Digitalisierung in der Automobilproduktion

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.01.2018

Der Optimierungsdruck in den Hallen der Automobilhersteller ist groß: Die Varianz nimmt stetig zu, die Kosten müssen im Rahmen bleiben. Fraunhofer- Forscher bringen via RFID-Technologie nun mehr Transparenz in die Logistik und Produktionsprozesse bei Automobilherstellern. Das heißt: Der Aufwand wird geringer, die Wirtschaftlichkeit steigt.

Wer schon mal einen Neuwagen bestellt hat, weiß: Die Liste der Extras ist lang, die Variantenvielfalt wird immer größer. Für die Autohersteller geht diese Individualität mit großen Herausforderungen einher. Denn viele Bauteile sind rein äußerlich für die Werker kaum zu unterscheiden – so sieht ein Sicherheitsgurt für deutsche Autos dem für non-EU-Autos zum Verwechseln ähnlich. Sicherheitsrelevante Bauteile werden daher mit einem Barcode versehen, der manuell gescannt werden muss. Im Zuge der Digitalisierung entlastet RFID die Mitarbeiter von dieser Routineaufgabe und gibt ihnen gleichzeitig durch automatische Prüfung die Sicherheit, die richtigen Teile verbaut zu haben.

Prozesssicherheit und Transparenz steigern

Forscher vom Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF in Magdeburg rüsten die Produktions- und Logistikprozesse nun für die Digitalisierung respektive für Industrie 4.0. »RFID-Tags an den Bauteilen, kurz für Radio Frequency Identification, können die Prozesssicherheit und die Effizienz deutlich erhöhen«, sagt Marc Kujath, Wissenschaftler am IFF. »Dies haben wir sowohl durch Machbarkeitsstudien als auch durch Funktests belegt, die wir gemeinsam mit Mercedes-Benz Vans im Werk Ludwigsfelde bei Berlin durchgeführt haben.« Solche RFID-Systeme bestehen zum einen aus dem RFID-Tag am Bauteil sowie einem Scanner, der die Informationen berührungslos ausliest. In einem ersten Schritt haben die Forscher untersucht, welche der zahlreichen Bauteile eines Fahrzeugs am besten geeignet sind – und bis zu 40 Teile identifiziert. Für die weiteren Entwicklungen haben sich die Experten zunächst einmal auf Spiegel und Sitze fokussiert.

Automatische Überprüfung während der Montage

Die RFID-Tags werden dabei an jedem einzelnen sicherheitskritischen Bauteil angebracht – also etwa den einzelnen Spiegeln. Auf den Tags ist eine Seriennummer gespeichert, ähnlich wie beim Barcode auch. Die großen Unterschiede: Während beim Barcode lediglich die Information hinterlegt ist, um welchen Spiegeltyp es sich handelt, liefert die Nummer des RFID-Tags zahlreiche Informationen, etwa in welches Fahrzeug der Spiegel eingebaut werden soll. Während die Barcodes einer nach dem anderen manuell mit einem Handscanner ausgelesen werden müssen, lassen sich die RFID-Tags über einen Scanner alle gleichzeitig automatisiert und berührungslos erfassen – und zwar auch noch dann, wenn die Teile bereits verbaut sind. Das heißt: Über die RFID-Tags lassen sich die Informationen jederzeit in Sekundenschnelle abrufen. Für die Produktion ist dies ein entscheidender Vorteil. So kann etwa bei der Montage von Vorder- oder Hinterachse zwischendurch bereits überprüft werden, ob alle benötigten Bauteile verbaut sind. Bisher wurde dies erst in der Endkontrolle erfasst – von Mitarbeitern per Sichtkontrolle und Papierliste. »Über die RFID-Tags können wir die Transparenz erhöhen«, erläutert Kujath.

Von der Technologie über das Betriebskonzept bis hin zur Systemintegration

Die Forscher vom IFF haben sich dabei sowohl um die Technologie gekümmert als auch um das Betriebskonzept. »Dazu waren mehrere Schritte nötig, die wir gemeinsam mit unserem Partner Mercedes-Benz Vans angegangen sind. So haben wir beispielsweise die blinden Flecken in der Produktionsplanung reduziert. Das heißt: Die Projektleiter wissen nun, wo die Tücken des Prozesses liegen – und können zur richtigen Zeit die richtigen Fragen stellen. Zudem haben wir die verschiedenen Rollen durchdacht, schließlich braucht der Projektleiter andere Informationen als der Techniker«, ergänzt Kujath. In einem weiteren Schritt sollen nun Serientests bei Daimler folgen.

