Neuartiges Netzteil bietet bis zu 50 Jahre Lebensdauer

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 17.11.2022

Ausgründung „Digital Power Systems“ des KIT entwickelt ultralanglebige industrielle Stromversorgungen

Im Haushalt, im Büro, in der Industrie: Schaltnetzteile sind in unserem Alltag allgegenwärtig. Sie wandeln Wechselstrom der Hausleitung in Gleichstrom um, den Smartphone, Laptop und Co. genauso benötigen wie Ladestationen für E-Autos und ganze Logistik- oder Rechenzentren. Bislang müssen diese nach üblicherweise neun Jahren Dauerbetrieb ausgetauscht werden. Die Ausgründung des Karlsruher Instituts für Technologie (KIT) Digital Power Systems (DPS) zeigte in Tests nun Netzteile mit 50 Jahren Lebensdauer.

Heutige Schaltnetzteile sind zwar leicht und kompakt, wegen der darin verbauten Elektrolytkondensatoren aber auch fehleranfällig. Deutlich langlebiger sind Folienkondensatoren. Diese benötigen aber bis zu zehnmal mehr Platz – bis jetzt: „Wir haben ein digitales Regelungsverfahren entwickelt, das es uns erlaubt, Folienkondensatoren platzsparend einzusetzen“, sagt DPS-Geschäftsführer Michael Heidinger. Dadurch entstehe ein viel geringerer Wartungsaufwand als bei gewöhnlichen Netzteilen: „Die Technologie ist ein Gamechanger für alle Bereiche, wo es auf Zuverlässigkeit ankommt“, sagt Heidinger. „Etwa bei Rechenzentren oder Logistikzentren oder der Flugsicherheitsbeleuchtung.“ Denn Serviceeinsätze um defekte Netzteile auszutauschen, kosteten ein Vielfaches des Gerätpreises selbst.

Lebensdauer fünfmal höher als bei Netzteilen mit Elektrolytkondensator

Gemeinsame Tests mit dem Lichttechnischen Institut des KIT haben eine Lebensdauer der Netzteile von 50 Jahren bei 40 Grad Umgebungstemperatur nachgewiesen. „Damit wird die Lebensdauer von etablierten Netzteilen etwa um das Fünffache übertroffen“, sagt Heidinger. Dabei sei noch kein Netzteil ausgefallen, sodass die Tests fortgesetzt würden. „Es ist also noch Luft nach oben.“

Digitale Regelung spart Platz

Das neuartige digitale Regelungsverfahren, welches es erlaubt, Folienkondensatoren bei nur leicht gesteigertem Platzbedarf einzusetzen, läuft auf einem im Netzteil eingebauten Mikroprozessor. Es erkennt störende Umgebungseinflüsse, sodass beispielsweise höhere Spannungsschwankungen am Folienkondensator ausgeglichen werden können. Dadurch sind Speicherkondensatoren mit geringerer Kapazität ausreichend. Möglich sei diese Technologie erst mit der Verbreitung von sehr leistungsstarken Mikroprozessoren geworden, erklärt Heidinger.

Einsatz in der Luftsicherheit

Eingesetzt wird das Netzteil bereits bei der Sicherheitsbeleuchtung – auch Befeuerung genannt – an Hindernissen für Flugzeuge wie Industriekamine, Windräder oder Funkmasten. Ausgetauscht werden können defekte Netzteile dort meist nur umständlich und teuer mithilfe von Industriekletternden. (mex)

Externer Link: www.kit.edu

Ultrakalte Mini-Tornados

Medieninformation der Universität Innsbruck vom 31.10.2022

Quanten-Wirbel klarer Hinweis auf Suprafluidität

Ein Team von Quantenphysikern um die dreifache ERC-Preisträgerin Francesca Ferlaino hat eine neue Methode entwickelt, mit der Wirbel in dipolaren Quantengasen beobachtet werden können. Diese Quanten-Wirbel gelten als eindeutiger Hinweis für Suprafluidität, das reibungsfreie Strömen eines Quantengases, und wurden nun erstmals an der Universität Innsbruck in dipolaren Gasen experimentell nachgewiesen.

