KI verbessern: Informatiker spüren Schwächen in Algorithmen des Maschinellen Lernens auf

Pressemitteilung der Universität des Saarlandes vom 08.02.2023

Das Maschinelle Lernen ist die größte Revolution in der Informatik seit Jahrzehnten. Dank lernender Algorithmen können Computer auch bei abstrakten Aufgaben aufsehenerregende Leistungen vollbringen. Aber, wie dem Menschen, unterlaufen den Computern dabei Fehler – und zu verstehen, warum ein Machine-Learning-Algorithmus bestimmte Fehler macht, zählt zu den wesentlichen Herausforderungen der modernen Informatik. Hier setzen Michael Hedderich und Jonas Fischer mit ihrer Forschung an.

Sie haben eine Software entwickelt, mit der Schwächen in hochkomplexen Machine-Learning-Algorithmen aufgespürt und dadurch behoben werden können.

Mithilfe von Algorithmen des Maschinellen Lernens können Computer erstaunliche Leistungen vollbringen, auch in Domänen, die man bisher nur dem Menschen zugeschrieben hat – wie zum Beispiel der Sprache und Bildenden Kunst. Die Rechenverfahren basieren auf sogenannten künstlichen neuronalen Netzen. „Dabei handelt es sich um Netzwerke mathematischer Funktionen, die eine Eingabe anhand bestimmter, anpassbarer Parameter gewichten und daraus einen Output generieren“, erklärt Informatiker Michael Hedderich, der an der Universität des Saarlandes und der Cornell University in den USA forscht. Diese Funktionen, Neuronen genannt, werden hintereinandergeschaltet und mithilfe von Daten trainiert, sodass die Computer beispielsweise in der Lage sind, auf Millionen von Fotos die Katzen herauszufiltern oder täuschend echt wirkende Dialoge mit Menschen zu führen.

„Einer der modernsten und aktuell viel zitierten Textsynthese-Algorithmen der Welt, GPT-3 von OpenAI, verarbeitet Eingaben anhand von 175 Milliarden Parametern, bevor ein Ergebnis ausgegeben wird. Für einen Menschen ist es fast unmöglich, dies nachzuvollziehen und zu verstehen, wo Fehler passieren“, sagt Jonas Fischer, der derzeit Postdoktorand an der Harvard University ist. Bisheriger Stand der Technik war es, die Ausgaben eines Machine-Learning-Algorithmus auf Fehler zu analysieren und diese Fehler einzeln aufzulisten. Dann war es Aufgabe von Experten, in den Datensätzen, die problemlos Tausende von Einträgen enthalten können, Muster zu finden. „In unserer neuen Software ‚PyPremise‘ nutzen wir Techniken des Data Mining, um diese Fehlerdatensätze automatisiert nach bestimmten Merkmalskombinationen zu durchsuchen und diese am Ende gebündelt als verständliche ‚Fehlerkategorien‘ auszugeben. Anstatt also jeden Fehler einzeln aufzuzählen, ist unsere Software in der Lage, Fehler auf einer abstrakteren Ebene zusammenzufassen und Aussagen zu treffen wie: ‚Dein ML-Algorithmus hat Probleme mit Formulierungen, welche die Frage ‚Wie viel‘ beinhalten. Das ist ablesbar an den fehlerhaften Ausgaben in den Fällen X, Y und Z‘“, erläutert Michael Hedderich.

Getestet haben die Saarbrücker Informatiker ihre Software sowohl an synthetischen als auch an echten, in der Praxis eingesetzten Datensätzen. Dabei konnten sie zeigen, dass ihr Verfahren auf sehr große Datensätze mit vielen verschiedenen Eigenschaften der einzelnen Datenpunkte skaliert und verlässliche Ergebnisse liefert. „Die damit gewonnenen Informationen über die Schwachpunkte eines Machine-Learning-Algorithmus können die Betreiber dann verwenden, um beispielsweise ihre Trainingsdaten zu überarbeiten und so Fehler im System zu beheben“, erläutert Jonas Fischer. Das von den beiden Informatikern entwickelte Software-Werkzeug bezieht sich zunächst nur auf Algorithmen im Bereich der Sprachverarbeitung. Ihr Ziel ist aber grundsätzlich, das Tool so zu erweitern, dass es auch auf andere Domänen angewendet werden kann.

