Quantencomputer rechnet mit mehr als Null und Eins

Medienmitteilung der Universität Innsbruck vom 21.07.2022

Seit Jahrzehnten lernen wir, dass Computer, vom Handy bis zum Rechenzentrum, mit Null und Eins rechnen. An der Universität Innsbruck hat nun ein Team von Experimentalphysikern einen Quantencomputer realisiert, der diese Einschränkung hinter sich lässt und den Weg ebnet für deutlich effizientere Quantenrechnungen.

Computer sind praktisch gleichgesetzt mit binärer Information – Null und Eins. Dieser Ansatz ist so erfolgreich, dass Computer aus dem täglichen Leben, von der Kaffeemaschine bis zum selbstfahrenden Auto, nicht mehr wegzudenken sind.

Aufbauend auf dem Erfolg klassischer Computer, gilt die binäre Informationsverarbeitung auch als Basis für neuartige Quantencomputer. „Die physikalischen Bausteine des Quantencomputers können allerdings deutlich mehr als nur Null und Eins“, erklärt der Innsbrucker Experimentalphysiker Martin Ringbauer. „Die Einschränkung auf binäre Systeme nimmt diesen Computern viel von ihrem echten Potential.“

Das Team um Thomas Monz vom Institut für Experimentalphysik der Universität Innsbruck berichtet in der Fachzeitschrift Nature Physics, wie es ihnen nun gelungen ist, einen Quantencomputer zu realisieren, der dieses Potential voll ausnutzen und damit mehr Rechenleistung mit weniger Quantenteilchen erreichen kann.

Verstecktes Potential

Information in Null und Eins zu speichern, ist zwar nicht die effizienteste Art zu rechnen, aber die einfachste, und einfach heißt auch oft verlässlich und wenig fehleranfällig. So ist die binäre Informationsverarbeitung heutzutage der unumstrittene Standard.

In der Quantenwelt sieht das anders aus, da es kaum Systeme mit nur zwei Zuständen gibt. „Im Innsbrucker Quantencomputer wird Information beispielsweise in einzelnen gefangenen Kalziumatomen gespeichert, die jeweils acht Zustände haben, von denen bisher aber nur zwei zum Rechnen verwendet wurden“, erklärt Thomas Monz. Ähnliches gilt für fast alle existierenden Quantencomputer weltweit.

Optimal für Computer und Anwendungen

Wie die Innsbrucker Physiker nun gezeigt haben, ist es möglich einen Quantencomputer so zu konstruieren, dass das volle Potential der Atome ausgenutzt werden kann, indem alle vorhandenen Zustände als sogenannte Qudits (quantum digits) zum Rechnen verwendet werden. Dieses neue Rechenmodell ist optimal auf die Quantenhardware abgestimmt, und die Forscher konnten zeigen, dass der neue Quantencomputer genauso verlässlich arbeitet, wie einer mit nur Null und Eins.

Ähnlich sieht es mit Anwendungen aus. Denn viele der Aufgaben, die Quantencomputer brauchen, wie in der Physik, Chemie, oder den Materialwissenschaften, sind auf natürliche Weise für Qudits formuliert. Versucht man diese für übliche Quantencomputer umzuschreiben, werden sie oft zu kompliziert für heutige Maschinen. „Mit mehr als Null und Eins zu rechnen, ist nicht nur optimal für die Quantencomputer, sondern auch deutlich natürlicher für viele Anwendungen“, sagt Martin Ringbauer. „Dieser Ansatz ermöglich uns, das volle Potential unserer Quantencomputer auszuschöpfen“.

Die Forschungen wurden unter anderem vom Österreichischen Wissenschaftsfonds FWF, dem Bundesministerium für Bildung, Wissenschaft und Forschung sowie der Europäischen Union finanziell unterstützt.

Originalpublikation:
A universal qudit quantum processor with trapped ions. Martin Ringbauer, Michael Meth, Lukas Postler, Roman Stricker, Rainer Blatt, Philipp Schindler, Thomas Monz. Nature Physics 2022.

