Mehr Wissen kühlt Computer

Medienmitteilung der ETH Zürich vom 01.06.2011

Supercomputer brauchen viel Energie, die sie als Wärme freisetzen. Eine Studie aus der theoretischen Physik zeigt nun Erstaunliches: Beim Löschen gespeicherter Daten könnte die Wärmebildung vermieden und im Idealfall sogar Kälte erzeugt werden. Hinter dieser praktischen Anwendung stehen grundlegende Überlegungen zu Wissen und Unwissen.

Wenn Rechner rechnen, produzieren sie vor allem eines: Wärme. Die Wärmeproduktion macht den Computer aus energetischer Sicht ineffizient, was nicht erst seit der laufenden Energiedebatte ein Problem ist. Zudem limitiert die Hitze auch die Leistung der Hochleistungsrechner, so dass eine Steigerung nur noch begrenzt möglich ist. Der enorme Energiebedarf und die überflüssige Wärmeproduktion machen Hochleistungsrechner also nicht nur teurer, sie behindern auch deren Weiterentwicklung.

Die jüngsten Forschungsresultate eines Teams von Physikern lassen deshalb aufhorchen. ETH-Professor Renato Renner beschreibt zusammen mit Professor Vlatko Vedral, vom Centre for Quantum Technologies der NU Singapore, im Fachmagazin Nature, wie beim Datenlöschen anstatt Wärme unter bestimmten Voraussetzungen Kälte entstehen könnte.

Landauer-Prinzip ist nicht immer gültig

Der Physiker Rolf Landauer zeigte bereits 1961, dass beim Datenlöschen unweigerlich Energie in Form von Wärme freigesetzt wird. Das Landauer-Prinzip besagt, dass wenn eine bestimmte Anzahl an Rechenoperationen pro Sekunde überschritten wird, der Computer so viel Wärme produziert, dass diese unmöglich abgeführt werden kann. Renner geht davon aus, dass diese kritische Grenze in den nächsten 10 bis 20 Jahren erreicht wird. Die Wärmeabgabe beim Löschen einer Festplatte von zehn Terabyte beträgt zwar prinzipiell weniger als ein Millionstel Joule. Wird ein solcher Löschvorgang aber viele Male pro Sekunde wiederholt, summiert sich die Wärme dementsprechend auf.

Das Landauer-Prinzip, so zeigt nun die Studie, gilt aber nur, solange man den Wert, der zu löschenden Bits nicht kennt. Das Löschen eines Speichers ist bis jetzt ein irreversibler Prozess. Wenn der Speicherinhalt jedoch bekannt ist, wäre es möglich, ihn so zu löschen, dass er theoretisch wieder herstellbar wäre. Unter diesen Umständen würde das Landauer-Prinzip nicht mehr gelten.

Ähnliche Formel – zwei Disziplinen

Um das zu beweisen, verbanden die Wissenschaftler den Entropie-Begriff aus der Informationstheorie mit dem aus der Thermodynamik. In der Informationstheorie ist die Entropie ein Mass für die Informationsdichte. Sie beschreibt beispielsweise, wie viel Speicherplatz ein gegebenes Set von Daten bei optimaler Kompression einnehmen würde. In der Thermodynamik hingegen sagt die Entropie etwas über die Unordnung in Systemen (zum Beispiel der Moleküle in einem Gas) aus.

Das Konzept der Entropie existiert also in verschiedenen Disziplinen weitgehend unabhängig voneinander. «Wir haben nun gezeigt, dass in beiden Fällen der Entropie-Begriff eigentlich dasselbe beschreibt», hält der ETH-Physiker Renner fest. Da die Formeln gleich aussehen, vermutete man bereits früher eine Verknüpfung zwischen beiden. «Unsere Studie zeigt, dass die Entropie in beiden Fällen als eine Art Unwissen angesehen werden kann», sagt Renner. Wichtig dabei ist, dass ein Objekt nicht per se eine gewisse Entropie hat, sondern dass diese immer vom Beobachter abhängt. Auf das Beispiel mit dem Datenlöschen übertragen, heisst das: Wenn zwei Personen einen Datenspeicher löschen und einer von beiden mehr Wissen über den Speicherinhalt hat, kann dieser den Speicher mit weniger Energie löschen.