Wirbel sind in der Natur allgegenwärtig: Durch Rühren lassen sich Wasserstrudel erzeugen. Wird die Atmosphäre aufgewühlt, können gewaltige Tornados entstehen. So verhält es sich auch in der Quantenwelt, nur dass dort viele identische Wirbel gleichzeitig entstehen – der Wirbel ist quantisiert. In vielen Quantengasen konnten solche quantisierten Wirbel bereits nachgewiesen werden. „Das ist deshalb interessant, weil solche Wirbel ein klarer Hinweis für das reibungsfreie Strömen eines Quantengases – die sogenannte Suprafluidität – sind“, sagt Francesca Ferlaino vom Institut für Experimentalphysik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften.

Neue Methode erzeugt Quantenwirbel

Ferlaino forscht mit ihrem Team an Quantengasen aus stark magnetischen Elementen. Für solche dipolaren Quantengase, in denen die Atome stark wechselwirken, konnten die Quanten-Wirbel bisher noch nicht nachgewiesen werden. Die Wissenschaftler haben nun eine neue Methode entwickelt: „Wir nutzen die Richtungsabhängigkeit unseres Quantengases aus Dysprosium, dessen Atome sich wie viele kleine Magneten verhalten, um das Gas umzurühren“, erklärt Manfred Mark aus dem Team von Francesca Ferlaino. Dazu legen die Wissenschaftler ein Magnetfeld so an ihr Quantengas an, dass dieses zunächst runde, pfannkuchenartig geformte Gas aufgrund von Magnetostriktion elliptisch verformt wird. Diese ebenso einfache wie wirkungsvolle Idee geht auf einen theoretischen Vorschlag zurück, den ein Theorieteam der Universität Newcastle unter der Leitung von Nick Parker, dem auch Thomas Bland, der Mitautor der aktuellen Arbeit, angehörte, vor einigen Jahren gemacht hatte. „Indem wir das Magnetfeld drehen, können wir das Quantengas rotieren lassen“, erklärt Lauritz Klaus, Erstautor der Arbeit. „Wenn es sich schnell genug dreht, dann bilden sich im Quantengas kleine Wirbel aus. So versucht das Gas, den Drehimpuls auszugleichen.“ Bei ausreichend hoher Rotationsgeschwindigkeit bilden sich entlang des Magnetfelds auffällige Streifen mit Wirbeln. Diese sind ein besonderes Charakteristikum dipolarer Quantengase und wurden nun an der Universität Innsbruck zum ersten Mal beobachtet.

Nächste Ziel Suprasolidität

Die nun in der Fachzeitschrift Nature Physics präsentierte neue Methode soll in Zukunft zur Untersuchung der Suprafluidität in suprasoliden Zuständen eingesetzt werden, in denen Quantenmaterie gleichzeitig fest und flüssig ist. „Es ist immer noch eine große offene Frage, inwieweit die neu entdeckten suprasoliden Zustände tatsächlich supraflüssig sind, und diese Frage ist heute noch sehr wenig erforscht.“

Diese Arbeit entstand in Zusammenarbeit mit Giacomo Lamporesi von der Universität Trient und dem Theoretiker Russell Bisset von der Universität Innsbruck und wurde unter anderem vom Europäischen Forschungsrat ERC, dem österreichischen Wissenschaftsfonds FWF und der Österreichischen Akademie der Wissenschaften ÖAW finanziell unterstützt.

