Wie das Chaos der Quantenwelt eine Temperatur verleiht

Presseaussendung der TU Wien vom 12.12.2022

Zwei scheinbar völlig unterschiedliche Bereiche der Physik hängen auf subtile Art zusammen: Quantentheorie und Thermodynamik. Wie die Chaostheorie dazwischen vermittelt, wurde nun an der TU Wien untersucht.

Ein einzelnes Teilchen hat keine Temperatur. Es hat eine bestimmte Energie oder auch eine bestimmte Geschwindigkeit – aber in eine Temperatur kann man das nicht übersetzen. Nur wenn man es mit zufälligen Geschwindigkeitsverteilungen vieler Teilchen zu tun hat, kann man überhaupt von einer Temperatur sprechen.

Wie sich aus den Gesetzen der Quantenphysik die Gesetze der Thermodynamik ergeben können, ist ein Thema, das in den letzten Jahren wachsende Aufmerksamkeit auf sich gezogen hat. An der TU Wien ging man dieser Frage nun mit Computersimulationen nach und konnte dadurch zeigen, welche zentrale Rolle Chaos dabei spielt: Nur da, wo Chaos herrscht, folgen auch aus der Quantenphysik die wohlbekannten Regeln der Thermodynamik.

Boltzmann: Alles ist möglich, vieles ist unwahrscheinlich

Wenn in einem Raum die Luftmoleküle scheinbar regellos durcheinanderfliegen, dann können diese Moleküle unvorstellbar viele verschiedene Zustände einnehmen: Für jedes einzelne Teilchen sind unterschiedliche Aufenthaltsorte und unterschiedliche Geschwindigkeiten erlaubt. Doch nicht alle diese Zustände sind gleich wahrscheinlich. „Physikalisch wäre es möglich, dass zufällig die gesamte Energie in diesem Raum auf ein einziges Teilchen übertragen wird, das dann mit extrem hoher Geschwindigkeit herumfliegt, während alle anderen Teilchen stillstehen“, sagt Prof. Iva Brezinova vom Institut für Theoretische Physik der TU Wien. „Aber das ist so unwahrscheinlich, dass man es praktisch nie beobachten wird.“

Die Wahrscheinlichkeiten unterschiedlicher erlaubter Zustände lassen sich berechnen – nach einer Formel, die der österreichische Physiker Ludwig Boltzmann nach den Regeln der klassischen Physik aufstellte. Und aus dieser Wahrscheinlichkeitsverteilung lässt sich dann auch die Temperatur ablesen, die in diesem Raum herrscht: Sie ist nur bei einer großen Zahl von Teilchen bestimmt.

Die ganze Welt als ein einziger Quantenzustand

Das bringt nun aber Probleme mit sich, wenn man sich mit Quantenphysik befasst. Wenn eine größere Zahl von Quantenteilchen gleichzeitig im Spiel ist, dann werden die Gleichungen der Quantentheorie nämlich so kompliziert, dass selbst die besten Supercomputer der Welt keine Chance haben, sie zu lösen.

Man kann in der Quantenphysik die einzelnen Teilchen auch nicht unabhängig voneinander betrachten, wie man das etwa bei klassischen Billardkugeln machen kann. Jede Billardkugel hat ihre eigene individuelle Bahn und zu jedem Zeitpunkt ihren individuellen Aufenthaltsort. Quantenteilchen hingegen haben keine Individualität – man kann sie nur gemeinsam beschreiben, in einer einzigen großen Quanten-Wellenfunktion.

„Quantenphysikalisch wird das gesamte System von einem einzigen großen Vielteilchen-Quantenzustand beschrieben“, sagt Prof. Joachim Burgdörfer (TU Wien). „Wie daraus eine zufällige Verteilung und damit eine Temperatur folgen sollte, blieb lange ungeklärt.“

Die Chaostheorie als Vermittler

Ein Team an der TU Wien konnte nun zeigen, dass Chaos in der Quantenphysik dabei eine zentrale Rolle spielt. Dazu simulierte das Team am Computer Zustände eines Quantensystems, das aus einer großen Zahl von Teilchen besteht – aus vielen einzelnen ununterscheidbaren Teilchen einer Teilchensorte (dem „Wärmebad“) und einem einzelnen „Probeteilchen“, das als Thermometer fungiert. Jede einzelne Quanten-Wellenfunktion des großen Systems hat eine bestimmte Energie, aber keine definierbare Temperatur – ganz wie ein einzelnes klassisches Teilchen. Wenn man aber nun aus dem einzelnen Quantenzustand das Probeteilchen herausgreift und seine Geschwindigkeit misst, dann kann man überraschenderweise eine Geschwindigkeitsverteilung finden, die einer Temperatur entspricht, die zu den längst bekannten Gesetzen der Thermodynamik passt.