Keine Wärme oder gar Kälte

Denkt man die Ergebnisse der Wissenschaftler konsequent weiter, dann wird beim Löschen von Computerdaten im Extremfall keine Energie mehr gebraucht. Beim klassischen Computer ist das allerdings erst möglich, wenn dessen Prozessoren so klein sind, dass Quanteneffekte eine Rolle spielen. Das heisst, dass ein einzelnes Bit nicht wie heute durch hunderte in eine bestimmte Richtung ausgerichtete Atome auf einem Chip dargestellt wird, sondern dass der Wert jedes Bits nur noch in ein einziges Atom geschrieben wird.

Die Physiker gehen sogar noch einen Schritt weiter: Bei einem Quantencomputer könnte der Nutzer mit dem Speicherinhalt „verschränkt“ sein. Dies bedeutet, dass er den Speicherinhalt „mehr als vollständig kennt“, und damit die Entropie negativ wäre. Der Umgebung würde dann bei einem Löschvorgang sogar Wärme entzogen, diese also abgekühlt. «Das heisst nicht, dass wir das Perpetuum Mobile entwickeln können», betont Renner. Die der Umgebung entzogene Wärme würde zwar in nutzbare Energie umgewandelt, da das Löschen von Daten aber ein einmaliger Prozess ist, ergäbe sich dadurch keine fortlaufende Energiegewinnung.

Grundlegende Erkenntnis

Die neuen Erkenntnisse der Wissenschaftler über den Begriff der Entropie in der Physik und der Informationstheorie sind grundlegend – nicht nur im Bezug auf die Wärmeproduktion von Computern. Die innerhalb der Informationstheorie entwickelten Methoden, um beispielsweise mit unvollständigem Wissen umzugehen, könnten der Schlüssel zu einem neuartigen Verständnis der Thermodynamik sein.

Veröffentlichung:
Del Rio L, Aberg J, Renner R, Dahlsten O & Vedral V: The thermodynamic meaning of negative entropy, Nature (2011) doi: 10.1038/nature10123.

Externer Link: www.ethz.ch

Weltrekord in ultraschneller Datenübertragung

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 23.05.2011

Transport von 700 DVDs in nur einer Sekunde – Höchste Bitrate auf einem Laser

Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) ist es gelungen, Daten im Umfang von 26 Terabit pro Sekunde auf einen einzigen Laserstrahl zu kodieren, 50 Kilometer weit zu übertragen und dann erfolgreich wieder zu dekodieren. Dies ist die größte je auf einem Laserstrahl transportierte Datenmenge. Das am KIT entwickelte Verfahren ermöglicht es, den Inhalt von 700 DVDs in nur einer Sekunde zu übertragen. Die renommierte Zeitschrift „Nature Photonics“ berichtet in ihrer neuesten Ausgabe über diesen Erfolg (DOI: 10.1038/NPHOTON.2011.74).

Die KIT-Wissenschaftler um Professor Jürg Leuthold schlagen mit dem Experiment ihren eigenen Rekord in der Hochgeschwindigkeits-Datenübertragung vom Jahr 2010, in dem sie bereits die magische Grenze von 10 Terabit pro Sekunde, also eine Datenrate von 10 000 Milliarden Bit pro Sekunde, durchbrechen konnten. Der Erfolg gelang der Gruppe dank eines von ihr entwickelten Verfahrens zur Datendekodierung. Das neue optisch-elektrische Dekodierverfahren beruht darauf, dass zu Beginn bei höchsten Datenraten zunächst rein optisch gerechnet wird, um die große Datenrate auf kleinere Bitraten hinunterzubrechen, welche anschließend elektrisch weiterprozessiert werden können. Die zunächst optische Reduzierung der Bitraten ist notwendig, da es bei einer Datenrate von 26 Terabit pro Sekunde keine elektronischen Verarbeitungsprozesse gibt.