Externer Link: www.fraunhofer.de

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

Pressemitteilung der Universität des Saarlandes vom 24.11.2017

Wie kann man eine Maschine in einer Virtual-Reality-Anwendung ganz ohne Tastatur und Bediengeräte präzise steuern? Für diese Frage fand Dominic Gottwalles in seiner Masterarbeit im Fach Medieninformatik an der Saar-Uni eine überzeugende Lösung. In Zusammenarbeit mit dem Unternehmen Centigrade GmbH entwickelte er eine virtuelle Industrieumgebung, in der Probanden eine Maschine virtuell über die eigene Handfläche steuerten. Für seine Masterarbeit erhielt Dominic Gottwalles jetzt den Nachwuchspreis „Digitalisierung im Maschinenbau“ vom Verband Deutscher Maschinen- und Anlagenbau (VDMA).

In der Industrie sind zunehmend innovative Technologien gefragt, die auf virtuellen Anwendungen beruhen – beispielsweise, um Maschinen zu steuern oder zu warten. Eine zentrale industrielle Anwendung von Virtual Reality hat Dominic Gottwalles als  Medieninformatik-Student bei Informatik-Professor Antonio Krüger an der Universität des Saarlandes untersucht: „Bei der Konfiguration von Maschinen ist die Eingabe numerischer Werte essentiell. In meiner Masterarbeit wollte ich daher untersuchen, welche Möglichkeiten es gibt, Zahlenwerte in einer virtuellen Umgebung einzugeben.“ Daraus resultierte ein Konzept, das die Eingabe alleine mit den Händen des Benutzers ermöglicht. Das sei wichtig, um die Anwender nicht mit zusätzlichen Steuergeräten zu belasten, erklärt der Master-Absolvent, der seine Abschlussarbeit in Kooperation mit der Firma Centigrade GmbH angefertigt hat, die ihren Hauptsitz in Saarbrücken hat.

Mithilfe des Unternehmens setzte Gottwalles das von ihm ersonnene Konzept in einen Prototypen um: Als Test-Szenario entwarf er eine virtuelle Industriehalle mit Produktionsband, das aus mehreren Stationen bestand. An jeder Station mussten Probanden die Produktion durch die Eingabe von Zahlenwerten steuern. Dabei konnten sie über eine Brille eine virtuelle Repräsentation ihrer Hand mit abgebildetem Ziffernblock sehen und die entsprechenden Tasten durch Berührung der Handfläche auslösen. „Auf diese Weise ließen sich unter anderem die Benutzerfreundlichkeit und Leistungsfähigkeit des Prototypen beurteilen“, resümiert Dominic Gottwalles. Die Ergebnisse zeigten, dass es Sinn mache, die Steuerung über die Handfläche für industrielle Anwendungen weiterhin zu erforschen und zu erproben.

Seine Ergebnisse überzeugten nicht nur die VDMA-Jury, sondern auch das Unternehmen Centigrade GmbH. Am Standort München der Firma arbeitet Dominic Gottwalles inzwischen als Softwareentwickler bei der Entwicklung moderner Benutzeroberflächen in zahlreichen Kundenprojekten mit.

Der VDMA-Fachverband Software und Digitalisierung hatte den Preis erstmals ausgeschrieben, um „herausragende Abschlussarbeiten“ auszuzeichnen und die digitale Transformation im Maschinenbau zu fördern. Von Mai bis September konnten Professoren Studenten aus den Fachbereichen Informatik und Ingenieurswesen vorschlagen. Insgesamt 26 Absolventen von 21 deutschen Hochschulstandorten wurden auf diese Weise nominiert. In der Kategorie „Masterarbeit“ erhielt Dominic Gottwalles den ersten Preis, Lars Kistner von der Universität Kassel wurde für seine Bachelorarbeit prämiert.