Michael Hedderich ist Informatiker und arbeitet an der Cornell University sowie in der Forschungsgruppe „Spoken Language Systems“ von Computerlinguistik-Professor Dietrich Klakow an der Universität des Saarlandes. Jonas Fischer promovierte bis letzten Sommer an der Saar-Universität und forschte am Max-Planck-Institut für Informatik, wo er von Professor Jilles Vreeken vom CISPA Helmholtz-Zentrum für Informationssicherheit betreut wurde. Inzwischen ist er Postdoktorand an der Harvard University. Die wissenschaftlichen Grundlagen der Software stellten die Informatiker erstmalig im Juli 2022 auf der „International Conference on Machine Learning (ICML)“ vor, einer der weltweit größten und renommiertesten Fachkonferenzen in diesem Themenfeld. Dort wird nur etwa ein Fünftel der eingereichten wissenschaftlichen Beiträge akzeptiert.

Externer Link: www.uni-saarland.de

Mobilfunksystem für die zuverlässige Fernsteuerung von Drohnen

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.02.2023

Drohnen sind immer häufiger auch außerhalb der Sichtweite der steuernden Person unterwegs. Jedoch eignen sich konventionelle Fernsteuerungen aufgrund ihrer Reichweitenbegrenzung nicht für solche Flüge. Einfache mobilfunkbasierte Systeme wiederum können bei hoher Mobilfunkauslastung oder mangels Netzabdeckung bislang keine zuverlässige Kommunikation gewährleisten. Forschende am Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI haben im Projekt SUCOM gemeinsam mit Partnern ein neues Mobilfunk-System entwickelt, mit dem sich Drohnen selbst über lange Distanzen und über schwierigem Terrain steuern lassen.

Autonome Drohnen, die über Mobilfunk kommunizieren, haben häufig keine stabile Verbindung. Fehlende Netzabdeckung ist eine Erklärung für die Ausfälle. Experten vermuten außerdem, dass Drohnen in großer Höhe Zugriff auf zu viele Mobilfunkmasten gleichzeitig haben und immer wieder zwischen den Funkzellen wechseln, was zum Verbindungsabbruch führen kann. Forschende des Fraunhofer HHI stellten hingegen fest, dass die Kommunikationsprotokolle, mit denen Drohnen arbeiten und die den Datenfluss zwischen der Drohne und der Steuerung regeln, Probleme bereiten. Sind sie nicht robust genug für schwankende Datenraten, kommen manche Datenpakete langsamer an, einige gehen ganz verloren. Im Kooperationsprojekt SUCOM haben die Forschenden in Zusammenarbeit mit dem hessischen Drohnenhersteller Wingcopter GmbH, der Emqopter GmbH und der CiS GmbH daher neue Kommunikationsprotokolle entwickelt, die gegenüber ruckelnden Datenströmen unempfindlich sind. Die Verbindung zur Drohne steht, selbst wenn die Datenrate schwankt. Sicherheitskritische Informationen für die Erstellung von Luftlagebildern wie Position, Flughöhe, Flugrichtung, Geschwindigkeit und andere Daten lassen sich unterbrechungsfrei übertragen – eine zentrale Voraussetzung für die hohen Sicherheitsanforderungen der Luftfahrt.