Für die Rekord-Datenkodierung verwendet das Team um Leuthold das sogenannte Orthogonale Frequenz-Division Multiplexing (OFDM). Das Verfahren wird seit Jahren in der Mobilkommunikation erfolgreich eingesetzt und greift auf mathematische Routinen (Fast Fourier Transformation) zurück. „Die Kunst bestand darin, das Verfahren nicht nur tausendmal, sondern für die Datenverarbeitung bei 26 Terabit pro Sekunde fast eine Million mal schneller zu machen“, betont Leuthold, der die Institute für Photonik und Quantenelektronik sowie Mikrostrukturtechnik am KIT leitet. „Die bahnbrechnende Idee war letztendlich die optische Umsetzung der mathematischen Routine.“ Dabei zeigte sich, dass das Rechnen im optischen Bereich nicht nur außerordentlich schnell, sondern auch sehr energieeffizient ist, da Energie nur für den Laser und wenige Prozessschritte benötigt wird.

„Unser Ergebnis führt vor Augen, dass selbst bei extrem hohen Datenraten noch keine physikalischen Grenzen überschritten sind“, sagt Leuthold mit Blick auf das stetig wachsende Datenaufkommen im Internet. Die Übertragung von 26 Terabit pro Sekunde zeige, so Leuthold, dass selbst hohe Datengeschwindigkeiten heute handhabbar seien – und das bei sparsamem Umgang mit der wertvollen Ressource Energie.

Datenraten von 26 Terabit pro Sekunde galten noch bis vor wenigen Jahren selbst für Systeme mit vielen Lasern als utopisch. „Man hätte auch gar keine Anwendungen dafür gehabt“, sagt Leuthold. „Mit 26 Terabit pro Sekunde hätte man bis zu 400 Millionen Telefongespräche gleichzeitig übertragen können. Niemand hätte das damals benötigt. Heute ist das anders.“ Videoübertragungen dominieren das Internet und verlangen extrem hohe Bitraten und der Bedarf wächst ständig. In den Kommunikationsnetzen werden heute bereits erste Strecken mit Kanaldatenraten von 100 Gigabit pro Sekunde (entspricht 0,1 Terabit pro Sekunde) in Betrieb genommen. Die Forschung konzentriert sich nun darauf, Systeme für Übertragungsstrecken mit 400 Gbit/s bis zu 1 Tbit/s zu entwickeln. Die Karlsruher Erfindung greift damit der laufenden Entwicklung vor. Bei der experimentellen Umsetzung der ultraschnellen Datenübertragung am KIT haben Unternehmen und Wissenschaftler aus ganz Europa mitgewirkt. So waren Mitarbeiter von Agilent und Micram Deutschland, Time-Bandwidth Schweiz, Finisar Israel und der Universität Southampton in Großbritannien beteiligt. (lg)

Literatur:
26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude and J. Leuthold. Nature Photonics. DOI: 10.1038/NPHOTON.2011.74

Externer Link: www.kit.edu

Der Quantencomputer wird erwachsen

Presseinformation der Universität Innsbruck vom 26.05.2011

Wiederholte Fehlerkorrektur für den Quantenrechner

Einen wesentlichen Baustein für den zukünftigen Quantencomputer haben Physiker der Universität Innsbruck um Philipp Schindler und Rainer Blatt als weltweit erste demonstriert: eine wiederholbare Fehlerkorrektur. Damit können die im Quantencomputer auftretenden Fehler schnell und elegant rückgängig gemacht werden. Die Wissenschaftler berichten darüber in der Fachzeitschrift Science.

Für die Datenverarbeitung gilt generell: Werden Daten abgespeichert oder übertragen, können Störungen die Informationen verfälschen oder löschen. Für herkömmliche Computer wurden Techniken entwickelt, um solche Fehler automatisch zu erkennen und zu korrigieren. Dazu werden die Daten mehrfach verarbeitet und bei Fehlern durch einen Vergleich die wahrscheinlichste Variante ausgewählt. Da Quantensysteme wesentlich empfindlicher auf Umwelteinflüsse reagieren als klassische Systeme, benötigt ein zukünftiger Quantencomputer ebenfalls einen sehr effizienten Algorithmus zur Fehlerkorrektur. Innsbrucker Quantenphysikern um Philipp Schindler und Rainer Blatt vom Institut für Experimentalphysik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften haben nun einen solchen Algorithmus im Experiment realisiert. „Die Schwierigkeit besteht darin, dass Quanteninformation grundsätzlich nicht kopiert werden kann“, erklärt Schindler. „Wir können die Information also nicht mehrfach abspeichern und dann vergleichen.“ Die Physiker bedienen sich deshalb einer Besonderheit der Quantenphysik und machen die quantenmechanische Verschränkung für die Fehlerkorrektur nutzbar.

