Nano-Magnete reinigen Blut

Medienmitteilung der ETH Zürich vom 17.08.2010

Wissenschaftlern der ETH Zürich gelang es, Blut mit Hilfe von Nano-Magneten gezielt von Giftstoffen jeglicher Art zu reinigen. Das neue Verfahren ist vielversprechend. Kann die Methode in die Praxis umgesetzt werden, könnte sie dereinst schnell und effizient Menschen mit Vergiftungen retten.

Speziell präparierte Nano-Magnete mit einem Durchmesser von gerade mal 30 Nanometern (30 Millionstel Millimeter) könnten der Medizin zu einem grossen Durchbruch verhelfen. Inge Herrmann vom Institut für Chemie und Bioingenieurwissenschaften der ETH Zürich hat in ihrer Doktorarbeit unter der Leitung von Professor Wendelin Stark und in Zusammenarbeit mit dem Universitätsspital Zürich die winzigen Magnete so ausgestattet, dass sie krank-machende Stoffe an sich binden.

Die Oberfläche der Nano-Magnete wurde so mit Molekülen beschichtet, dass sie spezifisch einen krankmachenden Stoff festhalten kann. Die Wissenschaftler testeten die Eigenschaften ihrer funktionalisierten Magnete in menschlichem Blut: In weniger als fünf Minuten hatten die Magnete den entsprechenden Giftstoff nahezu vollständig an sich gebunden. «Die Art der Molekülwechselwirkungen entscheidet darüber, wie schnell ein Giftstoff an den Magneten hängenbleibt», sagt Herrmann. Nach der erfolgreichen Prozedur „fischten“ die Wissenschaftler die Magnete mit einem Permanentmagneten aus dem Blut, den sie von aussen am Gefäss anbrachten.

Moleküle von beliebiger Grösse „fischen“

Aus dem Blut können die Magnete sowohl grosse als auch kleinste Moleküle an sich binden, welche in nur sehr geringen Konzentrationen vorkommen. Winzige, im Überschuss krank machende Moleküle wie Harnstoff, Kalium oder Kreatinin werden bislang mit Dialyse-, Filtrations- oder Absorptionsverfahren dem Blutkreislauf entzogen. Körpereigene krankheitsverursachende Moleküle, wie beispielsweise Entzündungmediatoren bei Blutvergiftungen, sind aber teilweise zu gross, als dass sie mit herkömmlichen Verfahren effizient abgeschieden werden können. Zudem gehen bei diesen Methoden lebenswichtige Moleküle wie Antikörper des Immunsystems oder Plasmaproteine verloren, weil sie die gleiche Molekülgrösse haben.

Keine negativen Auswirkungen auf das Blut

Im Gegensatz zu einer früheren Studie, die rund 45 Mal so viele Magnete verwendete und bei der die roten Blutkörperchen zerstört wurden, konnten die Wissenschaftler aus Zürich keine negativen Auswirkungen auf die Physiologie des Blutes feststellen. Weder die roten Blutkörperchen noch die Blutgerinnung wurden beeinträchtigt, so Beatrice Beck-Schimmer, Professorin am Physiologischen Institut und leitende Ärztin am Universitätsspital. Bedenken, dass die Magnete zu viel Eisen an das Blut abgeben könnten, räumt sie aus. Selbst wenn sich über die Hälfte der Magnete im Blut lösen sollten, wäre die dadurch freigesetzte Eisenmenge kleiner als jene, die bei einem Eisenmangel verabreicht wird. Da die Nano-Magnete einerseits mit einer Kohlenstoffhülle ummantelt und andererseits sehr säure- und temperaturresistent sind, lösen sie sich freilich kaum im Blut. Ob das Verfahren an einem lebenden Organismus erfolgreich angewendet werden kann, soll in einem nächsten Schritt geprüft werden.

