Impfung durch Eincremen: Wie Impfstoffe ohne Nadelstich in den Körper gelangen

Pressemitteilung der Universität des Saarlandes vom 26.09.2014

Impfstoffe werden traditionell über Nadeln in den Körper gebracht. Nach alternativen Methoden wird bereits seit einigen Jahren gesucht. Wissenschaftler des Helmholtz-Instituts für Pharmazeutische Forschung Saarland (HIPS) und des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig konnten nun zeigen, dass es mithilfe nanotechnologischer Formulierungen möglich ist, Impfstoffe über die Haut zu verabreichen. Dadurch könnten die bisherige Impfmethoden erheblich verbessert werden. Ihre Ergebnisse publizierten die Forscher in der Fachzeitschrift „Nanomedicine“.

Die herkömmliche Impfung per Injektion hat verschiedene Nachteile. Dabei geht es allerdings nicht in erster Linie um die Angst vor der Nadel, die manche Menschen vor einer Impfung zurückschrecken lässt, sondern vor allem um die mit der Herstellung und Anwendung verbundene Logistik. „Es ist sehr aufwendig und teuer, solche Impfstoffe zu produzieren, und für die Anwendung braucht es geschultes Personal“, sagt Prof. Claus-Michael Lehr, Leiter der Abteilung „Wirkstoff-Transport“ am HIPS. „Gerade in Entwicklungsländern ist das ein Problem.“ Aus diesem Grund suchen er und seine Kollegen vom HZI bereits seit einiger Zeit nach neuen Impfmethoden.

Nun haben die Wissenschaftler herausgefunden, dass es tatsächlich möglich ist, Impfstoffe über die Verankerung der Haare in der Haut, die sogenannten Haarfollikel, in den Körper zu bringen, um eine Immunantwort auszulösen. Dazu nutzen die Forscher Nanopartikel als Verpackung für die Impfstoffe. Diese lagern sich in Hautfältchen und den Haarfollikelöffnungen ab und können von dort durch die Haut gelangen, ohne diese zu verletzen. Da die Follikel nicht vollständig von Hornhaut umgeben sind, steht diese den Nanotransportern nicht im Wege: Die Bahn ist also frei.

Um allerdings tatsächlich eine Immunantwort hervorzurufen, muss eine ausreichende Menge des Impfstoffes in den Körper gelangen. „Das ist über die Nanopartikel nicht möglich“, sagt Prof. Carlos Alberto Guzman, Leiter der Abteilung „Vakzinologie und angewandte Mikrobiologie“ am HZI. „Wir lösen dieses Problem, indem wir neben dem Wirkstoff auch entsprechende am HZI entwickelte Adjuvantien mit den Nanotransportern verabreichen. Durch diese Zusatzstoffe wird die Immunantwort im Körper verstärkt.“ So werde eine entsprechende Reaktion im Körper ausgelöst, obwohl die Menge an Antigenen eigentlich nicht ausreichend dafür ist.

„Das zeigt, dass es möglich ist, Impfstoffe zu entwickeln, die ganz ohne Injektion angewendet werden könnten“, erläutert Prof. Lehr. „Im Idealfall könnte zukünftig eine Hautcreme aufgetragen werden und man wäre geimpft.“ Entsprechende Cremes wären deutlich günstiger in der Herstellung, und vor allem wäre kein geschultes Personal erforderlich, um sie effektiv einzusetzen. Gerade bei der Eindämmung von Epidemien in Entwicklungsländern, wie aktuell Ebola, würden solche Impfstoffe einen erheblichen Fortschritt bedeuten. Neben Impfungen zum Schutz vor Infektionskrankheiten wäre ein Einsatz der Methode auch bei Desensibilisierungs-Therapien bei Allergien denkbar.