„Ob sie passt, entscheidet das Chaos – das konnten wir mit unseren Berechnungen zeigen“, sagt Iva Brezinova. „Wir können nämlich die Wechselwirkungen zwischen den Teilchen am Computer gezielt verändern und so entweder ein völlig chaotisches System erzeugen, oder eines, das überhaupt kein Chaos zeigt – oder auch irgendetwas dazwischen.“ Und dabei stellte man fest: Die Anwesenheit von Chaos entscheidet darüber, ob ein Quantenzustand des Probeteilchens einer Boltzmann-Temperaturverteilung folgt oder nicht.

„Ohne dass man zu Beginn irgendwelche Annahmen über zufällige Verteilungen oder thermodynamische Regeln hineinsteckt, ergibt sich aus der Quantentheorie thermodynamisches Verhalten ganz von selbst – wenn das kombinierte System von Probeteilchen und Wärmebad sich quanten-chaotisch verhält. Und wie genau dieses Verhalten zu den bekannten Boltzmann-Formeln passt, wird von der Stärke des Chaos bestimmt“, erklärt Joachim Burgdörfer.

Damit wurde nun erstmal auf rigorose Weise mit Vielteilchen-Computersimulationen das Zusammenspiel von drei wichtigen Theorien gezeigt: Quantentheorie, Thermodynamik und Chaostheorie. (Florian Aigner)

Originalpublikation:
M. Kourehpaz et al., Canonical Density Matrices from Eigenstates of Mixed Systems, Entropy 2022, 24(12), 1740.

Externer Link: www.tuwien.at

Dem elektrischen Kontaktwiderstand auf der Spur

Pressemitteilung der Universität Kassel vom 09.12.2022

Mit Kohlenstofffasern verstärkte Kunststoffe (CFKs) sind besonders in der Automobilindustrie und Luftfahrt gefragt. Forschende der Universität Kassel haben eine Methode entwickelt, mit der sie innere Struktur und elektrische Eigenschaften von CFKs genau vermessen können – insbesondere an Kontaktflächen mit metallischen Bauteilen.

Als beliebter Verbundwerkstoff sind mit Kohlenstofffasern verstärkte Kunststoffe bereits gut erforscht. Sie sind leicht, dennoch fest und leiten elektrischen Strom. Im Rahmen der Grundlagenforschung an der Universität Kassel wird der Kontakt zwischen CFKs und Metall charakterisiert. „Je mehr wir über die elektrische Verbindung der beiden Werkstoffe wissen, desto gezielter können wir sie zum Beispiel im Fahrzeugbau nutzen“, beschreibt Elisabeth Eckel, wissenschaftliche Mitarbeiterin am Fachgebiet Fahrzeugsysteme und Grundlagen der Elektrotechnik (Prof. Ludwig Brabetz). Bisher sind die Kontaktstellen jedoch mit normalen Messmethoden schwer zu charakterisieren. Deshalb entwickelten die Forschenden in einem Kooperationsprojekt mit dem Anwendungszentrum UNIfipp des Fachgebiets Kunststofftechnik (Prof. Hans-Peter Heim) eine neuartige Herangehensweise.

Sie entwarfen dafür eigens Probekörper, welche im so genannten Montagespritzgießverfahren hergestellt wurden. Das mit Kohlenstofffasern gefüllte Kunststoffgranulat wird im schmelzeförmigen Zustand in eine Form eingespritzt. Das Besondere: An definierten Stellen dieser Form umfließt der Kunststoff metallische Einlegeteile, die Kontaktstifte. So werden sie fester Bestandteil des CFK-Bauteil. „Die Anordnung der Kohlenstofffasern beeinflusst die lokale Widerstandsverteilung und letztendlich den Stromfluss zwischen Kontaktstift und Kunststoff. Für zukünftige Anwendungen beider Werkstoffe ist die Qualität dieses Kontakts ausschlaggebend“, erläutert André Schlink, wissenschaftlicher Mitarbeiter im Fachgebiet Kunststofftechnik.