Veröffentlichung:
Herrmann IK et al.: Blood Purification Using Functionalized Core/Shell Nanomagnets, Small 2010, 6, 1388-1392. DOI: 10.1002/smll.201000438

Externer Link: www.ethz.ch

Mit höchster Konzentration ins Ziel

Presseinformation der LMU München vom 10.08.2010

Nanopartikel schleusen Wirkstoff in Krebszellen ein

Krebszellen vermehren sich unkontrolliert und bedrohen so gesundes Gewebe. Ein Weg gegen ihre Ausbreitung könnte in Zukunft direkt über das Innere der kranken Zellen führen. In enger Zusammenarbeit ist es drei Arbeitsgruppen der Ludwig-Maximilians-Universität (LMU) München und des Exzellenzclusters Nanosystems Initiative Munich (NIM) gelungen, den Wirkstoff Colchicin in konzentrierter Form mit Hilfe von Nanopartikeln direkt in Zellen einzuschleusen. Colchicin hemmt die Zellteilung und somit die Vermehrung von Krebszellen. Als Grundlage dienten den Forschern der LMU winzige Silikatpartikel mit einem Durchmesser von rund 50 Nanometern (1 Nanometer = 1 Milliardstel Meter). Die Partikel sind in dieser Größe klein genug, um eine Zellmembran zu durchdringen und aufgrund ihrer porösen Struktur können Wirkstoffe wie Colchicin gut absorbiert werden. Damit der Wirkstoff nicht schon vor seinem Ziel auf dem Weg durch den Körper freigesetzt wird, entwickelten die Wissenschaftler eine Art Schutzhülle, die dies verhindert. Mit nur einem Behandlungsschritt schafften sie es, die Partikel mit einer Doppelschicht aus Lipidmolekülen zu überziehen, die die Wirkstoffe erst im Zellinneren wirklich entweichen lässt. Das Prinzip sei universell einsetzbar, erklärt Professor Bein: „Colchicin dient hier als ein Beispiel für zahlreiche andere Wirkstoffe, die auf diese Weise in Zellen eingeschleust werden könnten.“

Nanopartikel sind so klein, dass sie über die Membran, die die natürliche Barriere einer Zelle bildet, in deren Innenraum eindringen können. Diese Fähigkeit könnte in Zukunft gerade für die Behandlung von Krebszellen große Chancen bieten. In ersten Versuchen wurde bereits gezeigt, dass die mit Wirkstoffen beladenen Partikel diese gezielt in die befallenen Zellen transportieren. Die benötigte Medikamentendosis könnte dadurch deutlich verringert und damit auch mögliche unerwünschte Nebenwirkungen reduziert werden. Entscheidend hierfür ist jedoch, dass die Wirkstoffe bis zum Eintritt in die Zelle im Nanopartikel verbleiben.

LMU-Wissenschaftler aus den Arbeitsgruppen der Professoren Joachim Rädler (Fakultät für Physik), Christoph Bräuchle und Thomas Bein (beide Department Chemie) entwickelten gemeinsam eine Methode, um die Wirkstoffe in den Nanoteilchen zu halten. Dazu gaben sie die Partikel in eine alkoholische Lösung mit Lipid-Molekülen und fügten schrittweise Wasser hinzu. Mit steigendem Wassergehalt bildeten die Lipide von selbst eine Hülle um die Partikel in Form einer Lipid-Doppelschicht. Wie dicht dieser Überzug ist, zeigte ein Test mit Farbstoffmolekülen. Statt mit einem Wirkstoff beluden die Wissenschaftler hierfür die Nanopartikel mit einem Fluoreszenzfarbstoff und gaben sie in eine Küvette mit Wasser. Während die unpräparierten Nanopartikel ohne Lipidhülle nach einer Stunde den Großteil der Farbmoleküle nach außen abgegeben hatten, ließ sich im Wasser des zweiten Ansatzes mit umhüllten Partikeln keinerlei Farbstoff nachweisen. Colchicin konnte durch die Lipidschicht in parallelen Versuchen nicht vollständig zurückgehalten werden, Spuren des Wirkstoffes fanden sich im Medium außerhalb der Partikel. Der größte Teil des Medikamentes diffundierte jedoch erst nach dem Eintritt in die Zielzelle und konnte dort seine wachstumshemmende Wirkung entfalten.

