Mikro-Sensoren überwachen Flüssigkeitseigenschaften

Presseaussendung der TU Wien vom 07.07.2014

Winzige Mikrostrukturen schützen große hydraulische Maschinen. An der TU Wien wurden piezoelektrische Sensoren entwickelt, mit denen sich die Eigenschaften von Flüssigkeiten messen lassen.

Wenn Öl altert und seine Eigenschaften verändert, ist das für viele Maschinen ein Problem. An der TU Wien wurden nun Sensoren entwickelt, mit denen man jederzeit den Zustand des Öls messen kann. Sie funktionieren mit Hilfe eines winzigen Aluminiumnitrid-Balkens in Mikrometergröße, der zum Schwingen angeregt wird. Aus dem Widerstand, den das Öl dieser Schwingung entgegensetzt, kann der Zustand des Öls ermittelt werden.

Teure Wartungsarbeiten verhindern

Um die Qualität von Maschinenöl zu messen, werden heute oft aufwändig Proben gezogen und im Labor untersucht. Wenn große Spezialhydraulikmaschinen aus diesem Grund tagelang nicht verwendet werden können, kostet das viel Geld. „Wir haben uns daher das Ziel gesetzt, einen Mikro-Sensor zu entwickeln, der direkt in der Maschine Dichte und Viskosität des Öls messen kann und somit jederzeit Auskunft über den Alterungszustand des Öls gibt“, sagt Prof. Ulrich Schmid vom Institut für Sensor- und Aktuatorsysteme der TU Wien. Sein Team arbeitete bei dem Projekt mit dem Exzellenzzentrum für Tribologie AC2T in Wiener Neustadt zusammen.

Schwingende Mikro-Balken

Das Herzstück des neuen Sensors ist ein winziger Balken aus Silizium, mit einer Oberfläche aus Aluminiumnitrid und einer Größe von ca. 2500×1300 µm. Seine Schwingungseigenschaften hängen stark von der umgebenden Flüssigkeit ab und können sehr präzise gemessen werden.

Auch bei Rasterkraftmikroskopen macht man sich Schwingungen ähnlicher Balken zu Nutze: Dort muss die Schwingung allerdings mit einem Laserstrahl ausgelesen werden. Das wäre für einen Öl-Test-Chip jedoch viel zu aufwändig.

Das Team der TU Wien entwickelte eine rein elektronische Lösung. Die verwendete Aluminiumnitrid-Schicht ist piezoelektrisch. Es kann durch das Anlegen einer elektrischen Spannung zum Schwingen angeregt werden. „Wenn der Balken schwingt und sich verformt, dann entstehen an der Oberfläche freie elektrische Ladungsträger und die Leitfähigkeit ändert sich“, erklärt Martin Kucera, Dissertant von Prof. Schmid. Die Schwingung kann also sowohl elektronisch angeregt als auch elektronisch ausgelesen werden.

Entscheidend war die Entwicklung einer speziellen elektronischen Schaltung: Das Messsignal wird auf das Eingangssignal zurückgeführt, diese Rückkoppelungsschleife ermöglicht eine sehr genaue Messung der Resonanzeigenschaften des Balkens. Dabei war eine effiziente Rauschfilterung nötig, damit nur das gewünschte Signal verstärkt wird, nicht aber ein störendes Zufallsrauschen.

Resonanzeffekte für Präzisions-Messungen

Resonanzphänomene kennt man aus vielen technischen Bereichen – etwa das Rütteln der Waschmaschine, bei einer bestimmten Umdrehungszahl. Die Resonanzfrequenz der Waschmaschine hängt davon ab, mit wie viel Wäsche sie beladen ist, das Resonanzverhalten des Aluminiumnitrid-Balkens wird von der Temperatur, der Dichte und der Viskosität der umgebenden Flüssigkeit beeinflusst.

Ein großer Vorteil der neuen Messmethode ist, dass sie sich gut in bereits verwendete Systeme einbauen lässt. Aluminiumnitrid ist ein Standardmaterial, das heute in jeder Halbleiterfabrik sehr einfach eingesetzt werden kann. Die verwendete Elektronik lässt sich problemlos miniaturisieren, zum Anregen der Schwingung braucht es keine aufwändigen technischen Vorrichtungen. Man kann deshalb das Messsystem kompakt ohne Schwierigkeiten in einen Multifunktions-Chip einbauen, der auch noch andere wichtige Daten in der Maschine misst.