Originalpublikation:
Observation of vortices and vortex stripes in a dipolar condensate. Lauritz Klaus, Thomas Bland, Elena Poli, Claudia Politi, Giacomo Lamporesi, Eva Casotti, Russell N. Bisset, Manfred J. Mark, and Francesca Ferlaino. Nature Physics 2022

Externer Link: www.uibk.ac.at

Mit vereinten Kräften – Blitzschnelles 3D-Mikrodrucken mit zwei Lasern

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 14.10.2022

Forschende des Exzellenzclusters „3D Matter Made to Order“ drucken Mikrostrukturen durch Kreuzen roter und blauer Laserstrahlen – Veröffentlichung in Nature Photonics

Objekte aus Kunststoff präzise, schnell und kostengünstig zu drucken, ist das Ziel vieler 3D-Druckverfahren. Geschwindigkeit und hohe Auflösung sind jedoch nach wie vor eine technologische Herausforderung. Ein Forschungsteam des Karlsruher Instituts für Technologie (KIT), der Universität Heidelberg und der Queensland University of Technology (QUT) ist diesem Ziel ein großes Stück nähergekommen. Es entwickelte ein Laserdruckverfahren, mit dem mikrometergroße Teile innerhalb eines Wimpernschlags gedruckt werden können. Die Arbeit veröffentlichte das internationale Team in Nature Photonics.

Der 3D-Druck im Stereolithographie-Verfahren ist derzeit eines der beliebtesten additiven Fertigungsverfahren für Kunststoffe, sowohl für private als auch für industrielle Anwendungen. Bei der Stereolithografie werden die Schichten eines 3D-Objekts nacheinander in einen mit Harz gefüllten Behälter projiziert. Das Harz wird durch UV-Licht gehärtet. Bisherige Stereolithografie-Verfahren sind jedoch langsam und haben eine zu geringe Auflösung. Der von den Forschenden des KIT eingesetzte 3D-Lichtblattdruck (engl. Light-Sheet 3D Printing) ist eine schnelle und hochauflösende Alternative.

3D-Druck mit zwei Farben in zwei Stufen

Beim „Light-Sheet-3D-Druck“ wird blaues Licht in einen Behälter projiziert, der mit einem flüssigen Harz gefüllt ist. Durch das blaue Licht wird das Harz voraktiviert. In einer zweiten Stufe liefert ein roter Laserstrahl die zusätzliche Energie, die zum Aushärten des Harzes erforderlich ist. Schnell drucken lassen sich aber im 3D-Druck nur Harze, die rasch aus dem voraktivierten Zustand in ihren ursprünglichen Zustand zurückkehren. Erst dann kann die nächste Schicht gedruckt werden. Die Rückkehrzeit diktiert folglich die Wartezeit zwischen zwei aufeinander folgenden Schichten und damit die Druckgeschwindigkeit. „Bei dem Harz, das wir verwendet haben, betrug die Rückkehrzeit weniger als 100 Mikrosekunden, was hohe Druckgeschwindigkeiten ermöglicht“, so Erstautor Vincent Hahn vom Institut für Angewandte Physik (APH) des KIT.

Mikrometergroße Strukturen in nur einem Wimpernschlag

Um die Vorteile dieses neuen Harzes zu nutzen, haben die Forschenden einen speziellen 3D-Drucker gebaut. In diesem Drucker werden blaue Laserdioden verwendet, um Bilder mithilfe eines hochauflösenden Displays mit hoher Bildfrequenz in das flüssige Harz zu projizieren. Der rote Laser wird zu einem dünnen „Lichtblatt“-Strahl geformt und kreuzt den blauen Strahl senkrecht im Harz. Mit dieser Anordnung konnte das Team mikrometergroße 3D-Teile in wenigen hundert Millisekunden, also in einem Wimpernschlag, drucken. Dabei soll es jedoch nicht bleiben: „Mit empfindlicheren Harzen könnten wir sogar LEDs statt Laser in unserem 3D-Drucker einsetzen“, sagt Professor Martin Wegener vom APH. „Letztlich wollen wir zentimetergroße 3D-Strukturen drucken und dabei die Auflösung im Mikrometerbereich und die hohe Druckgeschwindigkeit beibehalten.“

Die Publikation entstand im Rahmen des gemeinsamen Exzellenzclusters „3D Matter Made to Order“ des KIT und der Universität Heidelberg. Beteiligt seitens der Universität Heidelberg war Juniorprofessorin Dr. Eva Blasco, Leiterin einer Arbeitsgruppe am Organisch-Chemischen Institut und am Institute for Molecular Systems Engineering and Advanced Materials. (rli)