Schnelle und effiziente Fehlerkorrektur

Um den Mechanismus zu demonstrieren, fangen die Innsbrucker Physiker in einer Ionenfalle drei Kalziumionen. Alle drei Teilchen werden als Quantenbit (Qubit) verwendet, wobei ein Ion als Informationsträger, die anderen beiden als Hilfsqubits dienen. „Wir verschränken zunächst das erste Qubit mit den beiden Hilfsbits und übertragen so die Quanteninformation auf alle drei Teilchen“, erzählt Philipp Schindler. „Ein Quantenalgorithmus stellt dann fest, ob und welcher Fehler dabei auftritt. Worauf der Algorithmus den Fehler selbstständig korrigiert.“ Nach der Korrektur werden die Hilfsbits durch optisches Pumpen mit Hilfe eines Laserstrahls wieder zurückgesetzt. „Dies ist das eigentlich neue Element in unserem Experiment, das die wiederholte Fehlerkorrektur erst möglich macht“, sagt Rainer Blatt. „Befreundete amerikanische Physiker haben vor einigen Jahren die prinzipielle Funktionsweise der Quantenfehlerkorrektur demonstriert. Mit unserem Mechanismus ist es nun aber erstmals möglich, Fehler wiederholt und effizient zu korrigieren.“

Weltweit führend

„Damit ein zukünftiger Quantencomputer tatsächlich Realität wird, benötigen wir einen Quantenprozessor mit zahlreichen Quantenbits“, sagt Schindler. „Außerdem bedarf es Rechenoperationen, sogenannter Quantengatter, die nahezu fehlerfrei arbeiten. Der dritte wesentliche Baustein ist eine funktionierende Fehlerkorrektur.“ Die Forschungsgruppe um Rainer Blatt arbeitet seit vielen Jahren weltweit führend an der Realisierung des Quantencomputers. Vor drei Jahren präsentierte sie die ersten Quantengatter mit einer Güte von über 99 Prozent. Nun haben die Forscher einen weiteren wesentlichen Baustein geliefert: eine funktionsfähige, wiederholte Quantenfehlerkorrektur. Die Forschungsarbeit wurde unter anderem vom österreichischen Wissenschaftsfonds FWF, der Europäischen Kommission, dem Europäischen Forschungsrat und der Tiroler Industrie unterstützt und nun in der Fachzeitschrift Science veröffentlicht.

Publikation:
Experimental repetitive quantum error correction. Philipp Schindler, Julio T. Barreiro, Thomas Monz, Volckmar Nebendahl, Daniel Nigg, Michael Chwalla, Markus Hennrich, Rainer Blatt. Science am 27. Mai 2011. DOI: 10.1126/science.1203329

Externer Link: www.uibk.ac.at

Der kleinste 3D-Drucker der Welt

Presseaussendung der TU Wien vom 17.05.2011

Forschung der TU Wien könnte 3D-Drucker zum erschwinglichen Alltagsgerät machen.

Drucker, die dreidimensionale Objekte herstellen können, gibt es schon seit Jahren. An der TU Wien wurde nun allerdings ein Gerät entwickelt, das kleiner, leichter und billiger ist als gewöhnliche 3D-Drucker. Mit Druckern dieser Art könnte man in Zukunft kleine, maßgeschneiderte Objekte nach Bauplänen aus dem Internet zu Hause selbst produzieren – und so etwa teures Geld für seltene Ersatzteile sparen.

Gleich mehrere Wissenschaftsrichtungen müssen zusammenarbeiten, wenn ein 3D-Drucker entwickelt werden soll: Gebaut wurde der Prototyp in der Arbeitsgruppe von Professor Jürgen Stampfl an der Fakultät für Maschinenbau, von wesentlicher Bedeutung war auch die chemische Forschung des Teams um Professor Robert Liska – schließlich muss zunächst geklärt werden, mit welchen Arten von Kunststoff der Drucker überhaupt arbeiten kann.