Externer Link: www.uibk.ac.at

Robotische Implantate verbessern die Heilung von Knochenbrüchen

Pressemitteilung der Universität des Saarlandes vom 04.07.2022

Eine neue Generation intelligenter Implantate soll direkt am Knochen überwachen, ob Schienbeinbrüche heilen. Bei Bedarf sollen sie den Heilungsprozess über gezielte Bewegung direkt an der Bruchstelle aktiv anregen. Hieran arbeitet ein Forschungsteam aus Medizin, Ingenieurwissenschaft und Informatik. Das Team um Bergita Ganse und Tim Pohlemann hat erstmals das nötige bekannte Wissen zusammengetragen, wie Knochenbrüche am besten stimuliert werden, um das beste Heilungsergebnis zu erzielen.

Jeder Unterschenkelbruch ist anders. Ob Motorradunfall oder Grätsche beim Fußball – je nachdem, welche Kräfte auf den Knochen einwirkten, ist das Schadensbild verschieden: von großen Bruchstücken bis hin zu kleinteiligen Knochentrümmern. Entsprechend individuell verheilt auch jeder Bruch. Könnte man im Zeitraffer dem Knochen beim Heilen zusehen, wären an den Bruchstellen kontinuierliche Veränderungen sichtbar, während sich neues Knochengewebe bildet. Gleichwohl besteht die heute übliche Behandlung darin, ein Implantat in Standardgrößen mit den Knochenstücken zu verschrauben; die aktuellen Implantate sind jedoch rein passiv. Nur in zeitlichen Abständen und mit Verzögerung zeigt sich in Röntgenbildern, wie die Heilung verläuft.

„Dass der Knochen trotz Implantat nicht zusammenwächst, ist beim Schienbeinbruch eine relativ häufige Komplikation. Von einhundert Patientinnen und Patienten trifft dies etwa vierzehn“, sagt Professorin Bergita Ganse. „Es ist heute schwierig, die Verzögerung bei der Frakturheilung frühzeitig von außen zu erkennen, um eingreifen zu können. Dies bedeutet für die Betroffenen langwierige Behandlung und für das Gesundheitssystem sehr hohe Kosten“, erläutert die Unfallchirurgin und Inhaberin der Werner Siemens-Stiftungsprofessur für innovative Implantatentwicklung, die an der Universität des Saarlandes das Projekt „Smarte Implantate“ koordiniert. Im interdisziplinären Team entwickeln hier Mediziner, Ingenieure und Informatiker ein für jeden Patienten und jede Patientin individuell auf den Knochen maßgeschneidertes Implantat, das ab der Operation direkt vor Ort im Körper Informationen liefert, wie gut oder schlecht ein Bruch verheilt und auch bei Fehlbelastungen warnen kann. Und: Bei Bedarf soll das Implantat selbst die Knochenheilung aktiv fördern. Ein Prototyp des smarten Implantats soll 2025 vorliegen.

Die Forscherinnen und Forscher kombinieren hierzu modernste Materialtechnik, künstliche Intelligenz und medizinisches Know-how. „Wir wollen mit dieser neuen Klasse von Implantaten die Bruchsteifigkeit und Bruchverschiebung permanent direkt an der Bruchstelle überwachen. Zeigen sich hierbei Probleme, soll das Implantat selbst aktiv gegensteuern, indem es sich bewegt oder versteift und zwar ohne, dass hierzu weitere Eingriffe nötig sind“, erklärt Bergita Ganse. In zahlreichen Vorstudien hat das Forschungsteam der Universität des Saarlandes unter anderem bereits herausgefunden, dass Frakturen schneller heilen, wenn die Bruchstelle durch Mikrobewegungen stimuliert wird.

