbeuten aufweist. Damit könnten OLED-Bildschirme bald deutlich kostengünstiger werden.

OLEDs sind gar nicht organisch

OLEDs heißen so, weil sie in ihrer Reinform aus organischen Molekülen bestehen – das bedeutet, sie sind nur aus Kohlenstoff und Wasserstoff aufgebaut. Das Funktionsprinzip einer organischen Leuchtdiode ist einfach: Ein dünner Film der Moleküle wird mit zwei Elektroden verbunden. Diese werden an eine Batterie angeschlossen, so dass ein elektrischer Strom aus positiven und negativen Ladungen fließt. Treffen diese Ladungen aufeinander, so vernichten sie sich in einem Lichtblitz.

Da sich positive und negative Ladungen anziehen, sollte die Lichterzeugung im Prinzip auch sehr effizient klappen. Doch besitzen elektrische Ladungen zusätzlich ein magnetisches Moment – Wissenschaftler sprechen vom „Spin“. Ladungen mit gleichem Spin stoßen sich ab, ähnlich wie die Nordpole zweier Magneten. Diese Abstoßung überwiegt sogar die Anziehung zwischen positiven und negativen Ladungen. Haben unterschiedliche Ladungen denselben Spin, gibt es also keinen Lichtblitz. Stattdessen wird die elektrische Energie in Wärme umgewandelt.

In normalen OLEDs ist das leider sehr häufig der Fall: Drei Viertel aller Ladungen tragen denselben Spin. Sie zeigen quasi wie Kompassnadeln in dieselbe Richtung und können sich nicht berühren. Entsprechend gering ist die Lichtausbeute. Die OLED-Hersteller haben aber einen Trick ersonnen, um diese Ausbeute zu erhöhen: Sie wirbeln die Kompassnadeln mit einem noch stärkeren Magneten durcheinander. Dazu nutzen sie schwere Metalle wie Platin oder Iridium. Auf diese Weise ist es möglich, nahezu die gesamte elektrische Energie zur Erzeugung von Licht zu verwenden. Allerdings heißt das auch: Streng genommen sind die Materialien in OLEDs gar keine organischen Verbindungen, sondern metallorganische.

Spontaner Richtungswechsel

„Wir erhöhen die Ausbeute dagegen mit einem ganz anderen Mechanismus“, erklärt Dr. John Lupton, Physik-Professor an der Universität Regensburg. „Ladungen können die Richtung ihres Spins nämlich spontan ändern. Dazu muss man nur lange genug warten.“ Das Problem dabei: Herkömmliche OLEDs können die elektrische Energie nicht lange genug speichern, um diese Wartezeit zu überbrücken. Stattdessen wandeln sie die Energie einfach in Wärme um.

„Die von uns konstruierten OLEDs können elektrische Energie augenscheinlich deutlich länger speichern“, sagt der Chemiker Professor Dr. Sigurd Höger von der Universität Bonn. „Sie können daher die spontanen Sprünge der Spins nutzen, um Licht zu erzeugen – zumindest vermuten wir das.“ Die neuartigen Stoffe bergen daher das Potenzial, in OLEDs auch ohne „metallorganische Tricks“ kaum Abwärme zu erzeugen und somit die eingesetzte elektrische Energie sehr effizient in Licht umzuwandeln.

Die Arbeit wurde von der Volkswagen-Stiftung und der Deutschen Forschungsgemeinschaft (DFG) gefördert. Kooperationspartner waren die University of Utah und das renommierte Massachusetts Institute of Technology (M.I.T.).

Die Pressemitteilung wurde gemeinsam mit der Universität Bonn herausgegeben. (Alexander Schlaak)

Publikation:
Metal-free OLED triplet emitters by side-stepping Kasha’s rule; D. Chaudhuri, E. Sigmund, A. Meyer, L. Röck, P. Klemm, S. Lautenschlager, A. Schmid, S. R. Yost, T. Van Voorhis, S. Bange, S. Höger und J. M. Lupton; Angewandte Chemie (DOI: 10.1002/anie.201307601)

Externer Link: www.uni-regensburg.de