Höchstmaß an Ausfallsicherheit

»Wir haben zum Vergleich eine Drohne mit einem kommerziell verfügbaren LTE-System und unserem SUCOM-Mobilfunkmodul mit den neuen Kommunikationsprotokollen ausgestattet«, sagt Tom Piechotta, Wissenschaftler am Fraunhofer HHI. »Während die Verbindung über das herkömmliche Modul immer wieder abbrach, arbeitete das SUCOM-Modul stabil. Dank unserer neuen Protokolle ist die Kommunikation so stabil, dass es nicht zu Unterbrechungen kommt.« Für den Forscher ein klarer Hinweis darauf, dass Störungen bei Drohnen nicht allein auf fehlende Netzabdeckung zurückzuführen sind.

Das SUCOM-Mobilfunk-Modul kann auch in Drohnen verbaut werden, die bereits im Einsatz sind: So beliefern beispielsweise in Malawi Drohnen mit dem neuen Modul die Bevölkerung während der Regenzeit mit Medikamenten, Blutkonserven und anderem lebenswichtigen Material. Dabei legen sie Distanzen von bis zu 40 Kilometern zurück. Sie starten von vier Flugfeldern, an jedem arbeitet ein Fernpilot, der die aktuelle Route in den Computer eingibt und die Wegpunkte definiert, an denen sich die Drohne orientiert. Mit einem Klick wird die Mission auf die Drohne geladen. Die Daten fließen dafür zu einem Server in Kapstadt, dann weiter zum SUCOM-Modul und schließlich zum angeschlossenen Flight-Controller auf der Drohne. Während des Flugs überwachen die Fernpiloten den Zustand der Drohne kontinuierlich und in Echtzeit. Für den Fall, dass die LTE-Verbindung ausfällt, ist die Drohne zusätzlich mit Satelliten-Technik ausgestattet. Über eine VPN-Verbindung lässt sich die Drohne bei Bedarf auch vom Smartphone aus steuern.

In 170 Millisekunden von Malawi nach Berlin

Um schnellen Datentransport zwischen dem Server in Kapstadt und der Drohne zu erreichen, wurden Server-Hardware und -Software angepasst. Die Verbindung ist so schnell, dass die Drohnen in Malawi mit dem Fraunhofer HHI in Deutschland in Echtzeit kommunizieren können. Ein Datenpaket braucht via Mobilfunk von der Drohne über den Server in Kapstadt bis nach Berlin nur 170 Millisekunden.

Mit dem SUCOM-System könnten auch in Deutschland abgelegene Orte besser versorgt werden. Um dies zu demonstrieren, hat das Projekt-Team ein ausgedehntes Waldgebiet im Norden Brandenburgs überflogen – eines der größten Funklöcher Deutschlands mit einem Durchmesser von 14 Kilometern. Der Flug war ein Erfolg: Dank des SUCOM-Moduls blieb die Kommunikation mit der Drohne unterbrechungsfrei.

Externer Link: www.fraunhofer.de

Stabilere Zustände für Quantencomputer

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 20.12.2022

Forschende des KIT arbeiten an neuem Qubit-Ansatz – Veröffentlichung in Nature Materials

Quantencomputer gelten als die Rechner der Zukunft. A und O sind dabei Quantenbits (Qubits), die kleinste Recheneinheit von Quantencomputern. Da sie nicht nur über zwei Zustände verfügen, sondern auch über Zustände dazwischen, verarbeiten Qubits mehr Informationen in kürzerer Zeit. Einen solchen Zustand länger aufrechtzuerhalten, ist allerdings schwierig und insbesondere von den Materialeigenschaften abhängig. Ein Forschungsteam des KIT erzeugte jetzt Qubits, die 100-mal sensitiver auf Materialdefekte sind – ein entscheidender Schritt, um diese auszumerzen. Die Ergebnisse veröffentlichte das Team in der Zeitschrift Nature Materials.