Eine bereits zum Patent angemeldete, spezielle Ausführungsform dieser Forschungsergebnisse kann besonders vorteilhaft bei großen und teuren Maschinen angewendet werden. (Florian Aigner)

Originalpublikationen:
Applied Physics Letters
Sensors and Actuators B

Externer Link: www.tuwien.ac.at

Schnelle Gebäudeinspektion aus der Luft

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.07.2014

Viele Bauwerke in Deutschland sind sanierungsbedürftig. Gründe hierfür sind oftmals alternde Bausubstanzen und Umwelteinflüsse. Fliegende Prüfroboter könnten Inspektionen künftig beschleunigen, vereinfachen und somit das Sicherheitsrisiko senken.

Leise surrend schwebt der Flugroboter an dem Hochhaus empor. Langsam schraubt sich der mit acht Rotoren ausgerüstete Miniflieger nach oben, bis zum 11. Stock. Dort soll er die Fassade auf Schäden wie Risse, defekte Fugen, abgeplatzten und bröckelnden Beton untersuchen. Im Abstand von zwei Metern zum Gebäude scannt der Oktokopter das Mauerwerk ab. Mit an Bord ist eine hochauflösende Digitalkamera, die detailgenaue Aufnahmen macht – jedes Gebäudeteil wird erfasst. Zudem ist der Materialprüfer mit Sensoren bestückt, die Windböen ausgleichen, für stabile Fluglagen sorgen und Kollisionen mit dem Bauwerk verhindern. Während sich der ferngesteuerte Roboter meterweise vorarbeitet, wird er aufmerksam von Christian Eschmann beobachtet. Er ist Forscher am Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP in Saarbrücken, der Mikrofluggeräte für Bauwerksinspektionen entwickelt und adaptiert.

Gebäude, Industrieanlagen und Brücken müssen hohe Lasten tragen, sie sind Wind und Wetter ausgesetzt. Viele Bauwerke in Deutschland wurden in den Nachkriegsjahren errichtet und weisen mittlerweile Alterungsschäden auf. »Um ihren Zustand zu kontrollieren und Gefährdungen für Menschen auszuschließen, muss derzeit bei schwer zugänglichen Bauwerken noch ein großer Aufwand betrieben werden«, sagt Eschmann. Bislang inspizieren Prüfingenieure den Beton bei den vorgeschriebenen Prüfungen mit dem bloßen Auge, eventuelle Risse tragen sie manuell in 2D-Karten ein – eine fehlerträchtige Vorgehensweise. Hinzu kommt, dass sich schwer zugängliche oder einsehbare Stellen oftmals nur mit Helikoptern, Kränen, Steigerfahrzeugen, Industriekletterern und Gerüsten erreichen lassen.

3D-Modellbilder geben Aufschluss über Zustand der Bausubstanz

Im Vergleich zu vielen konventionellen Verfahren ist die Inspektion mithilfe eines Flugroboters günstig und kann in zeitlich kürzeren Intervallen erfolgen. Zudem lässt sich die Inspektionsdauer deutlich verkürzen, meist ohne dass es zu Einschränkungen bei der Nutzung der Bauwerke kommt. »Für eine 20 mal 80 Meter große Fassade benötigt ein Prüfingenieur etwa zwei bis drei Tage. Unser Oktokopter braucht dafür drei bis vier Stunden«, sagt der Forscher. Risse und andere Mängel können nun hochauflösend digital fotografiert werden. Schnelle Rückschlüsse auf den Zustand der Bausubstanz sind so möglich. Falls erforderlich lässt sich der Oktokopter zusätzlich mit einer Thermographiekamera ausstatten, um beispielsweise die Isolierung von Gebäuden zu prüfen.

Die Bilderausbeute ist hoch: Bereits nach einem 15-minütigen Flug fallen bis zu 1200 Fotos an. Am Computer werden die Einzelaufnahmen zu einem Gesamtbild zusammengesetzt, die entstehenden 2D- und 3D-Datenmodelle stellen den visuell abbildbaren Zustand der Bausubstanz dar. Nicht benötigte, überschüssige Aufnahmen soll eine Software künftig automatisiert löschen. Geplant ist zukünftig eine komplette Software-Suite inklusive Schadenserkennung, Bildverarbeitung, Datenbank und Dokumentation sowie die Automatisierung aller Vorgänge – dies umfasst unter anderem das Zusammenfügen der Einzelbilder und das Ermitteln der Rissmuster.