Externer Link: www.uni-saarland.de

Im Auge des Betrachters

Pressemitteilung der Hochschule Coburg vom 07.11.2017

Mithilfe neuer Entwicklungen lassen sich Smartphones und Co. bedienen, ohne sie berühren zu müssen. Gesteuert werden könnten sie über einfache Handgesten.

Forscher der Hochschule Coburg haben untersucht, ob sich die Reflektionen im menschlichen Auge nutzen lassen, um diese Art der Bedienung zu ermöglichen. Und tatsächlich: Schaut ein Nutzer auf sein Smartphone oder Tablet spiegelt sich in seinen Augen die Umgebung um ihn herum. Bewegt er nun die Hände innerhalb dieser Umgebung, erkennt das Gerät diese Bewegung und kann die entsprechenden Befehle umsetzen.

Benötigt wird dafür nur die normale Frontkamera des Geräts. „Das muss also keine langfristige Zukunftsvision sein, sondern könnte schon mit der heutigen Generation von Smartphones umgesetzt werden“, erklärt Prof. Dr. Jens Grubert. Der Professor für Mensch-Maschine-Interaktion im Internet der Dinge erforscht Techniken, die die Bedienung von mobilen Endgeräten erleichtern können.

Diese Erkenntnisse zur Interaktion mit Mobilgeräten mittels Augenreflektionen stellten er und sein Mitarbeiter Daniel Schneider auf den international Konferenzen IEEE International Symposium on Mixed and Augmented Reality (IEEE ISMAR) in Nantes (Frankreich) und auf der ACM International Conference on Interactive Surfaces and Spaces (ACM ISS) in Brighton (England) vor.

Externer Link: www.hs-coburg.de

„Fingerabdruck“ aus Licht ermöglicht Nerven-Stimulation

Presseaussendung der JKU Linz vom 27.10.2017

ForscherInnen der Johannes Kepler Universität Linz haben ein neues Verfahren entwickelt, das die Stimulation von Nervenzellen mittels Lichtfeld ermöglicht. Das Projekt wurde nun im renommierten Journal „Nature Scientific Reports“ der Fachwelt präsentiert.

Bereits 2016 stellte das Team um Univ.-Prof. Oliver Bimber (Institut für Computergrafik) ein Verfahren zur volumetrischen Ausleuchtung von mikroskopischen Proben vor. Dabei werden, mithilfe eines speziellen Lichtfeld-Mikroskops, Lichtstrahlen zu einem dreidimensionalen Beleuchtungsmuster innerhalb der Probe gebündelt.

Einsatz in der Medizin

Einsatzgebiet dieser Technik ist die Optogenetik, in der neuronale Zellen durch gezielte Beleuchtung stimuliert werden. Optogenetische Stimulation wurde von anderen ForscherInnen bereits erfolgreich am Gehirn bzw. an Nervenzellen von Tieren wie Mäusen, Fischen, Fliegen und Würmern demonstriert. Ziel ist es, bestimmte Verhaltensmuster in Versuchsobjekten auszulösen oder zu unterdrücken.

Voraussetzung der bis dato aktuellen Beleuchtungsverfahren war die exakte Position der Probenelemente. Position und Größe einzelner Neuronen mussten vorab ermittelt werden. Eine genaue Bestimmung konnte zudem äußerst schwierig sein bzw. war in manchen Fällen überhaupt unmöglich.

Keine Rekonstruktion nötig

Das nun an der JKU entwickelte Verfahren kommt völlig ohne die dreidimensionale Struktur der Probe aus. Die Technik macht sich eine besondere Eigenschaft von Nervenzellen zunutze: Jedes stimulierte Neuron erzeugt einen eindeutigen „Lichtfeld-Fingerabdruck“. Im neuen Verfahren wird die Probe, bestehend aus mehreren Neuronen, mit speziellen Mustern beleuchtet. Die sich überlagernden „Fingerabdrücke“ werden danach durch ein mathematisches Verfahren getrennt. Damit können anschließend neue Beleuchtungsmuster berechnet werden, die dann selektiv einzelne Neuronen stimulieren.