In vielen Bereichen betreten die Forscherinnen und Forscher hierbei Neuland. Um das Implantat so zu entwickeln, dass es die Heilung auf die Patienten zugeschnitten optimal unterstützt, müssen zahlreiche komplexe Details und Zusammenhänge geklärt werden. „Bislang ist etwa noch nicht definiert, welche Kräfte, Frequenzen, Kraftrichtungen, Zeitdauern und Zeitperioden oder andere Stimuli solche Implantate idealerweise liefern sollten, um das beste Heilungsergebnis zu erzielen“, erläutert Bergita Ganse. Deshalb hat sie gemeinsam mit ihrem Forschungsteam das bislang bekannte Wissen aus diesem Themenkreis zusammengetragen, mögliche Mechanismen aktiver Implantate erörtert und aufgezeigt, wo weitere Forschung erforderlich ist, um ein aktives Implantat zu entwickeln, das die idealste Unterstützung bietet. Die Ergebnisse veröffentlichte das Team jetzt im Fachblatt Acta Biomaterialia. „Es handelt sich um ein Grundlagenpaper, also die erste Übersichtsarbeit überhaupt, die zu diesem Thema bisher weltweit erschienen ist“, erklärt Bergita Ganse, die als Koordinatorin auch ihre Erfahrung als Weltraummedizinerin einbringt. Sie forschte in Projekten mit der europäischen Weltraumorganisation ESA und der US-amerikanischen Raumfahrtbehörde NASA unter anderem daran, wie sich Knochen und Muskeln im All abbauen und half dabei, für Astronautinnen und Astronauten Trainingsmethoden zu entwickeln, um dies zu verhindern.

Eine der grundlegenden Neuentwicklungen ist der Einsatz von Formgedächtnisdrähten im Implantat. Im rechten Moment sollen sie die richtige „Krankengymnastik“ übernehmen. Hierzu bedarf es zahlreicher Daten und Informationen. Die haarfeinen Drähte mit Formgedächtnis bestehen aus Nickel-Titan. Hieran forschen an der Universität des Saarlandes die Spezialistinnen und Spezialisten für intelligente Materialsysteme um Professor Stefan Seelecke. Eingebaut im Implantat sollen die Drähte mithilfe elektrischer Signale zum einen als Sensor den Heilungsprozess sichtbar machen, zum anderen die Heilung durch Bewegung stimulieren.

Die Formgedächtnisdrähte nehmen ihre ursprüngliche Form wieder an, wenn sie verformt oder gezogen werden, und können ähnlich wie Muskeln an- und wieder entspannen. Auf kleinem Raum erreichen sie hohe Zugkraft; sie haben die höchste Energiedichte aller bekannten Antriebsmechanismen. Betrieben werden sie mit elektrischem Strom. Jeder Länge der Drähte lässt sich ein exakter Messwert des elektrischen Widerstands zuordnen. Sind die Drähte im Implantat eingebaut, lassen sich selbst kleinste Veränderungen im Frakturspalt in den Messwerten ablesen. Das macht diese künstlichen Muskeln zu Sensoren im Implantat. Zugleich entspricht eine Abfolge solcher Messwerte einem Bewegungsablauf. Mithilfe der Zahlenkolonnen und intelligenten Algorithmen lassen sich Bewegungsabläufe vorausberechnen, programmieren und die Drähte entsprechend automatisiert ansteuern. So könnte das Implantat sich ohne Weiteres direkt am Frakturspalt bewegen und die Heilung durch aktives Verkürzen und Verlängern, durch Aussenden von Impulsen, Wellen oder elektromagnetischen Feldern stimulieren.

Aktuell arbeiten die Forscherinnen und Forscher an der Feinjustierung und den Details, um diese Muskeln für den Einsatz im Implantat fit zu machen.

Die Werner Siemens-Stiftung fördert diese Forschungen mit acht Millionen Euro.