Hier setzten die Forschenden der beiden Fachgebiete an. „Wir haben eine Methode entwickelt, die erstmals diese lokale innere Struktur des CFK – also die Orientierung der Kohlenstofffasern vor allem um den Kontaktstift herum – elektrisch erfasst und somit direkte Rückschlüsse über den Kontaktwiderstand erlaubt.“, erklärt Klara Wiegel, wissenschaftliche Mitarbeiterin am Fachgebiet Fahrzeugsysteme und Grundlagen der Elektrotechnik (Prof. Ludwig Brabetz). Die Forschenden charakterisierten den Probekörper mittels Röntgenmikrotomographie und machten mit einem Algorithmus einzelne Fasern sichtbar. Zusätzlich bestimmten sie elektrische Potentiale an der gesamten Oberfläche. Rund um den Kontaktstift identifizierten die Forschenden Bereiche, die sich durch die Orientierung der Fasern in Relation zu dem Kontaktstift unterscheiden.

Originalpublikation:
Eckel, Elisabeth et al. “Determination of Local Electrical Properties Using a Potential Field Measurement for Electrically Conductive Carbon Fiber Reinforced Plastics with Metal Contact Pins Joined via Injection Molding.”
Polymers vol. 14,14 2805. 9 Jul. 2022, doi:10.3390/polym14142805

Externer Link: www.uni-kassel.de

Neue Prüfanlage: Wie kalt darf Kraftstoff für Dieselmotoren werden?

Presseaussendung der TU Wien vom 22.11.2022

Bei extremer Kälte können Kraftstoffe nicht mehr verwendet werden – aber wie misst man die mögliche Minimaltemperatur? An der TU Wien wurde dafür nun eine Prüfanlage entwickelt.

Wenn es zu kalt wird, springt das Auto nicht mehr an. Bestimmte Bestandteile von Kraftstoffen können bei niedrigen Temperaturen ausfallen, der Kraftstoff wird trüb und lässt sich nicht mehr nutzen. Besonders Paraffine in den Treibstoffen können bei großer Kälte kleine Flocken bilden.

Das ist zwar schon lange bekannt – doch bisher gab es keine einheitliche Untersuchungsmethode, mit der man im realen Betrieb der Kältebeständigkeit von Treibstoffen mit wissenschaftlicher Präzision auf den Grund gehen kann. Die TU Wien hat daher nun zusammen mit Partnerunternehmen aus Forschung und Industrie einen klimatisierten Prüfstand entwickelt, mit der sich nun Kraftstoffe zusammen mit Tank- und Leitungssystem zuverlässig auf Wintertauglichkeit überprüfen lassen. Der Prüfstand ist für unterschiedlichste Arten von Treibstoff geeignet – von gewöhnlichem Diesel, über Diesel aus recyceltem Speiseöl bis zu E-Fuels oder speziellen neuen Flugzeugtreibstoffen auf Basis von Bioabfällen.

Bisher keine einfache, einheitliche Testmethode

Dass ein neuer, zuverlässiger Prüfstand für Kraftstoffe nötig ist, stellte sich bereits im Rahmen eines anderen Projekts heraus: Die Deutsche Wissenschaftliche Gesellschaft für nachhaltige Energieträger, Mobilität und Kohlenstoffkreisläufe (DGMK) untersuchte gemeinsam mit verschiedenen Automobilfirmen und Kraftstoffherstellern den Einfluss des Kraftstoffs und der Fahrzeugtechnologie auf die Winterfestigkeit aktueller Dieselfahrzeuge.

„Dabei zeigte sich, dass die unterschiedlichen Projekt-Teams in ihren Häusern ganz unterschiedliche Testanlagen für die Untersuchung von Kraftstoffen betreiben“, sagt Prof. Bernhard Geringer vom Institut für Fahrzeugantriebe und Automobiltechnik der TU Wien. „Die Tests sind nicht alle gleich realitätsnah und führen somit auch nicht zu denselben Ergebnissen. So wurde die Wichtigkeit erkannt, einen einheitlichen Prüfstand und ein einheitliches Prozedere zu entwickeln.“

An der TU Wien wurde nun ein passendes Testsystem entwickelt und aufgebaut: Es ist klimatisiert und kann auf eine Temperatur von bis zu -45 °C abgekühlt werden. Die Anlage enthält den für die Bewertung der Winterfestigkeit entscheidenden Teil des Fahrzeugs, nämlich das Niederdruck-Kraftstoffsystem. „Wir haben unterschiedlichste Versuchskraftstoffe getestet und die Temperaturen, Drücke und Durchflüsse im Kraftstoffsystem gemessen“, erklärt Bernhard Geringer. Wird der Test bestanden, wird ein weiterer Test bei tieferer Temperatur durchgeführt. Die tiefste Temperatur mit positivem Testergebnis gilt als Betriebsgrenze für den Kraftstoff.