„Unsere Ergebnisse zeigen, dass der Verschluss von porösen Nanopartikeln mit Lipiden ein effektives Konzept zur Beladung mit Wirkstoffen ist. Dies ermutigt uns, auch andere pharmazeutische Wirkstoffe auf diese Weise in Zellen zu transportieren und deren Wirksamkeit zu untersuchen. Wir sehen hier ein großes Potenzial für die gezielte Freisetzung von Medikamenten, “ so Professor Bein. (NIM/bige)

Publikation:
„Colchicine-loaded lipid bilayer-coated 50 nm mesoporous nanoparticles efficiently induce microtubule depolymerization upon cell uptake“,
Valentina Cauda, Hanna Engelke, Anna Sauer, Dephine Arcizet, Christoph Bräuchle, Joachim Rädler and Thomas Bein.
Nano Letters 2010, 10, S. 2484-2492

Externer Link: www.uni-muenchen.de

Nano-Röhrchen als Spinfilter

Pressemitteilung der Universität Regensburg vom 02.08.2010

Alle Elektronen tragen ein magnetisches Moment, Spin genannt, das grundsätzlich in zwei Richtungen zeigen kann. Setzt man geeignete Nano-Röhrchen aus Kohlenstoff einem hohen Magnetfeld aus, so lassen sie bei einem bestimmten Wert nur Elektronen mit einer Spinrichtung durchfließen. Erhöht man das Magnetfeld weiter, so fanden Wissenschaftler von Forschungszentrum Dresden-Rossendorf (FZD) und den Universitäten Regensburg und Delft nun heraus, so werden nur Elektronen mit der anderen Spinrichtung durchgelassen. Dieser überraschende Effekt wurde erstmals beobachtet und hat seinen Grund in den exotischen elektronischen Eigenschaften der für neuartige Speichertechnologien interessanten Röhren.

Die untersuchten Nano-Röhren bestehen aus aufgerolltem Graphen, eine genau eine Atomlage starke Schicht aus Graphit – das ist das gleiche Material, aus dem auch Bleistiftminen gemacht werden. Abhängig davon, wie das Graphen-Blatt zu einem Röhrchen aufgewickelt ist – gerade oder schief -, erhält man einen isolierenden Halbleiter oder ein leitfähiges Metall. Sowohl diese elektrischen als auch die mechanischen Eigenschaften der Röhren lassen sie für neue Technologien wie die Nano-Elektronik als besonders geeignet erscheinen. Bei Festigkeiten, die die von Stahl um ein Vielfaches übertrifft, können die Röhren hohe Ströme transportieren und die dabei entstehende Wärme hervorragend abführen.

Die Regensburger Wissenschaftler stellten verschiedenartige Nano-Röhren mit Durchmessern von rund eineinhalb Nanometern und Längen von einigen 10 Mikrometern her. Die Röhrchen mussten zudem elektrisch kontaktiert werden, um die elektronischen Eigenschaften in hohen Magnetfeldern untersuchen zu können. Die Experimente selbst fanden im Hochfeld-Magnetlabor Dresden des FZD statt und resultierten in verblüffenden Ergebnissen, die vor kurzem in der Fachzeitschrift Physical Review B veröffentlicht wurden.