Originalpublikation:
„Concepts and clinical aspects of active implants for the treatment of bone fractures“ Acta Biomaterialia, 2022. Bergita Ganse, Marcel Orth, Michael Roland, Stefan Diebels Paul Motzki, Stefan Seelecke, Susanne-Marie Kirsch, Felix Welsch, Annchristin Andres, Kerstin Wickert, Benedikt Braun, Tim Pohlemann

Externer Link: www.uni-saarland.de

TH Ingolstadt plant IT-System für größten Surfpark der Welt

Pressemitteilung der TH Ingolstadt vom 30.05.2022

Bei der Umsetzung der begleitenden Geschäftsprozesse hilft das Verfahren des „Prozessgesteuerten Ansatzes“ von THI-Professor Dr. Volker Stiehl

Mit dem Doppelprojekt SURFWRLD/SCNCWAVE entsteht im westfälischen Werne in den kommenden Jahren der größte Surf Park und die größte Hydrodynamikanlage der Welt. Dies setzt nicht nur sportliche und wissenschaftliche Maßstäbe, auch bei der Umsetzung der begleitenden Geschäftsprozesse geht das Vorhaben neue Wege. In Zusammenarbeit mit der Technischen Hochschule Ingolstadt (THI) implementiert ein Studierendenteam im Rahmen ihres Semesterprojektes Kernprozesse wie die Buchung von Surf-Zeiten nach einem innovativen Verfahren, das ausschließlich an der THI sowohl theoretisch im Bachelor-Studiengang Wirtschaftsinformatik als auch praktisch im neuen Master-Studiengang Business Information Systems Engineering vermittelt wird.

Dieses Verfahren, der „Prozessgesteuerte Ansatz“, wurde von Prof. Stiehl (THI) entwickelt. Es unterscheidet sich grundsätzlich von herkömmlichen Verfahren zur Umsetzung von Geschäftsprozessen, da Prozesse nicht mehr programmiert, sondern modelliert und auf Basis dieser Modelle auch ausgeführt werden, wie Prof. Dr. Volker Stiehl erklärt. Neben einer deutlich reduzierten Umsetzungszeit von Prozessen garantiere der Ansatz qualitativ hochwertige Software bei gleichzeitig voller Transparenz während der Ausführung: „Wie in einer Leitstelle bei komplexen Produktionsanlagen erhält der Betreiber eine Art Armaturenbrett (Dashboard), auf dem er die Zustände der Prozesse in Echtzeit nachvollziehen kann. Diese vollständige Transparenz in Echtzeit ist einmalig in der Entwicklung von Unternehmensanwendungen und wird die Softwareentwicklung nachhaltig verändern.“

Prozesse sind nötig, die man nicht von der Stange kaufen kann

Dass die TH Ingolstadt und SURFWRLD/SCNCWAVE zusammenarbeiten, ist einem glücklichen Zufall zu verdanken: Die Eltern von Prof. Dr. Volker Stiehl leben in Werne. So kam er mit dem Doppelprojekt in Kontakt. Prof. Stiehl: „Ich las über SURFWRLD in der lokalen Presse und mir war sofort klar, dass dieses Projekt Prozesse benötigt, die man so nicht einfach von der Stange kaufen kann. Dazu sind die Anforderungen einfach zu speziell. Also muss das Projektteam über individuelle Lösungen nachdenken und genau hier passt der prozessgesteuerte Ansatz wie der berühmte Deckel auf dem Topf.“

Die Projektentwickler- und Betreibergesellschaft SW war sofort begeistert. Geschäftsführer Dr. Michael Detering: „Der prozessgesteuerte Ansatz hilft uns in beiden Bereichen enorm. Wir haben so direkten Zugriff auf die IT-Landschaft, sind sehr flexibel und langfristig unabhängig von Anbietern. Dies bedeutet nicht, dass SW als Bauherr und Betreiber alle Vorgänge zukünftig selbst verwalten muss. Bei der Zusammenarbeit mit Partnern, Dienstleistern und IT-Firmen bleiben wir aber deutlich flexibler.“