Reproduzierbar und verlässlich

Die Prüfstandmethode wurde umfassend untersucht und mit Prüfergebnissen verglichen, die an echten vollständigen Fahrzeugen gewonnen wurden – die beiden Methoden stimmen gut miteinander überein. „Wir konnten auch zeigen, dass die Ergebnisse gut reproduzierbar sind, und dass unterschiedliche Prüfstände mit dieser Technologie auch gut miteinander vergleichbare Ergebnisse liefern“, sagt Bernhard Geringer.

Damit konnte das Ziel erreicht werden – nämlich eine zeit- und kostensparende Messmethode zu entwickeln, damit man zur Überprüfung der Winterfestigkeit eines Kraftstoffs keinen vollständigen klimatisierten Fahrzeugprüfstand benötigt, sondern der Kraftstoff nur noch an den relevanten Fahrzeugsystemen untersucht werden muss. (Florian Aigner)

Externer Link: www.tuwien.at

Neuartiges Netzteil bietet bis zu 50 Jahre Lebensdauer

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 17.11.2022

Ausgründung „Digital Power Systems“ des KIT entwickelt ultralanglebige industrielle Stromversorgungen

Im Haushalt, im Büro, in der Industrie: Schaltnetzteile sind in unserem Alltag allgegenwärtig. Sie wandeln Wechselstrom der Hausleitung in Gleichstrom um, den Smartphone, Laptop und Co. genauso benötigen wie Ladestationen für E-Autos und ganze Logistik- oder Rechenzentren. Bislang müssen diese nach üblicherweise neun Jahren Dauerbetrieb ausgetauscht werden. Die Ausgründung des Karlsruher Instituts für Technologie (KIT) Digital Power Systems (DPS) zeigte in Tests nun Netzteile mit 50 Jahren Lebensdauer.

Heutige Schaltnetzteile sind zwar leicht und kompakt, wegen der darin verbauten Elektrolytkondensatoren aber auch fehleranfällig. Deutlich langlebiger sind Folienkondensatoren. Diese benötigen aber bis zu zehnmal mehr Platz – bis jetzt: „Wir haben ein digitales Regelungsverfahren entwickelt, das es uns erlaubt, Folienkondensatoren platzsparend einzusetzen“, sagt DPS-Geschäftsführer Michael Heidinger. Dadurch entstehe ein viel geringerer Wartungsaufwand als bei gewöhnlichen Netzteilen: „Die Technologie ist ein Gamechanger für alle Bereiche, wo es auf Zuverlässigkeit ankommt“, sagt Heidinger. „Etwa bei Rechenzentren oder Logistikzentren oder der Flugsicherheitsbeleuchtung.“ Denn Serviceeinsätze um defekte Netzteile auszutauschen, kosteten ein Vielfaches des Gerätpreises selbst.

Lebensdauer fünfmal höher als bei Netzteilen mit Elektrolytkondensator

Gemeinsame Tests mit dem Lichttechnischen Institut des KIT haben eine Lebensdauer der Netzteile von 50 Jahren bei 40 Grad Umgebungstemperatur nachgewiesen. „Damit wird die Lebensdauer von etablierten Netzteilen etwa um das Fünffache übertroffen“, sagt Heidinger. Dabei sei noch kein Netzteil ausgefallen, sodass die Tests fortgesetzt würden. „Es ist also noch Luft nach oben.“

Digitale Regelung spart Platz

Das neuartige digitale Regelungsverfahren, welches es erlaubt, Folienkondensatoren bei nur leicht gesteigertem Platzbedarf einzusetzen, läuft auf einem im Netzteil eingebauten Mikroprozessor. Es erkennt störende Umgebungseinflüsse, sodass beispielsweise höhere Spannungsschwankungen am Folienkondensator ausgeglichen werden können. Dadurch sind Speicherkondensatoren mit geringerer Kapazität ausreichend. Möglich sei diese Technologie erst mit der Verbreitung von sehr leistungsstarken Mikroprozessoren geworden, erklärt Heidinger.