Schicht für Schicht

Das Grundprinzip des 3D-Druckers ist einfach: Das gewünschte Objekt wird in einem kleinen Becken mit flüssigem Kunstharz erzeugt. Das Kunstharz hat die Eigenschaft, dass es genau dort hart wird, wo man es intensiv mit Licht bestrahlt. Schicht für Schicht wird das Kunstharz also an den richtigen Stellen beleuchtet. Verhärtet eine Schicht, wird an ihr die nächste angelagert, bis das Objekt vollständig ausgehärtet ist – „Rapid Prototyping“ nennt man dieses Verfahren. „Auf diese Weise können wir auch komplizierte geometrische Objekte mit einer genau definierten inneren Struktur herstellen, wie das etwa mit Gussverfahren niemals möglich wäre“, erklärt Klaus Stadlmann, der den Drucker-Prototyp gemeinsam mit Markus Hatzenbichler entwickelt hat.

Für Massenproduktion von immer gleichen Objekten ist diese Methode nicht gedacht – dafür gibt es billigere Alternativen. Doch der große Vorteil des Rapid-Prototyping-Verfahrens liegt darin, dass sehr einfach individuell angepasste, maßgeschneiderte Einzelstücke erzeugt werden können. Der Drucker-Prototyp ist nicht größer als eine Milchpackung, wiegt 1.5 kg und war mit – 1200 auch erstaunlich billig. „Wir werden den Drucker noch weiter verkleinern – und auch der Preis könnte sicher noch spürbar sinken, wenn man ihn in größerer Stückzahl erzeugen würde“, ist Klaus Stadlmann zuversichtlich.

Hohe Auflösung durch LED-Beamer

Die Auflösung des Druckers ist exzellent: Nur ein Zwanzigstel eines Millimeters messen die Schichten, die jeweils durch Licht verhärtet werden. Damit ist der Drucker auch für Anwendungsbereiche einsetzbar, in denen höchste Präzision erforderlich ist – etwa bei Bauteilen für Hörgeräte. Im Gegensatz zu bisher erhältlichen Druckern verwendet das Modell der TU Wien Leuchtdioden als Lichtquelle, mit deren Hilfe hohe Lichtintensitäten auf sehr kleinem Raum erreicht werden können.

Das Rapid-Prototyping-Forschungsteam der TU Wien arbeitet mit unterschiedlichen 3D-Techniken und Materialien und entwickelt immer neue Keramik- und Polymerwerkstoffe für das dreidimensionale Drucken. So ist es sogar gelungen, 3D-Objekte aus umweltfreundlichen, biologisch abbaubaren Materialien herzustellen. In Zusammenarbeit mit Medizinern und Biologen konnte kürzlich auch gezeigt werden, dass die künstlichen Strukturen, die mit dieser Beamer-Technologie hergestellt wurden, ausgezeichnet dazu geeignet sind, als Gerüst das Wachstum von natürlichem Knochen im Körper anzuregen.

Vielseitig einsetzbar

Egal also, ob man medizinische Teile braucht, die an den Patienten speziell angepasst werden müssen, ob spezielle Ersatzteile benötigt werden, die man nicht teuer um die halbe Welt schicken will, oder ob man einfach nur selbstdesignten Modeschmuck produzieren möchte: Mit den Geräten und Materialien der TU Wien steht ein kostengünstiges Werkzeug zur Verfügung, mit dem sehr komplexe dreidimensionale Bauteile in einer Vielzahl von anspruchsvollen Werkstoffen mit unterschiedlichen mechanischen, optischen und thermischen Eigenschaften hergestellt werden können. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Neue Tomographie-Methode liefert Bilder mit molekularer Information

Pressemitteilung der TU München vom 23.05.2011

Neues Verfahren zur Untersuchung neurodegenerativer Erkrankungen:

Ein internationales Forscherteam mit Beteiligung der Technischen Universität München (TUM) hat eine neue Computertomographiemethode entwickelt, die molekulare Einsichten ins Gehirn ermöglicht. Der neue Ansatz nutzt aus, dass verschiedene molekulare Strukturen im Gehirn zu unterschiedlichen Signaturen in der gestreuten Röntgenstrahlung führen. Die Methode macht beispielsweise die Myelin-Ummantelung von Nervenfasern im Gehirn sichtbar und liefert so wertvolle Information für die Erforschung von Krankheiten wie Multipler Sklerose und Alzheimer. In ihrer Online-Ausgabe berichtet die renommierte Fachzeitschrift NeuroImage über die Ergebnisse der Forschung.