Originalpublikation:
V. Hahn, P. Rietz, F. Hermann, P. Müller, C. Barner-Kowollik, T. Schlöder, W. Wenzel, E. Blasco, and M. Wegener: Light-sheet three-dimensional microprinting via two-colour two-step absorption. Nature Photonics, 2022. DOI: 10.1038/s41566-022-01081-0

Externer Link: www.kit.edu

Kernfusion: Neue Lösung für Instabilitätsproblem

Presseaussendung der TU Wien vom 11.10.2022

Für Fusionsreaktoren wie ITER sind Plasma-Instabilitäten eine große Herausforderung. Ein Forschungsteam rund um die Kernfusionsgruppe der TU Wien fand nun eine vielversprechende Lösung.

Kernfusionskraftwerke könnten unsere Energieprobleme eines Tages nachhaltig lösen – doch immer noch ist kein kommerzieller Kernfusionsreaktor in Betrieb. Um Fusionsreaktionen zu realisieren, muss das Plasma im Zentrum sehr heiß sein (ca. 100 Mio °C), gleichzeitig darf die Wand des Reaktors nicht schmelzen. Der Rand des Plasmas muss also gut von der Reaktorwand isoliert sein. In diesem Bereich kommt es allerdings immer wieder zu sogenannten Plasma-Instabilitäten. Dabei werden kurzzeitig energiereiche Teilchen an die Wand des Reaktors geschossen, die dadurch beschädigt werden kann. Diese Instabilitäten sind eines der wichtigsten Hindernisse auf dem Weg zu einem kommerziellen Reaktor.

Nun konnte das Kernfusions-Team der TU Wien zusammen mit dem Max-Planck-Institut für Plasmaphysik (IPP) in Garching (Deutschland) zeigen: Es gibt einen Betriebsmodus für Fusionsreaktoren, der dieses Problem vermeidet. Statt großer potenziell zerstörerischer Instabilitäten nimmt man ganz bewusst viele kleine Instabilitäten in Kauf, die für den Reaktor kein Problem darstellen. Die Ergebnisse wurden nun im Fachjournal „Physical Review Letters“ als Editors‘ Suggestion publiziert.

Die Renaissance einer verworfenen Betriebsart

In einem torusförmigen Tokamak-Fusionsreaktor bewegen sich die ultraheißen Plasmateilchen mit hoher Geschwindigkeit. Mächtige Magnetspulen sorgen dafür, dass die Teilchen eingesperrt bleiben anstatt mit zerstörerischer Wucht auf die Wand des Reaktors zu treffen. „Perfekt von der Reaktorwand isolieren möchte man das Plasma aber auch nicht, schließlich muss neuer Brennstoff zugeführt und das bei der Fusion entstandene Helium abtransportiert werden“, erklärt Friedrich Aumayr, Professor für Ionen- & Plasmaphysik am Institut für Angewandte Physik der TU Wien.

Die Details der Dynamik im Inneren des Reaktors sind kompliziert: Die Bewegung der Teilchen hängt von Plasmadichte, Temperatur und Magnetfeld ab. Je nachdem, wie man diese Parameter wählt, sind unterschiedliche Betriebsarten möglich. In einer jahrelangen Zusammenarbeit zwischen der Gruppe von Friedrich Aumayr an der TU Wien und dem IPP Garching koordiniert durch Elisabeth Wolfrum (Gruppenleiterin am IPP Garching und TU Wien Professorin) wurde nun ein neuartiger Betriebsmodus entwickelt und gezeigt, dass dieser besonders zerstörerische Plasmainstabilitäten (genannt Typ-I ELMs) verhindern kann.