Einsatz in der Luftsicherheit

Eingesetzt wird das Netzteil bereits bei der Sicherheitsbeleuchtung – auch Befeuerung genannt – an Hindernissen für Flugzeuge wie Industriekamine, Windräder oder Funkmasten. Ausgetauscht werden können defekte Netzteile dort meist nur umständlich und teuer mithilfe von Industriekletternden. (mex)

Externer Link: www.kit.edu

Ultrakalte Mini-Tornados

Medieninformation der Universität Innsbruck vom 31.10.2022

Quanten-Wirbel klarer Hinweis auf Suprafluidität

Ein Team von Quantenphysikern um die dreifache ERC-Preisträgerin Francesca Ferlaino hat eine neue Methode entwickelt, mit der Wirbel in dipolaren Quantengasen beobachtet werden können. Diese Quanten-Wirbel gelten als eindeutiger Hinweis für Suprafluidität, das reibungsfreie Strömen eines Quantengases, und wurden nun erstmals an der Universität Innsbruck in dipolaren Gasen experimentell nachgewiesen.

Wirbel sind in der Natur allgegenwärtig: Durch Rühren lassen sich Wasserstrudel erzeugen. Wird die Atmosphäre aufgewühlt, können gewaltige Tornados entstehen. So verhält es sich auch in der Quantenwelt, nur dass dort viele identische Wirbel gleichzeitig entstehen – der Wirbel ist quantisiert. In vielen Quantengasen konnten solche quantisierten Wirbel bereits nachgewiesen werden. „Das ist deshalb interessant, weil solche Wirbel ein klarer Hinweis für das reibungsfreie Strömen eines Quantengases – die sogenannte Suprafluidität – sind“, sagt Francesca Ferlaino vom Institut für Experimentalphysik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften.

Neue Methode erzeugt Quantenwirbel

Ferlaino forscht mit ihrem Team an Quantengasen aus stark magnetischen Elementen. Für solche dipolaren Quantengase, in denen die Atome stark wechselwirken, konnten die Quanten-Wirbel bisher noch nicht nachgewiesen werden. Die Wissenschaftler haben nun eine neue Methode entwickelt: „Wir nutzen die Richtungsabhängigkeit unseres Quantengases aus Dysprosium, dessen Atome sich wie viele kleine Magneten verhalten, um das Gas umzurühren“, erklärt Manfred Mark aus dem Team von Francesca Ferlaino. Dazu legen die Wissenschaftler ein Magnetfeld so an ihr Quantengas an, dass dieses zunächst runde, pfannkuchenartig geformte Gas aufgrund von Magnetostriktion elliptisch verformt wird. Diese ebenso einfache wie wirkungsvolle Idee geht auf einen theoretischen Vorschlag zurück, den ein Theorieteam der Universität Newcastle unter der Leitung von Nick Parker, dem auch Thomas Bland, der Mitautor der aktuellen Arbeit, angehörte, vor einigen Jahren gemacht hatte. „Indem wir das Magnetfeld drehen, können wir das Quantengas rotieren lassen“, erklärt Lauritz Klaus, Erstautor der Arbeit. „Wenn es sich schnell genug dreht, dann bilden sich im Quantengas kleine Wirbel aus. So versucht das Gas, den Drehimpuls auszugleichen.“ Bei ausreichend hoher Rotationsgeschwindigkeit bilden sich entlang des Magnetfelds auffällige Streifen mit Wirbeln. Diese sind ein besonderes Charakteristikum dipolarer Quantengase und wurden nun an der Universität Innsbruck zum ersten Mal beobachtet.

Nächste Ziel Suprasolidität

Die nun in der Fachzeitschrift Nature Physics präsentierte neue Methode soll in Zukunft zur Untersuchung der Suprafluidität in suprasoliden Zuständen eingesetzt werden, in denen Quantenmaterie gleichzeitig fest und flüssig ist. „Es ist immer noch eine große offene Frage, inwieweit die neu entdeckten suprasoliden Zustände tatsächlich supraflüssig sind, und diese Frage ist heute noch sehr wenig erforscht.“

Diese Arbeit entstand in Zusammenarbeit mit Giacomo Lamporesi von der Universität Trient und dem Theoretiker Russell Bisset von der Universität Innsbruck und wurde unter anderem vom Europäischen Forschungsrat ERC, dem österreichischen Wissenschaftsfonds FWF und der Österreichischen Akademie der Wissenschaften ÖAW finanziell unterstützt.

Originalpublikation:
Observation of vortices and vortex stripes in a dipolar condensate. Lauritz Klaus, Thomas Bland, Elena Poli, Claudia Politi, Giacomo Lamporesi, Eva Casotti, Russell N. Bisset, Manfred J. Mark, and Francesca Ferlaino. Nature Physics 2022

Externer Link: www.uibk.ac.at