Die Strukturen betreffen Sport, Freizeit und Wissenschaft

Die ersten Prozesse, die die THI-Studierenden und SW zunächst ins Auge fassen, betreffen beide Projektbereiche. Zum einen wird ein vernetztes System zum Surfbetrieb und zur Distribution aufgesetzt. Zum anderen sind die Strukturen auch für die Planungen und Verwaltung im Forschungsbereich gedacht. So müssen beispielsweise die Beckenauslastung und der auslastungsabhängige Personaleinsatz frühzeitig geplant werden, ebenso das Wassermanagement. Diese Beispiele verdeutlichen eines sehr schön, so Stiehl: „Den enormen Bedarf nach Prozessen, die stark miteinander verflochten und in dieser Form in keiner Standardsoftware vorzufinden sind. Genau hier spielt der prozessgesteuerte Ansatz seine Stärken aus und eröffnet SW die Flexibilität und Effizienz, die zum Betrieb dieses ehrgeizigen Projektes erforderlich sind.“

Erweiterung zum Energiemanagement möglich

Über die bisherigen Strukturen hinaus ist im Doppelprojekt für den prozessgesteuerten Ansatz auch ein weiteres Feld interessant. Die Anlage wird nicht nur mit nachhaltigen Baustoffen errichtet, sondern auch mit regenerativen Energien betrieben. SW plant hierzu Erzeugungskapazitäten mit Fotovoltaik und einer eigenen neuen Wasserkraftanlage in der benachbarten Lippe. Über das Jahr gesehen wird zwar mehr elektrische Energie erzeugt und ins Netz eingespeist, als das Doppelprojekt selbst benötigt. Erzeugung und Bedarf sind jedoch nicht gleichmäßig, sondern schwanken. Hinzu kommen E-Ladesäulen für Besucher und Beschäftigte. Auch diese werden in das Energie-Management eingebunden und sind zu fakturieren. Als Folge davon ist eine Vielzahl begleitender, höchst individueller Prozesse zu implementieren, für die der prozessgesteuerte Ansatz prädestiniert ist. Doch nicht nur das: Der prozessgesteuerte Ansatz trägt auch zur Nachhaltigkeit in der Softwareentwicklung bei und unterstützt somit die ehrgeizigen Nachhaltigkeitsziele des gesamten Projektes. Detering: „Es wäre mir nach den bisherigen Erfahrungen am liebsten, wenn wir auch dies über einen prozessgesteuerten Ansatz umsetzen würden.“

Externer Link: www.thi.de

Bioinformatiker entschlüsseln Protein, das abnehmende kognitive Leistung im Alter zurückdrehen kann

Pressemitteilung der Universität des Saarlandes vom 11.05.2022

Im hohen Alter lässt die Gedächtnisleistung bei den meisten Menschen nach, oft so stark, dass dies ihren Alltag massiv beeinflusst. Bioinformatiker der Universität des Saarlandes haben nun in einer gemeinsamen Studie mit der Stanford University ein Protein mit verjüngender Wirkung identifiziert, das den Prozess der abnehmenden Hirnleistung im Alter beeinflusst. Ihre Forschungsergebnisse wurden heute online in der Fachpublikation „Nature“ veröffentlicht. Auch die New York Times hat berichtet.

Es gibt vielfältige Ursachen für altersbedingte Krankheiten – und oft führen diese zu erheblichen Einschränkungen im Alltag Betroffener. Eine der meistverbreiteten Symptome ist eine schleichend abnehmende kognitive Kapazität, die später oft gepaart mit Altersdemenz auftritt. Forscher der Universität des Saarlandes interessieren sich daher für die Frage, welche neuen Stoffe uns neben einer gesunden Lebensweise dabei helfen können, so lange wie möglich fit im Gehirn zu bleiben. Sie suchen zudem nach Wirkstoffen, die Beschwerden bei bereits betroffenen Patienten wieder heilen können.