Quantencomputer können große Datenmengen schneller verarbeiten, weil sie viele Rechenschritte parallel durchführen. Informationsträger des Quantencomputers ist das Qubit. Bei Qubits gibt es nicht nur die Informationen „0“ und „1“, sondern auch Werte dazwischen. Die Schwierigkeit liegt im Moment allerdings noch darin, Qubits herzustellen, die klein genug sind und sich schnell genug schalten lassen, um Quantenkalkulationen auszuführen. Als vielversprechende Option gelten hier supraleitende Schaltungen. Supraleiter sind Materialien, die bei extrem niedrigen Temperaturen keinen elektrischen Widerstand aufweisen und daher elektrischen Strom verlustfrei leiten. Dies ist entscheidend, um den Quantenzustand der Qubits zu erhalten und sie effizient miteinander zu verbinden.

Gralmonium-Qubits: Supraleitend und sensitiv

Forschenden des KIT ist es gelungen, neuartige und unkonventionelle supraleitende Qubits zu entwickeln. „Das Herzstück eines supraleitenden Qubits ist ein sogenannter Josephson-Kontakt, der zur Speicherung von Quanteninformation dient. Genau an dieser Stelle haben wir eine entscheidende Veränderung vorgenommen“, so Dr. Ioan M. Pop vom Institut für QuantenMaterialien und Technologien des KIT (IQMT). In der Regel werden solche Josephson-Kontakte für supraleitende Quantenbits erzeugt, indem zwei Aluminiumschichten durch eine dünne Oxid-Barriere getrennt werden. „Im Gegensatz dazu verwenden wir für unsere Qubits nur eine einzelne Schicht aus ‚granularem Aluminium‘, einem Supraleiter aus wenige Nanometer großen Aluminiumkörnern, die in einer Oxid-Matrix eingebettet sind“, sagt Pop. Dadurch bildet das Material von sich aus ein dreidimensionales Netzwerk aus Josephson-Kontakten. „Spannenderweise werden die gesamten Eigenschaften unseres Qubits durch eine winzige Engstelle von nur 20 Nanometern dominiert. Dadurch wirkt es wie eine Lupe für mikroskopische Materialdefekte in supraleitenden Qubits und bietet eine vielversprechende Perspektive für deren Verbesserung“, ergänzt Simon Günzler vom IQMT.

Aus einem Guss: Qubits vollständig aus granularem Aluminium

Die vom Team entwickelten Qubits sind eine fundamentale Weiterentwicklung eines bereits zuvor erprobten Ansatzes mit sogenannten Fluxonium-Qubits. Bei dieser Vorgängerversion wurden Teile aus granularem Aluminium und andere Teile konventionell aus Aluminium hergestellt. Bei der aktuellen Arbeit gingen die Forschenden noch den entscheidenden Schritt weiter und stellten die kompletten Qubits aus granularem Aluminium her. „Als würde man einen Quantenschaltkreis einfach aus einem Metallfilm herausschneiden. Dadurch ergeben sich ganz neue Möglichkeiten für die industrielle Herstellung mit Ätzverfahren und erweiterte Einsatzbereiche für die Qubits, zum Beispiel in starken Magnetfeldern“, so Dennis Rieger vom Physikalischen Institut des KIT.

Diese Erfindung haben die Autoren auch durch ein europäisches Patent geschützt. (rli)

Originalpublikation:
D. Rieger, S. Günzler, M. Spiecker, P. Paluch, P. Winkel, L. Hahn, J. K. Hohmann, A. Bacher, W. Wernsdorfer, and I. M. Pop: Granular Aluminium Nanojunction Fluxonium Qubit. Nature Materials, 2022. DOI: 10.1038/s41563-022-01417-9

Externer Link: www.kit.edu

Künstliche Intelligenz für Ahle-Wurst-Herstellung

Pressemitteilung der Universität Kassel vom 23.11.2022

Wer in naher Zukunft eine Ahle Wurst kauft, Nordhessens Spezialität, der könnte ein Lebensmittel in der Hand halten, das mithilfe von künstlicher Intelligenz (KI) produziert wurde. Informatiker der Universität entwickeln gemeinsam mit einer Caldener Fleischerei ein Verfahren, in dem eine KI die Reifung der Wurst überwacht und die Pflege in der Reifekammer steuert. Das Projekt soll auf die Produktion anderer Lebensmittel übertragbar sein und das hessische Handwerk stärken.