Die Myelin-Ummantelung der Gehirn-Nervenzellen besteht aus schichtartigen Lamellen. Sie umschließen die Nervenzellen, die sogenannten Axonen. Diese Myelin-Schichten sind vor allem deswegen von Bedeutung für das zentrale Nervensystem, weil sie für eine schnelle Weiterleitung der Nervensignale sorgen. Änderungen oder Ausfälle dieser Funktion stehen im Verdacht, an degenerativen Gehirnkrankheiten, wie Alzheimer oder Multipler Sklerose, beteiligt zu sein.

„Die detaillierte Entwicklung dieser Krankheiten ist bisher nicht verstanden“, sagt TUM Professor Franz Pfeiffer, „aber wird zunehmend mit Veränderungen in den Myelin-Schichten in Verbindung gebracht, die für Unterbrechungen in der Signalübertragung zwischen Nervenzellen verantwortlich sind. Vereinfacht gesagt ist das so, wie wenn bei elektrischen Leitungen die Isolierung beschädigt wird und es so zu Kurzschlüssen und Leckströmen kommt.“

Die neue Entwicklung basiert auf konventioneller Computertomographie (CT) Technik, die wohl etabliert ist und in klinischen Anwendungen weltweit eingesetzt wird. Bei einer CT Untersuchung wird der Körper von Röntgenstrahlen durchleuchtet und ein Bilddetektor nimmt unter unterschiedlichen Winkeln die Schattenwürfe des menschlichen Körpers auf. Aus diesen Bildern wird dann durch Bilddatenverarbeitung ein dreidimensionales Abbild des Körperinneren errechnet.

„Der neue Aspekt unserer Methodik“, so TUM Forscher Dr. Martin Bech, „besteht darin, dass nicht nur die vom Körper absorbierte Röntgenstrahlung in solchen Bildern gemessen wird, sondern auch das genaue Streumuster, das durch die Wechselwirkung der Röntgenstrahlen mit den Strukturen im Körperinneren entsteht. Solche Streubilder werden für jeden Punkt und unter jedem Winkel aufgenommen, und diese Zusatzinformation lässt Rückschlüsse auf die molekulare Struktur in jedem Teil der Probe zu.“

Die Streubilder werden mit einem von dem Forscherteam entwickelten Algorithmus verarbeitet. Torben Jensen, Forscher am Niels-Bohr-Institut in Kopenhagen und Erstautor der Veröffentlichung, erläutert: „Wir haben einen Algorithmus entwickelt, der hoch-aufgelöste, dreidimensionale Bilder der Probe errechnet, und typischerweise einige hunderttausend Streubilder analysiert. Dieser Algorithmus berücksichtigt insbesondere die Streusignatur der molekularen Struktur in der Probe.

Als Anwendungsbeispiel hat das Team mit der Methode das Gehirn einer Laborratte untersucht – und verblüffend präzise Einsichten gewonnen. „Wir können im Detail die Myelin-Ummantelung der Nervenzellen sichtbar machen und sogar verschiedene Schichten von nur 17,6 Nanometern Dicke unterscheiden“, erklärt Professor Robert Feidenhans’l vom Niels-Bohr-Institut in Kopenhagen. „Bis jetzt musste man immer kleine Stücke aus der Probe herausschneiden und analysieren, um ähnliche Information zu erhalten. Mit der neuen Methode können wir 250.000 Punkte in der Probe auf einen Schlag analysieren. Dies wird Reihenuntersuchungen bezüglich Dicke und Konzentration von Myelin-Ummantelungen im Zusammenhang mit verschiedenen Krankheitsbildern ermöglichen“.

Die Ergebnisse entstanden in einer internationalen Zusammenarbeit von Forschern aus Deutschland, Dänemark, Schweiz, und Frankreich. Die Experimente wurden an der Synchrotron Lichtquelle des Paul Scherrer Instituts in Villigen (Schweiz) ausgeführt. Zukünftig sollen sie auch auf dem Campus Garching am derzeit im Aufbau befindlichen „Centre for Advanced Laser Applications“ (CALA) möglich werden, mit neuen Laser-basierten brillanten Röntgenquellen, wie sie im Exzellenzcluster „Munich-Centre for Advanced Photonics“ entwickelt werden.

Externer Link: www.tu-muenchen.de