In einer Studie zusammen mit Forschern der Gruppe von Professor Tony Wyss-Coray aus dem Bereich Neurologie der Stanford University in den USA, die nun im renommierten Fachmagazin „Nature“ publiziert wurde, beschreiben die Bioinformatiker Andreas Keller und Fabian Kern die Entdeckung eines solchen physiologisch wirksamen Stoffes. Andreas Keller ist Professor für Klinische Bioinformatik der Universität des Saarlandes, sein wissenschaftlicher Mitarbeiter Fabian Kern forscht seit kurzem eigenständig am Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS). Zusammen haben sie wesentlich dazu beigetragen, den eigentlichen Mechanismus hinter der Wirkweise des sogenannten Signalproteins Fgf17 zu entschlüsseln. Dieses entstammt einer Familie von zellulären Wachstums- und Entwicklungsfaktoren. Das in der Gehirnflüssigkeit (auch bekannt als Cerebrospinalflüssigkeit – CSF) lösliche Protein dockt spezifisch an entsprechende Rezeptoren der Gehirnzellen, insbesondere den sogenannten Oligodendrozyten aus der Familie der Gliazellen, an. Diese sind für die elektrische Signalleitung unserer Neuronen unentbehrlich, können jedoch mit zunehmendem Alter an Anzahl und Funktion verlieren. Eine der bekanntesten Autoimmunkrankheiten, die unmittelbar auf einen Verlust der Oligodendrozytenfunktion zurückzuführen ist, ist die Multiple Sklerose. CSF enthält ein komplexes Gemisch an vielzähligen Nährstoffen, welches die Zellen im zentralen Nervensystem versorgt, sowie diverse Proteine mit nach wie vor unbekannter Funktionsweise.

Das in der Studie beschriebene, natürlich vorkommende Protein führt zu einer teilweisen Umkehrung der beobachteten Alterungsprozesse durch eine Reaktivierung von Oligodendrozyten und darüber hinaus zu einer signifikanten Verbesserung der kognitiven Schwächen. Dies konnte nachgewiesen werden, indem Rückenmarksflüssigkeit von jungen Labormäusen an ihre älteren Artgenossen per Transfusion übertragen wurde. Die Saarbrücker Bioinformatiker haben die an diesem konkreten molekularen Prozess beteiligten Transkriptionsfaktoren und Gene genauer beschrieben. Bis zu einer möglichen Therapie im Menschen sind jedoch noch viele weitere Fragen zu klären. Zum Einstieg ging es erst einmal darum, geeignete Wirkstoffkandidaten zu identifizieren, was sich in der Regel als überaus schwierig und aufwändig erweist. Die Bioinformatiker konnten in diesem Fall eine solche Entdeckung mit ihrem methodischen Wissen, wie unter anderem in der Hochdurchsatzsequenzierung, erst möglich machen.

„Fachübergreifende Forschung dieser Art mit ausgesuchter Nähe und Potential zur klinischen Nutzung gehören zu den Zielen der Universität im Bereich NanoBioMed. Damit werden richtungweisende Innovationen vom Campus in die ganze Welt getragen“, sagt Professor Andreas Keller mit Blick auf die nun im Nature-Magazin veröffentlichte Studie. Die Printausgabe des Artikels erscheint in der Ausgabe vom 19. Mai.

Externer Link: www.uni-saarland.de

Fehlender Baustein für Quantenoptimierung entwickelt

Medieninformation der Universität Innsbruck vom 25.03.2022

Optimierungsaufgaben in Logistik oder Finanzwesen gelten als erste mögliche Anwendungen von Quantenrechnern. Innsbrucker Physiker haben nun ein Verfahren entwickelt, mit dem Optimierungsprobleme auf heute bereits existierender Quanten-Hardware untersucht werden können. Sie haben dazu ein spezielles Quantengatter entwickelt.