Die Ahle Wurst ist nordhessisches Kulturgut und hat Kultstatus. Für die echte „Stracke“ oder „Runde“ kommt es nicht nur auf Rezept und Verarbeitung an, es braucht auch eine aufwändige und mehrere Wochen, oft Monate lange Reifung in speziellen Wurstekammern. Anders als in der Industrie erfolgt die traditionelle Reifung in einem natürlichen Umfeld, oft in Lehmkammern auf den Dachböden historischer nordhessischer Fachwerkhäuser.

Das Handwerk sorgt für ein charakteristisches, besonders intensives Aroma der Wurst, ist aber gleichzeitig mit viel Überwachung und Pflege verbunden. So wird jede reifende Wurst regelmäßig auf den Reifegrad geprüft und gegebenenfalls umgelagert. Eine gewisse Menge an Reifeschimmel ist wünschenswert, zu viel Schimmelbelag muss von den Mitarbeitern abgewaschen werden. Hier kommt es stark auf die Erfahrung der Mitarbeiterinnen und Mitarbeiter an.

Übertragbar auf anderes Handwerk

In Kooperation mit der Landfleischerei Koch in Calden entwickeln Informatiker der Universität Kassel nun ein System, im dem eine Künstliche Intelligenz Nase und Augen der erfahrenen Fleischer unterstützt. Sensoren ermitteln dafür zunächst Werte wie Temperatur und Luftfeuchtigkeit in der Kammer sowie Wassergehalt oder PH-Wert der Würste und überspielen die Daten an einen zentralen Rechner. Ein Programm errechnet dann die nötigen Schritte und übermittelt sie an die Fachkräfte: Muss gelüftet werden? Ist es zu warm oder zu kalt, zu feucht oder zu trocken? Muss die Wurst gewaschen werden? Dabei erhält das System Rückmeldungen von den Fachleuten, die es wiederum einspeist und verarbeitet. So entwickelt sich das Programm weiter.

Prof. Dr. Klaus David, der an der Universität Kassel das Fachgebiet Kommunikationstechnik leitet und das Projekt steuert, erläutert: „Die Wurstproduktion ist ein gutes Reallabor, um Anwendungsmöglichkeiten von KI und Maschinellem Lernen für das Lebensmittel-Handwerk zu entwickeln. Ähnliche Systeme sind denkbar etwa für handwerkliche Bäckereien oder Käsereien.“

Katharina Koch, Inhaberin der Landfleischerei Koch, bestätigt den Nutzen für das Handwerk: „Funktioniert das System, kann das nicht nur die Qualität der Produkte erhöhen, sondern auch dem Fachkräftemangel entgegenwirken.“

Das Projekt wird im Rahmen einer Machbarkeitsstudie durch das Förderprogramm Distr@l der Hessischen Staatskanzlei im Bereich der Ministerin für Digitale Strategie und Entwicklung mit rund 100.000 Euro gefördert. Es läuft über ein Jahr.

Externer Link: www.uni-kassel.de

Simuliertes Gehirn-Modell erstmals zum Sehen gebracht

Presseaussendung der TU Graz vom 02.11.2022

Forscher der TU Graz haben erstmals auf einem detaillierten Modell des Gehirns der Maus die Funktion des Sehens nachgebildet. Bisher konnten Gehirn-Strukturen zwar modelliert werden, es war aber nicht möglich, gezielte Funktionen auszuführen.