Der große Vorteil: Durch die spezielle Abtastung sind eine 3D-Rekonstruktion der Probe oder die Kalibrierung der optischen Elemente des Mikroskops nicht mehr notwendig. (Tobias Prietzel)

Externer Link: www.jku.at

Saarbrücker Forscher erstellen digitale Objekte aus unvollständigen 3-D-Daten

Pressemitteilung der Universität des Saarlandes vom 12.10.2017

Mit speziellen Kameras können reale Objekte inzwischen digital erfasst werden. Sie stoßen jedoch noch an Grenzen, wenn beispielsweise die Oberfläche eines Objektes für den Scanner zu dunkel ist und daher kein Signal liefert oder sich Teile gegenseitig verdecken. Informatiker des Max-Planck-Instituts für Informatik haben gemeinsam mit Kollegen vom US-amerikanischen Halbleiterhersteller Intel und dem Intel Visual Computing Institute der Universität des Saarlandes eine Methode entwickelt, die selbst aus unvollständigen Aufnahmen ein digitales Objekt rekonstruieren kann. Die Forscher nutzen dafür einen speziellen Typ eines neuronalen Netzwerkes.

„Obwohl die 3D-Scan-Technologie in den vergangenen Jahren einen erheblichen Sprung gemacht hat, ist es immer noch eine Herausforderung, die Geometrie und Form eines realen Objektes digital und automatisiert zu erfassen“, erklärt Mario Fritz, der am Max-Planck-Institut für Informatik die Gruppe „Scalable Learning and Perception“ leitet. Laut Fritz sind Tiefensensoren, etwa der Microsoft Kinect Sensor, sehr leistungsfähig, aber sie funktionieren nicht auf allen Materialien gleich gut, was zu verrauschten Daten oder sogar fehlenden Messwerten führt. „Die daraus resultierenden fehlerhaften oder sogar unvollständigen 3D-Geometrien stellen ein echtes Problem für eine Reihe von Anwendungen dar, etwa in der virtuellen, erweiterten Realität oder bei der Zusammenarbeit mit Robotern und im 3-D-Druck“, erklärt Mario Fritz.

Gemeinsam mit weiteren Forschern vom US-amerikanischen Halbleiterhersteller Intel und dem Intel Visual Computing Institute der Saar-Uni entwickelte er daher eine Methode, die auch mit unvollständigen Datensätzen funktioniert. Sie nutzt ein spezielles neuronales Netzwerk. „Unsere Methode benötigt keinerlei Aufsicht während der Lernphase, was in dieser Form ein Novum ist“, erklärt Fritz. Auf diese Weise konnten die Forscher beispielsweise einen flachen Monitor, dessen digitales Abbild nach dem 3-D-Scan eher einer Bretterwand glich, so rekonstruieren, dass jedermann wieder in dem digitalen Objekt einen Monitor erkennen konnte. Damit schlagen die Saarbrücker Informatiker auch bisherige Methoden, die fehlerhafte 3D-Scans verbessern und Formen vervollständigen. Auch bei der Klassifizierung von gescannten Objekten zeigt die Methode aus Saarbrücken sehr gute Ergebnisse. In Zukunft wollen die Wissenschaftler ihre Methode weiterentwickeln, so dass es auch bei verformbaren Objekten und größeren Szenen funktioniert.

„Zukünftig muss es einfach und schnell gelingen, Objekte aus der echten Welt zu erfassen und diese realitätsnah in die digitale Welt zu projizieren“, erklärt Philipp Slusallek, Professor für Computergraphik der Universität des Saarlandes und wissenschaftlicher Direktor am Deutschen Forschungszentrum für Künstliche Intelligenz (DFKI). Am DFKI ist er auch für das europäische Verbundprojekt „Distributed 3D Object Design“, kurz DISTRO, verantwortlich, mit dem die Europäische Union die Forschungsdisziplinen Visual Computing und 3D-Computergrafik an die wissenschaftliche Weltspitze bringen will. Dazu soll eine neue Generation von exzellenten Wissenschaftlern und Technikern ausgebildet werden. Fünf der 15 ausgeschriebenen Doktorandenstellen wurden mit Forschern des Saarland Informatics Campus an der Universität des Saarlandes besetzt.

Externer Link: www.uni-saarland.de