Schon vor einigen Jahren zeigten Experimente: Wenn man durch die Magnetspulen das Plasma leicht verformt, sodass der Plasmaquerschnitt nicht mehr elliptisch aussieht, sondern eher an ein abgerundetes Dreieck erinnert, und wenn man gleichzeitig die Dichte des Plasmas speziell am Rand erhöht, dann lassen sich die gefürchteten Typ-I ELMs verhindern.

„Zunächst dachte man aber, das sei ein Szenario, das nur in den momentan laufenden kleineren Maschinen wie ASDEX Upgrade (IPP Garching) auftritt und für einen großen Reaktor irrelevant ist“, erklärt Lidija Radovanovic, die derzeit an der TU Wien an ihrer Dissertation zu diesem Thema arbeitet. „Mit neuen Experimenten und Simulationen konnten wir aber nun zeigen: Die Betriebsart kann auch in für Reaktoren wie ITER vorgesehenen Parameterbereichen die gefährlichen Instabilitäten verhindern.“

Wie ein Topf mit Deckel

Durch die dreieckige Form des Plasmaquerschnitts und das gezielte Einblasen zusätzlicher Teilchen am Rand treten viele kleine Instabilitäten auf – und zwar mehrere tausend Mal pro Sekunde. „Diese kleinen Teilchen-Bursts treffen die Wand des Reaktors schneller als die sich aufheizen und wieder abkühlen kann“, sagt Georg Harrer, Erstautor der Publikation, der zur weiteren Untersuchung des neuen Betriebsmodus einen zweijährigen EUROfusion Researcher Grant von der EU erhalten hat. „Daher spielen diese einzelnen Instabilitäten für die Reaktorwand keine große Rolle.“ Wie das Team durch detaillierte Simulationsrechnungen zeigen konnte, verhindern diese Mini-Instabilitäten aber die großen Instabilitäten, die sonst Schaden anrichten würden.

„Es ist ein bisschen wie bei einem Kochtopf mit Deckel, in dem das Wasser zu kochen beginnt“, erklärt Georg Harrer. „Wenn sich immer wieder Druck aufbaut, den Deckel hebt und der Dampf entweicht, dann wird der Deckel heftig klappern. Wenn man hingegen den Deckel leicht schräg stellt, dann kann kontinuierlich Dampf entkommen, aber der Deckel bleibt stabil und klappert nicht.“

Diese Fusionsreaktor-Betriebsart lässt sich in unterschiedlichen Reaktoren realisieren – nicht nur am ASDEX-Upgrade-Reaktor in Garching, Deutschland, sondern auch am derzeit in Bau befindlichen ITER in Frankreich oder auch in künftigen Fusionskraftanlagen wie DEMO. „Unsere Arbeiten stellen einen Durchbruch im Verständnis des Auftretens und der Verhinderung von großen Typ-I-ELMs dar“, sagt Elisabeth Wolfrum. „Die von uns vorgeschlagene Betriebsart ist wohl das vielversprechendste Szenario für zukünftige Fusionskraftwerksplasmen.“

Die beschriebene Forschung ist Teil des österreichischen Fusionsforschungsprogramms Fusion@ÖAW und wurde im Rahmen des EU-Projekts EUROfusion durchgeführt. (Florian Aigner)

Originalpublikation:
G. F. Harrer, et al. „A quasi-continuous exhaust scenario for a fusion reactor: the renaissance of small edge localized modes” Physical Review Letters.

Externer Link: www.tuwien.at

Ultrakalte Schaltkreise

Medienmitteilung der Universität Basel vom 22.09.2022

Materialien extrem abzukühlen ist wichtig für die physikalische Grundlagenforschung und technische Anwendungen. Basler Forschern ist es nun gelungen, einen elektrischen Schaltkreis auf einem Chip durch Verbesserung eines speziellen Kühlschranks und eines Niedrigtemperatur-Thermometers auf 220 Mikrokelvin zu kühlen – nahe dem absoluten Temperatur-Nullpunkt.