Zu seiner ersten Inspektion ging der Oktokopter bereits 2011 in die Luft. Seither hat er zahlreiche Test-Messflüge absolviert. Bislang muss er noch manuell gesteuert werden. Eschmann und seine Kollegen arbeiten aktuell an Navigationssensoren, die künftig den Flugroboter steuern. Nach einem vorgegebenen Muster sollen sie den Oktokopter an Fassaden entlang lotsen – Etage für Etage, von einer Seite zur anderen. »Das ist ein bisschen wie Fliegen auf Schienen«, sagt der Ingenieur. Dieser Automatisierungsprozess werde aber sicherlich noch ein Jahr Entwicklungsarbeit beanspruchen, so der Forscher. Umstehende und Passanten seien durch den Einsatz des Flugroboters nicht gefährdet. Das Gerät ist mit acht Elektromotoren ausgerüstet. Sollte einer ausfallen, kann es jederzeit sicher heruntergeholt werden.

»Sachverständige und eine handnahe Prüfung können durch unser Mikroflugzeug nicht ersetzt werden. Der Oktokopter beschleunigt aber das Prüfverfahren und ermöglicht ein permanentes Monitoring und eine Dokumentation von Anfang an. Ausführungsmängel und Gewährleistungsansprüche lassen sich frühzeitig erkennen, erforderliche Maßnahmen zur Instandsetzung rechtzeitig einleiten. Das heißt mehr Sicherheit für Gebäude und Menschen«, resümiert Eschmann.

Externer Link: www.fraunhofer.de

Phasenkontrast verbessert Mammografie

Medienmitteilung der ETH Zürich vom 15.05.2014

Mithilfe des Phasenkontrast-Röntgens ist es Forschenden der ETH Zürich, des Paul Scherrer Instituts (PSI) und des Kantonsspitals Baden gelungen, Mammografien zu erstellen, anhand derer Brustkrebs und dessen Vorstufen präziser beurteilt werden können. Das Verfahren könnte dazu beitragen, Biopsien gezielter einzusetzen und Nachfolgeuntersuchungen zu verbessern.

Die Forscherinnen und Forscher haben ein bildgebendes Verfahren für die Mammografie weiterentwickelt: die Röntgenphasenkontrast-Mammografie. Damit können sie die Art der Mikroverkalkungen im Brustgewebe besser als mit heutiger Mammografietechnik erkennen und sie so einer Erkrankung zuordnen. Dies dürfte dazu beitragen, verdächtige Befunde gezielter untersuchen zu können. Eine entsprechende Studie wurde soeben in der Fachzeitschrift «Nature Communications» veröffentlicht.

Der Vorteil der neuen Technik ist, dass sie äusserst scharfe, detail- und kontrastreiche Bilder liefert. Sie bildet Strukturen ab, die mit der herkömmlichen Röntgenmammografie nicht oder nur unscharf zu erkennen sind. Mit dem Phasenkontrast-Röntgen können zwei Typen von Verkalkungen, die in einer Brust vorhanden sein können, unterschieden werden. Dies könnte Ärzten zukünftig helfen, nicht-invasiv festzustellen, wo am ehesten eine bösartige Brustveränderung vorhanden ist.

Vorsorgeuntersuchungen für Brustkrebs zielen darauf ab, (gruppierte) Mikroverkalkungen im Brustgewebe frühzeitig zu entdecken. Denn Verkalkungen treten meist dort auf, wo sich rasch teilende Zellen absterben. Sie weisen deshalb oft bereits in einem Frühstadium auf eine Erkrankung hin. Mammografien erlauben aber keine definitiven Rückschlüsse auf die Ursache der Verkalkungen, so dass Ärzte für die Diagnose Gewebsbiopsien nehmen. Die Proben werden dann von Fachärzten für Pathologie unter dem Mikroskop untersucht. Erst so lässt sich genau festlegen, welche Erkrankung die Kalkablagerungen verursacht hat.

Phasenkontraströntgen auf dem Weg in Klinikalltag

Wissenschaftler des PSI erforschen seit einigen Jahren, wie man den Phasenkontrast von Röntgenstrahlung für die Bildgebung nutzen kann. Lange galt es als unmöglich, die Röntgenstrahlung, wie sie in Kliniken verwendet wird, für das Phasenkontrastverfahren einzusetzen, weil diese nicht kohärent ist und sich aus verschiedenen Wellenlängen zusammensetzt. «Dass wir dies nun trotzdem geschafft haben, um damit eine neue, aussagekräftigere bildgebende Methode zu entwickeln, ist ein grosser Schritt hin zu einer Anwendung im klinischen Alltag», freut sich Marco Stampanoni, Professor am Institut für Biomedizinische Technik der ETH Zürich und Leiter der Röntgentomographie-Gruppe am PSI. Für das Ziel, den Röntgenphasenkontrast in die Klinik zu bringen, hat er 2012 auch einen ERC Consolidator Grant erhalten.