Bei den winzigen Dimensionen der Nano-Röhren aus Kohlenstoff versagt die klassische Beschreibung und die Elektronen gehorchen quantenmechanischen Gesetzen. Die Elektronen können sich nur in ganz bestimmten Bahnen mit festgelegten Energien in den Röhren bewegen. Das Magnetfeld verschiebt nun die energetische Lage der Bahnen, sodass ein metallisches Nano-Röhrchen zum Isolator wird. Eine besondere Überraschung boten leitfähige, schräg aufgewickelte Nano-Röhrchen, denn dort ist die Bahn der Elektronen gekoppelt mit dem Spin. Das ist eine Art Drehung um die eigene Achse, die ein magnetisches Moment erzeugt. Der Spin der Elektronen kann genau zwei Richtungen bzw. Zustände einnehmen, weist also eine Schalt-Eigenschaft auf, die einen Einsatz für neuartige Speichertechnologien nahelegt. Dies will sich die so genannte Spintronik zunutze machen will, stößt aber auf ein grundlegendes Problem: es fehlt bisher ein Bauelement, mit dem die Elektronenspins beliebig polarisiert werden können, mit dem also die Richtung der Spins nach Wunsch eingestellt werden kann.

Den Wissenschaftlern aus Dresden, Regensburg und Delft gelang es nun, abhängig vom Magnetfeld alle Spins erst in die eine, dann in die andere Richtung zu schalten. Damit existiert erstmals eine verlässliche Methode, um in einem für die Nano-Elektronik geeigneten Material den Spin wunschgemäß einzustellen. Das schräg aufgerollte Nano-Röhrchen aus Kohlenstoff jedenfalls war bei drei und elf Tesla (Tesla ist ein Maß für die Magnetfeld-Stärke) jeweils anders spinpolarisiert, d. h. bei drei Tesla zeigten alle Spins in die eine, bei elf in die andere Richtung. Allerdings funktioniert der neue Spinfilter derzeit nur bei tiefen Temperaturen von wenigen Grad über dem absoluten Temperatur-Nullpunkt. Dieses Ergebnis ist umso erstaunlicher, als bisher davon ausgegangen wurde, dass die Kopplung der Elektronenspins an die Bahnbewegung bei Kohlenstoff-Nanoröhren kaum eine Bedeutung habe.

Kohlenstoff-Nanoröhren jedenfalls, so scheint es, steht eine bedeutende Zukunft bevor, was den Einsatz in unterschiedlichen technologischen Feldern anbelangt. Ein Feld, so legen die aktuellen Ergebnisse der Experimente im Hochfeld-Magnetlabor Dresden des FZD nahe, könnte die Spintronik sein, und zwar wenn es gelänge, Nano-Bauteile oder -Transistoren aus Kohlenstoff-Röhrchen herzustellen, die in Schaltkreisen zuverlässig funktionierten.

Publikation:
S.H. Jhang, M. Marganska, Y. Skourski, D. Preusche, B. Witkamp, M. Grifoni, H. an der Zant, J. Wosnitza, C. Strunk: Spin-orbit interaction in chiral carbon nanotubes probed in pulsed magnetic fields, in: Physical Review B 82, 041404(R) (2010).
DOI: 10.1103/PhysRevB.82.041404

Externer Link: www.uni-regensburg.de

Die Anziehungskraft des Goldes

Presseinformation der LMU München vom 07.07.2010

Elektrische Spannung reguliert Bindung von DNA

Zwei Wege führen in die Welt der winzigen Nanostrukturen: entweder zerteilen Wissenschaftler größere Verbindungen oder sie bauen die Gebilde aus kleinsten Bausteinen neu auf. Dazu müssen sie die einzelnen Elemente jedoch greifen und vor allem auf den Nanometer genau wieder ablegen können. Biophysiker der Ludwig-Maximilians-Universität (LMU) München haben nun eine Methode entwickelt, mit der sie einzelne DNA-Moleküle auf einer Goldelektrode exakt positionieren können, ohne dass sie die DNA oder die Goldoberfläche aufwendig vorbehandeln müssen. Die Wissenschaftler um Hermann Gaub, Professor für Biophysik an der LMU München und Mitglied des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM), nutzen dazu die Elektrochemie. Über die Spannung, die an der Goldelektrode anliegt, können die Forscher per Knopfdruck entscheiden, ob die DNA mit den Goldatomen eine chemische Bindung eingeht oder nicht: Bei negativer Spannung bindet das Molekül, bei positiver Spannung bindet es nicht. (Nature Chemistry online, 5. Juli 2010)