Originalpublikation:
Mittal Ankit, Schulze Kai, Ebensen Thomas, Weißmann Sebastian, Hansen Steffi, Lehr Claus Michael, Guzman Carlos A.: Efficient nanoparticle-mediated needle-free transcutaneous vaccination via hair follicles requires adjuvantation, Nanomedicine: Nanotechnology, Biology, and Medicine (2014), doi:10.1016/j.nano.2014.08.009

Externer Link: www.uni-saarland.de

Kleinstes Schweizer Kreuz – gebaut aus 20 Atomen

Medienmitteilung der Universität Basel vom 15.07.2014

Die Atom-Positionierung hat ein neues Level erreicht: Zusammen mit Forschungsteams aus Finnland und Japan gelang es Physikern der Universität Basel, einzelne Atome auf einer elektrisch isolierenden Oberfläche bei Raumtemperatur zu positionieren. Die Forscher formten dabei das wohl kleinste Schweizer Kreuz und haben damit einen wichtigen Schritt in Richtung einer neuen Generation atomarer Speichermedien gemacht. Die Fachzeitschrift «Nature Communications» hat ihre Resultate veröffentlicht.

Seit den 1990er Jahren können Physiker direkten Einfluss auf Oberflächenstrukturen nehmen, indem sie einzelne Atome gezielt bewegen und positionieren. Eine Anzahl von Atom-Positionierungen konnten in der Vergangenheit auf leitenden oder halbleitenden Oberflächen hauptsächlich bei sehr tiefen Temperaturen durchgeführt werden. Dennoch stellt die Herstellung von künstlichen Strukturen auf Isolatoren bei Raumtemperatur bis heute eine grosse Herausforderung dar. Frühere Versuche stellten sich als unkontrollierbar heraus und lieferten nicht die gewünschten Resultate.

Einem internationalen Team um die Forscher Shigeki Kawai und Ernst Meyer vom Departement Physik der Universität Basel gelang nun zum ersten Mal eine systematische Atom-Manipulation auf einer isolierenden Oberfläche bei Raumtemperatur durchzuführen. Mit Hilfe der Spitze eines Rasterkraftmikroskops konnten sie einzelne Brom-Atome auf einer Natriumchlorid-Oberfläche bewegen und so ein Schweizer Kreuz formen. Das winzige Kreuz besteht aus 20 Brom-Atomen und entstand durch den Austausch von Chlor- mit Brom-Atomen. Es misst gerade mal 5.6 Nanometer im Quadrat und stellt damit die bisher grösste Anzahl erfolgreicher Atom-Manipulationen bei Raumtemperatur dar.

Neue Speichermethoden

Mit Hilfe von Computersimulationen und theoretischen Berechnungen konnten die Wissenschaftler neue Manipulationsmechanismen zur Herstellung von einzigartigen atomaren Strukturen identifizieren. Die Studie zeigt demnach, wie systematische Atom-Manipulation bei Raumtemperatur möglich ist und stellt damit einen wichtigen Schritt dar in Richtung der Herstellung einer neuen Generation von elektromechanischen Systemen, Speichermedien und Logikschaltkreisen.

Originalbeitrag:
Shigeki Kawai, Adam S. Foster, Filippo Federici Canova, Hiroshi Onodera, Shin-ichi Kitamura, and Ernst Meyer
Atom manipulation on an insulating surface at room temperature
Nature Communications | doi: 10.1038/ncomms5403

Externer Link: www.unibas.ch

Dünnstmögliche Membran hergestellt

Medienmitteilung der ETH Zürich vom 17.04.2014

Eine neue Nano-Membran aus dem «Wundermaterial» Graphen ist extrem leicht und atmungsaktiv. Nicht nur eine neue Generation von funktioneller Regenbekleidung, sondern auch ultraschnelles Filtrieren könnte damit möglich werden. Die Membran der ETH-Forschenden ist so dünn, wie es technisch nur geht.

Forschende haben eine stabile poröse Membran hergestellt, die dünner ist als ein Nanometer. Das ist hunderttausendmal weniger als der Durchmesser eines menschlichen Haares. Die Membran besteht aus zwei Schichten des oft als Wundermaterial gepriesenen Graphen, einem zweidimensionalen Film aus Kohlenstoffatomen, in das die Wissenschaftler unter der Leitung von Hyung Gyu Park, Professor am Departement für Maschinenbau und Verfahrenstechnik der ETH Zürich, winzige Poren von genau definierter Grösse ätzten.