Beim Phasenkontrast-Röntgen wird nicht nur gemessen, wie stark Gewebe Röntgenstrahlung absorbiert, sondern auch, wie das Gewebe die Strahlung seitlich ablenkt (beugt) und wie es die Abfolge von Schwingungstal und Schwingungsberg der Strahlungswelle – die sogenannte Phase – beeinflusst. Je nach Gewebeart ist auch das gesamte Streuverhalten unterschiedlich.

Um die Phasenverschiebung messen zu können, setzen die Wissenschaftler drei sehr feine Gitter ein. Das Erste befindet sich unmittelbar nach der Röntgenquelle. Es sorgt dafür, dass das Objekt mit der nötigen Kohärenz beleuchtet wird. Ein weiteres Gitter ist nach dem Objekt platziert und generiert ein Interferenzsignal, das vom dritten Gitter analysiert wird. Mit Algorithmen gewinnen die Forschenden aus dem Interferenzsignal die Absorptions-, Phasen- und Streueigenschaften des Objekts. Aus diesen Informationen können scharfe und kontrastreiche Bilder generiert werden, die Weichteile besonders detailreich zeigen.

Zufallsentdeckung führt zu Erfolg

Am Anfang dieser Entwicklung stand eine unerwartete Entdeckung von Prof. Stampanonis Mitarbeiter Zhentian Wang: «Per Zufall beobachtete ich bei meinen Versuchen mit der Phasenkontrasttechnik, dass sich Mikroverkalkungen in Brustgewebe in ihren Absorptions- und Streusignalen unterscheiden. Das war der entscheidende Hinweis darauf, dass mit der neuen Methode verschiedene Typen von Verkalkungen abgebildet werden können», sagt er. Daraufhin ackerte Wang die medizinische Literatur durch und fand Studien, die aufzeigten, dass ein bestimmter Verkalkungstyp häufiger mit Brustkrebs gekoppelt ist. «Dadurch wurde mir klar, dass meine Beobachtung für die Brustkrebsdiagnose interessant sein könnte», sagt der Forscher.

Klinisch relevant

Das hohe Potenzial der neuen Methode wird auch von den Ärztinnen und Ärzten, die an dieser Studie mitgearbeitet haben, bestätigt: «Wir erhoffen uns von der Methode, dass sie im Vergleich zur herkömmlichen Mammographie besser aufzeigt, wo im Brustgewebe eine Biopsie gemacht werden muss», sagt Rahel Kubik, Chefärztin am Institut für Radiologie des Kantonsspitals Baden. Noch sei die Methode nicht bereit für den Einsatz in der Klinik, da sie erst an grösseren Fallzahlen evaluiert werden müsse, gibt die Radiologin zu bedenken. «Zuversichtlich stimmt jedoch die Tatsache, dass sich die Befunde der neuen Methode den bekannten unterschiedlichen mikroskopischen Verkalkungsarten zuordnen lassen», bestätigt Gad Singer, Chefarzt am Institut für Pathologie am Kantonsspital Baden.

Ob die Technik den Transfer in die Klinik schafft, hängt nicht zuletzt von der notwendigen Strahlendosis ab, die eingesetzt werden muss. «Das Ziel wird sein, mit der Strahlendosis einer herkömmlichen Mammografie die Qualität, die Auflösung und die Diagnostik so zu verbessern, dass Tumore präziser beurteilt werden können», sagt Nik Hauser, Chefarzt der Frauenklinik und Leiter des Interdisziplinären Brustzentrums am Kantonsspital Baden. «Wenn wir Tumore genauer detektieren und abgrenzen können und dies exaktere Abschätzungen vor einer Operationen ermöglicht, dann wird sich die neue Methode schnell durchsetzen», ist er überzeugt. Die Basis für ein neuartiges Gerät sei gelegt, sagt Hauser. «Wir sind optimistisch, dass wir bald weitere Ergebnisse präsentieren können.»

Bislang arbeiteten die Forscherinnen und Forscher mit einem Prototyp. Dieser ist für den Einsatz in der Klinik noch nicht geeignet. Ausserdem untersuchten sie vorerst Proben von Brustgewebe, nicht aber direkt Patientinnen. «Eines unserer nächsten Ziele wird sein, ein kliniktaugliches Gerät zu entwickeln», sagt Marco Stampanoni.