Für ihre Versuche nehmen die Biophysiker mit der Spitze eines Rasterkraftmikroskopes (AFM) kurze doppelsträngige DNA-Moleküle auf und berühren damit an der gewünschten Stelle die Goldelektrode. Vorsichtig wird anschließend die Spitze wieder von deren Oberfläche abgehoben. Um zu sehen, wie stark die Bindung zwischen DNA und Gold ist, messen die Wissenschaftler, wie viel Kraft notwendig ist, um das Molekül abzulösen. Diese Kräfte sind mit weniger als einem Nano-Newton (nN=10-9 Newton) äußerst klein und nur mit Hilfe des AFM nachweisbar. So ist beispielsweise die Haftkraft eines Spinnenbeines an einer Wand Bionik-Forschern zufolge rund drei Millionen Mal höher.

Bei ihren Experimenten stellten die Münchner Nanotechnologen fest, dass das von Natur aus negativ geladene DNA-Molekül erstaunlicherweise an eine ebenfalls negativ geladene Elektrode bindet. Von einer positiv geladenen Elektrode wird es jedoch abgestoßen. Die Erklärung liefern die Magnesium-Ionen, die in der Versuchslösung enthalten sind. Sie erleichtern durch ihre zweifach positive Ladung als eine Art Vermittler der DNA den Zugang zur Elektrode. Zudem können die DNA-Moleküle nur an reduzierte Goldatome binden, wozu ebenfalls eine negative Spannung anliegen muss. Um den Bindemechanismus aufzuklären, setzten die Wissenschaftler statt eines DNA-Stückes nur die einzelnen Nukleotide Thymidin und Adenosin ein, beides Bausteine des Erbmoleküls.

Thymidin besitzt als einziges Nukleotid keine primäre Amin-Gruppe (-NH2). Während Adenosin fest am Gold haften blieb, konnte Thymidin aber ohne Kraftaufwand wieder von der Oberfläche abgehoben werden. Diese und andere Beobachtungen beweisen, dass die Nukleotide mit ihrer primären Aminogruppe an die Goldatome binden. Welche Auswirkungen die neue Methode in der Nanotechnologie haben könnte, zeigt die korrespondierende Autorin der Arbeit, Dr. Ann Fornof, auf: „Die Möglichkeit, einzelne DNA-Stücke extern kontrollierbar auf eine Oberfläche zu binden, liefert ein neues Werkzeug um gezielt Nanostrukturen aufzubauen oder DNA zu immobilisieren. Es ist gut vorstellbar, dass diese elektrisch kontrollierte Adhäsion für eine Reihe von Anwendungen nützlich sein wird: vom Einsatz in Biosensoren bis zur Positionierung von größeren Konstrukten wie DNA-Origami. (NIM)

Publikation:
„Electrically induced bonding of DNA to gold“;
Matthias Erdmann, Ralf David, Ann R. Fornof und Hermann E. Gaub;
Nature Chemistry; published online: July 5, 2010.
DOI: 10.1038/NCHEM.722