Weltweit wird die Entwicklung von Quantencomputern vorangetrieben, und es gibt unterschiedliche Konzepte, wie das Rechnen mit den Möglichkeiten der Quantenwelt umgesetzt werden kann. Viele davon sind experimentell schon in Bereiche vorgestoßen, die auf klassischen Computern nicht mehr nachgeahmt werden können. Doch noch sind die Technologien nicht so weit, dass größere Rechenprobleme damit gelöst werden können. Die Wissenschaft sucht deshalb aktuell nach Anwendungen, die auf bereits existierenden Plattformen umgesetzt werden können. „Wir suchen nach Aufgaben, die wir auf der vorhandenen Hardware rechnen können”, sagt Rick van Bijnen vom Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften in Innsbruck. Ein Team um Rick van Bijnen und Wolfgang Lechner schlägt nun ein Verfahren vor, mit dem Optimierungsaufgaben mit Hilfe von neutralen Atomen gelöst werden können.

Software-Lösung

Um in naher Zukunft wissenschaftlich und industriell relevante Anwendung für existierende Quanten-Hardware zu entwickeln, suchen Wissenschaftler nach speziellen Algorithmen, die strukturell mit den Stärken einer Quantenplattform übereinstimmen. „Durch dieses Co-Design von Algorithmen und experimentellen Plattformen funktionieren diese Systeme auch ohne die heute noch schwierige Fehlerkorrektur“, erläutert Wolfgang Lechner vom Institut für Theoretische Physik der Universität Innsbruck. Die Physiker setzen ihren Optimierungsalgorithmus auf neutralen Atomen um, die in optischen Pinzetten gefangen und angeordnet sind. Über die Wechselwirkung hoch angeregter Rydberg-Zustände können diese programmiert werden. Um die Grenzen bisheriger Ansätze zu vermeiden, implementieren die Physiker den Algorithmus nicht direkt, sondern verwenden die sogenannte Parity-Architektur, einen skalierbaren und problemunabhängigen Hardware-Entwurf für kombinatorische Optimierungsprobleme, den Wolfgang Lechner gemeinsam mit Philipp Hauke und Peter Zoller in Innsbruck entwickelt hat. Auf diese Weise sind für den Optimierungsalgorithmus nur problemabhängige Rechenoperationen auf einzelnen Quantenbits sowie problemunabhängige Operationen auf mehreren Quantenbits notwendig. Für diese Vier-Qubit-Operationen eine direkte und einfache Umsetzung zu finden, war die größte Herausforderung für die Innsbrucker Forscher. Sie haben dafür ein spezielles Quantengatter entwickelt. „Wir haben den Algorithmus direkt in der Sprache des Experiments umgesetzt”, erklärt Erstautor Clemens Dlaska. „So kann der Algorithmus auf aktueller Quanten-Hardware realisiert werden, indem einfach die Dauer von Laserpulsen in einer Rückkopplungsschleife optimiert wird“.

Beliebig erweiterbar

Mit dem vorgeschlagenen Konzept kann die Leistungsfähigkeit bestehender Quantenhardware bei der Lösung relevanter Optimierungsprobleme für Problemgrößen untersucht werden, die derzeit auf klassischen Supercomputern nicht simuliert werden können. Dass sowohl die Hardware-Plattform als auch die Software-Lösung ohne Modifikationen weitgehend beliebig erweitert werden kann, ist ein wichtiger Vorteil des neuen Verfahrens.

Das Innsbrucker Team hat sein neues Konzept nun in der Fachzeitschrift Physical Review Letters vorgestellt. Finanziert wurde die Forschung vom österreichischen Wissenschaftsfonds FWF, der Europäischen Union im Rahmen des PASQuanS-Projekts und der Hauser-Raspe-Stiftung.

Originalpublikation:
Quantum optimization via four-body Rydberg gates. Clemens Dlaska, Kilian Ender, Glen Bigan Mbeng, Andreas Kruckenhauser, Wolfgang Lechner, Rick van Bijnen. Phys. Rev. Lett. 128, 120503 – Published 24 March 2022

Externer Link: www.uibk.ac.at