Kühlt man Materialien auf extrem niedrige Temperaturen ab, so verhalten sie sich oft ganz anders als bei Raumtemperatur. Ein bekanntes Beispiel ist die Supraleitung, bei der einige Metalle und andere Stoffe unterhalb einer kritischen Temperatur elektrischen Strom komplett verlustfrei leiten. Bei noch tieferen Temperaturen können dann weitere quantenphysikalische Effekte auftreten, die sowohl für die Grundlagenforschung als auch für Anwendungen in Quantentechnologien höchst interessant sind.

Solche Temperaturen – weniger als ein Tausendstel Grad über dem absoluten Nullpunkt von 0 Kelvin oder -273.15 Grad Celsius – zu erreichen, ist allerdings äusserst schwierig. Physiker aus der Forschungsgruppe von Prof. Dr. Dominik Zumbühl an der Universität Basel haben nun gemeinsam mit Kolleginnen und Kollegen des VTT Technical Research Centre in Finnland und der Lancaster University in England einen neuen Niedrig-Temperaturrekord aufgestellt. Ihre Ergebnisse haben sie soeben im Fachjournal Physical Review Research veröffentlicht.

Abkühlen mit Magnetfeldern

«Das Problem ist nicht nur, ein Material stark abzukühlen», erklärt Christian Scheller, wissenschaftlicher Mitarbeiter in Zumbühls Labor, «sondern auch, die extrem tiefen Temperaturen dann verlässlich zu messen.» In ihren Experimenten kühlten die Forscher einen kleinen elektrischen Schaltkreis aus Kupfer auf einem Siliziumchip ab, indem sie ihn zuerst einem starken Magnetfeld aussetzten, dann mit einem als Kryostat bezeichneten speziellen Kühlschrank abkühlten und schliesslich das Magnetfeld langsam herunterfuhren. Dadurch wurden die Kernspins der im Chip enthaltenen Kupferatome anfangs wie kleine Magnete ausgerichtet und am Ende durch die vom Herunterfahren des Magnetfelds herbeigeführte Verringerung ihrer magnetischen Energie effektiv noch weiter abgekühlt.

«Mit solchen Methoden arbeiten wir zwar schon seit zehn Jahren», sagt Omid Sharifi Sedeh, der als Doktorand an dem Experiment beteiligt war, «doch bislang waren die tiefsten Temperaturen, die man so erreichen konnte, durch die Vibrationen des Kühlschranks begrenzt.» Diese Vibrationen, die durch das stetige Verdichten und Verdünnen des Kühlmittels Helium in einem so genannten «trockenen» Kryostaten entstehen, heizen den Chip merklich auf. Um das zu verhindern, entwickelten die Forscher eine neue Halterung, die so fest verdrahtet ist, dass sie den Chip trotz der Vibrationen auf niedrigste Temperaturen abkühlen können.

Robustes Thermometer

Um diese Temperaturen auch genau messen zu können, verbesserten Zumbühl und seine Mitarbeiter ein spezielles Thermometer, das in den Schaltkreis eingebettet ist. Das Thermometer besteht aus Kupfer-Inseln, die über sogenannte Tunnelkontakte verbunden sind. Durch diese Kontakte können Elektronen sich je nach Temperatur mehr oder weniger leicht bewegen. Die Physiker fanden nun eine Methode, um das Thermometer robuster gegen Materialfehler und zudem temperaturempfindlicher zu machen. Das erlaubte es ihnen schliesslich, eine Temperatur von nur 220 Millionstel Grad über dem Nullpunkt (220 Mikrokelvin) zu messen.

In Zukunft wollen die Basler Forscher mit ihrer Methode die Temperatur nochmals um einen Faktor zehn senken und langfristig auch Halbleiter-Materialien abkühlen. Damit ist dann der Weg frei für die Untersuchung neuer quantenphysikalischer Effekte, aber auch für verschiedene Anwendungen, wie etwa die Optimierung von Qubits in Quantencomputern.

Originalpublikation:
Mohammad Samani et al.
Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb-blockade thermometer
Physical Review Research (2022), doi: 10.1103/PhysRevResearch.4.033225

Externer Link: www.unibas.ch