Externer Link: www.uni-muenchen.de

„Nanopartikel, öffne Dich!“

Presseinformation der LMU München vom 11.06.2010

Programmierbares DNA-Ventil setzt gezielt Wirkstoffe frei

Medikamente müssen oftmals hoch dosiert verabreicht werden, weil auf dem Weg durch den Körper Wirkstoff verloren geht. Dies kann aber verstärkt zu unerwünschten Nebenwirkungen führen. Damit die Dosis eines Medikaments künftig so niedrig wie therapeutisch möglich gehalten werden kann, sollen die Wirkstoffe in Zukunft direkt zum Zielort im Organismus transportiert und dort erst freigesetzt werden. Dafür sollen sie in Nanopartikel eingeschlossen werden, die ihre Fracht nur bei einem bestimmten pH-Wert, einer definierten Temperatur oder unter anderen spezifischen Bedingungen freigeben. „Die Kunst besteht darin, Partikel zu entwickeln, die sich ganz exakt auf nur eines dieser Signale hin öffnen und den Wirkstoff freisetzen – sich also entsprechend programmieren lassen“, sagt der LMU-Chemiker Professor Thomas Bein, der auch dem Exzellenzcluster „Nanosystems Initiative Munich“ (NIM) angehört. Ihm und seinen Mitarbeitern ist in Zusammenarbeit mit der Gruppe des LMU-Chemikers Thomas Carell nun gelungen, in wenigen Schritten Silikat-Partikel herzustellen, die sich je nach Bedarf bei einer bestimmten Temperatur öffnen.  „Als Ventil fungieren dabei DNA-Moleküle, deren Temperatursensitivität über die Zahl ihrer Bausteine präzise reguliert werden kann“, sagt Bein. „Das Konzept der programmierten Freisetzung lässt sich bei Medikamenten einsetzen, aber auch prinzipiell bei Waschmitteln und in der Industrie.“ (Angewandte Chemie online, 11. Juni 2010).

Selbst feinste Sandkörner sind tausendmal größer als die porösen Silikatpartikel, die Wissenschaftler als Transportvehikel für medizinische und andere Wirkstoffe nutzen. Über zahlreiche Poren nehmen diese Teilchen, deren Durchmesser nur etwa 50 Nanometer beträgt, Wirkstoffe durch Diffusion relativ leicht auf. Diese Poren zu verschließen und für eine gezielte Freisetzung zu programmieren, erfordert aber einen hohen Forschungsaufwand. Das Team um Bein nutzte kurze doppelsträngige DNA-Stücke als Ventil. Denn die beiden Stränge des Moleküls trennen sich bei erhöhter Temperatur und lösen sich voneinander – ähnlich wie bei einem Reißverschluss. Besonders wichtig für die Chemiker war, dass diese Funktion präzise programmierbar ist: Je länger ein doppelsträngiges DNA-Stück ist, desto höher muss die Temperatur sein, um die beiden Stränge aufschmelzen zu lassen.

Im Versuch hafteten kurze doppelsträngige DNA-Moleküle auf der Oberfläche des Partikels. Dabei band aber nur einer der beiden Stränge – über ein kürzlich an der LMU entwickeltes Azid-Alkin-Bindeprinzip – an das Silikat(1). Der andere Strang dagegen trug am Ende nahe der Partikeloberfläche ein Biotin-Molekül. Nach Befüllen des Partikels bindet hieran ein Avidinprotein, das sich als Verschluss auf eine Pore des Silikat-Partikels legt. Erst wenn die DNA aufschmilzt, wird das Avidin von der Porenöffnung weggeschoben und die Freisetzung der Wirkstoffe ermöglicht. Versuchsreihen zeigten, dass DNA-Doppelstränge mit 15 Basenpaaren bei 45°C komplett aufschmelzen, während sich ein Molekül aus 25 dieser Bausteine erst bei 65°C öffnet. „Damit können wir den Deckel quasi auf Knopfdruck öffnen“, sagt Bein. „Wir erwarten, dass die molekular programmierte Freisetzung von Wirkstoffen auf vielen Gebieten wie beispielsweise der gezielten Freisetzung von Medikamenten oder auch in Waschmitteln und in industriellen Prozessen Bedeutung erlangen wird.“ (bige/suwe)

Publikation:
„Ein programmierbares, DNS-basiertes molekulares Ventil für kolloidales, mesoporöses Silica“,
Axel Schlossbauer, Simon Warncke, Philipp E. Gramlich, Johann Kecht, Antonio Manetto, Thomas Carell und Thomas Bein
Angewandte Chemie online, 11. Juni 2010
(1) A. Schlossbauer, D. Schaffert, J. Kecht, E. Wagner, T. Bein, Click chemistry for high-density biofunctionalization of mesoporous silica, J. Am. Chem. Soc. 2008, 130, 12558.

Externer Link: www.uni-muenchen.de