So ist die Membran durchlässig für kleinste Moleküle. Grössere Moleküle und Partikel hingegen können sie entweder nur langsam oder gar nicht passieren. «Mit der Dicke von nur zwei Kohlenstoffatomen ist dies die dünnste technisch machbare poröse Membran überhaupt», sagt ETH-Doktorand Jakob Buchheim, einer der Erstautoren der Studie, welche die ETH-Forscher zusammen mit Wissenschaftlern der Empa und einem Forschungslabor von LG Electronics durchführten und in der Fachzeitschrift «Science» veröffentlichten.

Dereinst könnte die ultradünne Graphenmembran eine ganze Reihe von Anwendungen finden, etwa in funktioneller Regenbekleidung. «Unsere Membran ist nicht nur sehr leicht und flexibel, sondern vor allem tausendmal atmungsaktiver als Goretex», sagt Kemal Celebi, Postdoc in Parks Gruppe und ebenfalls Erstautor der Studie. Denkbar wäre auch eine Anwendung um Gasgemische in ihre Bestandteile aufzutrennen oder um Verunreinigungen aus Flüssigkeiten zu filtrieren. Denn in der Studie haben die Wissenschaftler erstmals zeigen können, dass sich Graphenmembranen überhaupt eignen, um Wasser zu filtrieren. Schliesslich können sich die Wissenschaftler den Einsatz der Membran in Geräten zur präzisen Messung und Charakterisierung Strömungsphänomenen von Gasen und Flüssigkeiten auf der Nanoebene vorstellen.

Durchbruch in der Nanofabrikation

Den Forschenden gelang es nicht nur, ihr Ausgangmaterial, eine zweischichtige Graphen-Folie, mit einer aussergewöhnlich hohen Reinheit herzustellen, sondern sie konnten auch die Poren mit hoher Genauigkeit in den Graphen-Film ätzen. Dazu verwendeten sie die sogenannte Ionenfeinstrahltechnik (FIB), die auch bei der Herstellung von Halbleitern zum Einsatz kommt. Dabei wird ein Strahl von Helium- oder Galliumionen hochpräzise gesteuert, um Material wegzuätzen. So konnten die Wissenschaftler Poren in unerreichter Präzision und der gewünschten Anzahl und Grösse in das Graphen ätzen. Dieser Arbeitsschritt dauerte nur wenige Stunden, früher brauchte es dazu mehrere Tage. «Die Herstellung der Membran war nur dank dieses Durchbruchs in der Nanofabrikation möglich», sagt Ivan Shorubalko, Wissenschaftler an der Empa, der an der Arbeit beteiligt war.

Um die Präzision zu erreichen, mussten die Wissenschaftler mit zweischichtigem Graphen arbeiten. «Eine solche Membran mit nur einer Graphenschicht herzustellen, wäre mit unserer Methode nicht möglich gewesen. Denn in der Praxis ist Graphen nicht perfekt», sagt Park. Das Material kann laut dem Wissenschaftler gewisse Unregelmässigkeiten in der Wabenstruktur der Kohlenstoffatome aufweisen. Hin und wieder fehlen einzelne Atome in der Struktur. Dies beeinträchtigt nicht nur die Stabilität des Materials, auch wäre es unmöglich, an einer Fehlstelle eine hochpräzise Pore zu ätzen. Die Forschenden lösten dieses Problem, indem sie zwei Graphenschichten übereinanderlegten. Die Wahrscheinlichkeit, dass auf diese Weise zwei Fehlstellen genau übereinander zu liegen kommen, sei sehr gering, sagt Park.

Schnellstmögliche Filtration

Ein zentraler Vorteil der winzigen Dimension: Je dünner eine Membran ist, desto geringer ist ihr Widerstand, und desto höher ist die Energieeffizienz. «Mit solchen Membranen so dünn wie einzelne Atome können wir die Durchflussrate für eine gegebene Porengrösse maximieren. Ausserdem glauben wir, dass unsere Membran die denkbar schnellste Filtration ermöglicht», sagt Celebi.

Bis solche Anwendungen im industriellen Massstab oder die Herstellung von funktioneller Regenbekleidung möglich sind, muss der Herstellungsprozess allerdings weiterentwickelt werden. Für die Erforschung der Grundlagen haben die Forscher mit kleinsten Membranstücken von weniger als einem Hundertstel Quadratmillimeter gearbeitet. Es wird daher künftig darum gehen, grössere Membranflächen herzustellen und damit verschiedene Filtrationstechniken zu erforschen.