„Das bahnbrechende an unserem neuesten Modell ist, dass wir unsere Gehirn-Simulation erstmals bestimmte Funktionen – in unserem Fall Sehen – ausführen lassen können“, erklärt TU Graz-Neuroinformatiker Wolfgang Maass, der gemeinsam mit seinen PostDocs Guozhang Chen und Franz Scherr gerade das wissenschaftliche Paper „A data-based large-scale model for primary isual cortex enables brain-like robust and versatile visual processing“ veröffentlicht hat. Als Ergebnis ihrer Arbeit erwarten sich die Forschenden nun eine neue wissenschaftliche Methode, die künftig in der Forschung zum Einsatz kommt.

Zentrale Funktion in künstlichen neuronalen Netzwerken

Die Sehfunktion haben die Forschenden deswegen als Forschungsgegenstand ausgewählt, weil sie eine der zentralen Funktionen künstlicher Intelligenz ist – etwa im autonomen Fahren oder der Bildverarbeitung müssen die Algorithmen die mittels Sensoren erfassten Daten über ihre Umgebung interpretieren und aus ihnen lernen. Die Arbeit des TU Graz-Teams baut auf jahrzehntelangen Studien des renommierten Allen Institute for Brain Science in Seattle auf, das sich wissenschaftlich unter anderem der Entschlüsselung des visuellen Cortex von Mäusen verschrieben hat. „Wir haben diese Daten in ein simuliertes Netzwerk von biologischen Neurone – also in ein Computer-Modell von einem Teil des Gehirns – übersetzt und konnten mit diesem biologischen Modell die Sehfunktion nachbilden“, so Maass. Das so simulierte neuronale Netzwerk kann die wichtigsten visuellen Aufgaben einer Maus erfüllen und ist gegenüber Störungen äußerst robust. Ein nächster Schritt wird nun sein, die Unterschiede zwischen der biologischen Sehfunktion der Simulation und der Sehfunktion von künstlichen neuronalen Netzwerken zu untersuchen.

Dass sich Forschende das Gehirn zum Vorbild nehmen, ist nicht neu, aber umso effektiver. Neuronale Netze des Gehirns sind nicht nur besonders leistungsfähig, sondern auch enorm energieeffizient. Neurone sind nicht ständig aktiv, sondern „feuern“ nur, wenn sie für eine Aufgabe gebraucht werden. Künstliche neuronale Netzwerke bilden dieses Vorgehen nach. Sie sind allerdings nur „gehirninspiriert“ und sowohl deren Neurone als auch die Architektur des Netzwerks sind ganz anders als im Gehirn. Daher sind biologische Simulations-Modelle wichtig, mit denen Forschende das Gehirn besser verstehen wollen. Diese Erkenntnisse wiederrum können aber in der Computertechnik eingesetzt werden, wie Wolfgang Maass anmerkt: „Wir starten gerade einen Pilotversuch mit dem Prozessorhersteller Intel und bauen unsere biologischen Modelle in seine neuromorphen Chips ein, um zu beobachten, ob sie dadurch wirklich energieeffizienter werden.“

Detailliertes Modell statt Approximation

Bisher wurden Funktionsweisen lediglich an kleinen Modellen – Approximationen des Gehirns mit geringer Detailtreue – nachgebildet. Dank großzügiger Rechenzeit an einem von Europas leistungsfähigsten Supercomputern in Jülich und Fortschritten im Chipdesign sowie der Software konnten die Grazer Forscher aber mit dem detaillierten biologischen Modell rechnen. „Wir haben gezeigt, dass dies mit dem heutigen Stand der Technik möglich ist und erwarten uns davon einen neuen Trend in der Forschung, der uns einen Schritt näher zum Verstehen des Gehirns bringt.“ (Birgit Baustädter)

Originalpublikation:
A data-based large-scale model for primary visual cortex enables brain-like robust and versatile visual processing
Chen Guozhang, Franz Scherr, Wolfgang Maass, TU Graz
Science Advances
DOI: 10.1126/sciadv.abq7592

Externer Link: www.tugraz.at