Publikation:
Celebi K, Buchheim J, Wyss RM, Droudian A, Gasser P, Shorubalko I, Kye JI, Lee C, Park HG: Ultimate Permeation across Atomically Thin Porous Graphene. Science, 2014, 344: 289-344, doi: 10.1126/science.1249097

Externer Link: www.ethz.ch

Kämme aus Licht beschleunigen Kommunikation

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 14.04.2014

Forscher setzen optische Frequenzkammquellen auf einem Silizium-Chip zur Datenübertragung im Terabit-Bereich ein

Datenraten von einigen Terabit pro Sekunde über Hunderte Kilometer ermöglichen nun miniaturisierte optische Frequenzkammquellen. Wie die Hochgeschwindigkeitskommunikation mit kohärenten Übertragungsverfahren funktioniert, zeigen Wissenschaftler des Karlsruher Instituts für Technologie (KIT) und der Schweizer École Polytechnique Fédérale de Lausanne (EPFL) in einer Studie in der Zeitschrift „Nature Photonics“. Ihre Ergebnisse können dazu beitragen, die Datenübertragung in großen Rechenzentren und weltweiten Kommunikationsnetzen zu beschleunigen. (DOI: 10.1038/NPHOTON.2014.57.)

Die Menge der weltweit erzeugten und übertragenen Daten wächst stetig. Mithilfe von Licht lassen sich Daten schnell und effizient übertragen. Die optische Kommunikation nutzt Glasfasern, durch die optische Signale weite Entfernungen praktisch verlustfrei überbrücken können. Sogenannte Wellenlängen-Multiplexverfahren ermöglichen es dabei, auf einem Lichtwellenleiter mehrere Datenkanäle unabhängig voneinander zu übertragen und damit extrem hohe Datenraten zu erreichen. Dazu wird die Information auf Laserlicht unterschiedlicher Wellenlängen, das heißt verschiedener Farben, kodiert. Allerdings ist die Skalierbarkeit solcher Systeme begrenzt, da derzeit für jeden Übertragungskanal ein eigener Laser benötigt wird. Zudem ist es schwierig, die Wellenlängen dieser Laser zu stabilisieren, sodass zusätzliche Sicherheitsabstände zwischen den Datenkanälen eingeplant werden müssen, um gegenseitige Störungen zu vermeiden.

In der nun in „Nature Photonics“ vorgestellten Studie setzten Wissenschaftler des KIT gemeinsam mit Kollegen der EPFL einen miniaturisierten Frequenzkamm als optische Quelle ein. Sie erreichen dabei einen Datenstrom von 1,44 Terabit pro Sekunde, der über eine Entfernung von 300 Kilometern übertragen wird – das entspricht dem Datenaufkommen von mehr als 100 Millionen Telefongesprächen. Die Studie zeigt erstmals, dass sich miniaturisierte optische Frequenzkammquellen zur kohärenten Datenübertragung im Terabit-Bereich eignen.

Optische Frequenzkämme, für deren Erforschung John Hall und Theodor W. Hänsch 2005 den Physik-Nobelpreis erhielten, bestehen aus tausenden von dicht benachbarten Spektrallinien, deren Abstände genau gleich und genau bekannt sind. Eingesetzt werden Frequenzkämme bis jetzt hauptsächlich für hochgenaue optische Atom-Uhren oder als optisches Lineal, um Frequenzen hochpräzise zu messen. Für den massenhaften Einsatz in der Datenübertragung waren bisherige Frequenzkammquellen allerdings nicht geeignet, da sie zu groß und zu teuer waren, und da der Abstand der Linien in konventionellen Frequenzkämmen oftmals zu gering ist und nicht dem in der Telekommunikation verwendeten Kanalabstand von typischerweise mehr als 20 GHz entspricht.

In ihrer gemeinsamen Studie haben die Forscher des KIT und der EPFL nun gezeigt, dass sich integriert-optische Frequenzkammquellen mit großen Linienabständen auf nanophotonischen Chips realisieren und zur Übertragung großer Datenmengen einsetzen lassen. Dazu nutzen sie einen optischen Mikroresonator aus Silizium-Nitrid, in den Laserlicht über einen Nanowellenleiter eingekoppelt und sehr lange gespeichert wird. „Aufgrund der hohen Lichtintensität im Resonator entstehen dabei über den sogenannten Kerr-Effekt aus einem einzigen Laserstrahl viele Spektrallinien, die zusammengenommen einen Frequenzkamm ergeben“, erklärt Jörg Pfeifle, der das Übertragungsexperiment am KIT durchgeführt hat. Diese Methode zur Erzeugung von sogenannten Kerr-Frequenzkämmen wurde im Jahr 2007 von Tobias Kippenberg von EFPL entdeckt. Kerr-Kämme zeichnen sich durch große optische Bandbreite aus und erlauben es, Linienabstände zu realisieren, die den Anforderungen der Datenübertragung entsprechen. Die notwendigen Mikroresonatoren werden mit aufwendigen Nanofabrikationsmethoden im Zentrum für Mikro-Nanotechnologie der EPFL hergestellt. „Wir gehören weltweit zu den wenigen universitären Forschungsgruppen, die solche Proben überhaupt herstellen können“, kommentiert Kippenberg. Finanziert wurden die Arbeiten mit Mitteln des Schweizer Programms „NCCR Nanotera“ sowie der Europäischen Weltraumagentur ESA.

Die Karlsruher Forscher vom Institut für Photonik und Quantenelektronik (IPQ) und vom Institut für Mikrostrukturtechnik (IMT) setzen einen solchen Kerr-Frequenzkamm nun erstmalig zur Hochgeschwindigkeitsdatenübertragung ein. „Der Einsatz von Kerr-Kämmen könnte vor allem die Kommunikation innerhalb von Datenzentren revolutionieren, da besonders dort kompakte Übertragungssysteme mit hoher Kapazität benötigt werden“, sagt Christian Koos, der die Arbeiten im Rahmen eines vom Europäischen Forschungsrat (ERC – European Research Council) finanzierten Starting Independent Researcher Grants koordiniert. „Wir stehen dabei erst am Anfang – im gegenwärtigen Experiment nutzen wir lediglich 20 Linien des Frequenzkamms. Das lässt sich noch weiter steigern; neue Experimente sind bereits geplant.“ Die Arbeiten werden durch die Alfried Krupp von Bohlen und Halbach-Stiftung unterstützt. (or)

Publikation:
Joerg Pfeifle, Victor Brasch, Matthias Lauermann, Yimin Yu, Daniel Wegner, Tobias Herr, Klaus Hartinger, Philipp Schindler, Jingshi Li, David Hillerkuss, Rene Schmogrow, Claudius Weimann, Ronald Holzwarth, Wolfgang Freude, Juerg Leuthold, Tobias J. Kippenberg, Christian Koos: Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics (2014). DOI: 10.1038/NPHOTON.2014.57.

Externer Link: www.kit.edu

Zellulärer Kompass erfolgreich transplantiert

Presseinformation der LMU München vom 24.02.2014

Magnetbakterien orientieren sich mithilfe eines inneren Kompasses. Nun ist es gelungen, die für die Synthese dieses Organells zuständigen Gene komplett in einen anderen Organismus einzuschleusen – ein großer Fortschritt für die Biotechnologie.

Magnetbakterien nutzen das Magnetfeld der Erde, um im Schlamm von Gewässern oben und unten zu unterscheiden und für sie optimale Lebensbereiche aufzusuchen. Dabei helfen ihnen einzigartige Organellen, die Magnetosomen. Magnetosomen bestehen aus winzigen Magnetitkristallen, die von einer biologischen Membran umhüllt sind. Diese sind in regelmäßigen Ketten angeordnet und bilden einen zellulären Mini-Kompass, der dafür sorgt, dass die ganze Bakterienzelle wie eine Kompassnadel im Erdmagnetfeld ausgerichtet wird.

Das Magnetosom ist eine der kompliziertesten Strukturen, die aus Bakterienzellen bekannt sind. Seine Synthese erfordert viele verschiedene Schritte, die genetisch gesteuert werden. „Wir konnten in den letzten Jahren nachweisen, dass mindestens 30 spezielle Gene beteiligt sind, die in einem bestimmten Abschnitt des Genoms geclustert sind“, sagt der LMU-Mikrobiologe Dirk Schüler, der mit seiner Arbeitsgruppe seit mehr als 15 Jahren Magnetbakterien erforscht. „Bisher war aber unklar, ob noch weitere, bisher unbekannte Genfunktionen für die Bildung des Magnetosoms erforderlich sind“.

Biotechnologisch interessant, aber schwer kultivierbar

Diese Frage ist auch für die Biotechnologie hoch interessant, weil Magnetosomen magnetische Nanopartikel darstellen, die mit ähnlich perfekten Eigenschaften bisher nicht für technische oder biomedizinische Anwendungen – etwa in der biomedizinischen Bildgebung – chemisch synthetisiert werden können. Die weitere Erforschung der biologischen Produktion der Magnetosomen stand allerdings bisher vor der Schwierigkeit, dass natürlich vorkommende Magnetbakterien entweder gar nicht oder nur unter großen Schwierigkeiten im Labor gezüchtet werden können.

Daher war es schon lange ein Traum vieler Wissenschaftler, die relevanten Gene komplett in andere, bessere kultivierbare Organismen zu übertragen. „Allerdings ist das methodisch ziemlich schwierig, weil die Zahl der zu übertragenden Gene ungewöhnlich groß ist“, erklärt Isabel Kolinko, die Erstautorin der Studie. Damit das Magnetosom gebildet werden kann, müssen zudem zahlreiche zelluläre Biosynthese-Schritte in der richtigen räumlichen und zeitlichen Reihenfolge ablaufen. Das erfordert eine genaue Steuerung. Außerdem war unklar, ob noch weitere, bisher unbekannte Genfunktionen erforderlich sind. Deswegen war es ungewiss, ob dieses Ziel je erreicht werden kann. Nun gelang den Wissenschaftlern der Durchbruch: Gemeinsam mit Kollegen vom Helmholtz-Institut für Pharmazeutische Forschung in Saarbrücken schleuste Schülers Team alle bekannten Magnetosomengene aus dem Magnetbakterium Magnetospirillum gryphiswaldense in das Photosynthese betreibende Bakterium Rhodospirillum rubrum ein.

Nanomagnete aus dem Bioreaktor

„Nach der Übertragung bildete R.rubrum Ketten magnetischer Kristalle, die denjenigen von M.gryphiswaldense entsprechen und sich wie bei diesem im Erdmagnetfeld ausrichten – damit haben wir erstmals demonstriert, dass die Transplantation eines so komplexen Biosynthesewegs in einen anderen Organismus möglich ist“, betont Schüler. Zudem beweist dieser Erfolg, dass die bisher bekannten 30 Gene für die Bildung von Magnetosomen ausreichen.

R.rubrum wählten die Wissenschaftler als Wirtsorganismus, weil sich dieses Bakterium im Vergleich zu den empfindlichen Magnetbakterien besser züchten lässt. Der neu entstandene Stamm ist mit seinen magnetischen Eigenschaften bereits jetzt biotechnologisch hoch interessant, da er voraussichtlich die Produktion von Magnetnanopartikeln erleichtert: Er ist schnellwüchsiger als M.gryphiswaldense und liefert größere Ausbeuten. Damit wird eine billigere Herstellung der Nanopartikel möglich.

„Noch bedeutsamer ist, dass es damit für die Zukunft sogar möglich erscheint, durch die gezielte Manipulation mit Methoden der synthetischen Biologie die Eigenschaften der biogenen Nano-Magnete noch zu verbessern, beziehungsweise Nanomagnete mit ganz neuen Eigenschaften herzustellen, etwa in Bezug auf deren Form, Größe, Zahl und magnetische Eigenschaften“, erklärt Schüler. Falls es gelingt, die erforderlichen Gene weiter einzugrenzen und anzupassen, könnten diese möglicherweise auch in Zellen höherer Organismen eingeschleust werden – und diese so magnetisieren. „Dies hätte vor allem für die wissenschaftliche Grundlagenforschung enormes Anwendungspotential, z.B. bei der experimentellen Manipulation von zellulären Prozessen und als zellulärer „Reporter“ für die Untersuchung mit bildgebenden Verfahren“, sagt Schüler. (göd)

Publikation:
Nature Nanotechnology 2014

Externer Link: www.uni-muenchen.de