Literaturhinweis:
Wang Z, Hauser N, Singer G, Trippel M, Kubik-Huch RA, Schneider CW, Stampanoni M. Non-invasive classification of microcalcifications with phase-contrast X-ray mammography. Nature Communications, published online 15th May 2014. DOI: 10.1038/ncomms4797

Externer Link: www.ethz.ch

Schaltungen und Sensoren aus dem Drucker

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 30.04.2014

Drucker mausern sich zu Multitalenten. Sogar Sensoren und elektronische Bauteile können inzwischen auf 2D- und 3D-Oberflächen gedruckt werden. Eine neue, robotergestützte Fertigungsstraße automatisiert den Prozess.

Drucker sind heute in jedem Büro unersetzlich. Aber auch in der Mikroelektronik, Mikrosystemtechnik und Sensorik spielen digitale Drucktechnologien eine wichtige Rolle: Am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Bremen stellen Forscher mit unterschiedlichen Druckverfahren elektronische Bauteile und Sensoren her. Winzige Widerstände, Transistoren, Leiterbahnen und Kondensatoren werden zunächst am Bildschirm entworfen und anschließend direkt auf zwei- und dreidimensionale Oberflächen, beispielsweise auf Platinen, aufgebracht. Anstelle von Druckfarben verwenden die Wissenschaftler »funktionelle Tinten« – elektronische Materialien in flüssiger und pastöser Form. Das Potenzial für gedruckte Elektronik ist groß – es reicht vom Digitalthermometer mit elektronischen Schaltkreisen über Solarzellen von der Rolle bis hin zu intelligenten Verpackungen mit eingebauten Sensoren.

Um flache und dreidimensionale Bauteile mit gedruckter Elektronik automatisiert herstellen zu können, haben die Wissenschaftler am IFAM eine robotergestützte Fertigungsstraße in Betrieb genommen, die gleich mehrere Druckverfahren kombiniert: Sieb-, Inkjet-, Dispens- und Aerosol-Jet-Druck sind modular in der Produktionseinheit integriert. Die Fertigungsstraße mit zentraler Robotereinheit, Bauteilzuführung, Drucksystemen und Wärmebehandlungsöfen versetzt die Forscher in die Lage, Oberflächen seriennah zu funktionalisieren.

Dank der unterschiedlichen Technologien lassen sich sowohl flächige als auch dicke und feine Strukturen auf die Substrate drucken. Mit dem Aerosol-Jet-Verfahren etwa können die Forscher feinste Strukturen mit Breiten von nur 10 Mikrometern kontaktfrei auf das Bauteil aufbringen. Hierbei wird die leitfähige Tinte pneumatisch zerstäubt und das entstehende Aerosol über einen Schlauch zum Druckkopf geführt. Dieser fokussiert den Strahl auf die Substratoberfläche, die uneben sein kann – sogar gekrümmte Oberflächen lassen sich auf diese Weise bedrucken. Auch unterschiedliche Schichtdicken und mehrlagige Strukturen sind möglich. »Eine Platine kann beispielsweise nicht nur mit Schaltkreisen, sondern auch gleich mit einer Schicht, die sie vor Korrosion schützt, ausgestattet werden«, sagt Dr. Volker Zöllmer, Abteilungsleiter am IFAM.

Doch wie funktioniert ein »Druckvorgang« im Detail? Nachdem per Steuerungssoftware je nach gewünschtem Endprodukt die Reihenfolge und Art der Drucker festgelegt wurde, greift der Roboter den Probenträger, also beispielsweise eine Platine, und befördert diese zur ersten Druckstation. Um 200 Mikrometer breite Leiterbahnen in die Oberfläche zu integrieren, wird zunächst der Dispenser, ein Dosiersystem mit Piezoantrieb, angesteuert. Über ein Ventil lässt sich das Volumen und die Tropfengröße der viskosen Medien – etwa eines elektrisch leitfähigen Klebstoffs – exakt dosieren. Soll die Leiterbahn zu einem Sensor führen, wird die Platine im nächsten Schritt an den Aerosoldrucker weitergeleitet. Dieses Spezialgerät für feinste Strukturen druckt den Sensor auf. Je nach Anwendung werden weitere Drucker angesteuert. Abschließend erfolgt eine thermische Nachbehandlung im Ofen, um die gewünschten Eigenschaften zu erhalten. Die bedruckbaren Substrate können die Größe eines DIN-A3-Blatts haben, die Höhe der Bauteile kann mehrere Zentimeter betragen.

Oberflächen maßgeschneidert funktionalisieren

Bei der Wahl der zu be- und verdruckenden Materialien sind den Experten vom IFAM kaum Grenzen gesetzt: Als verdruckbare Tinten kommen Metalle, Keramiken, elektrisch leitfähige Polymere, aber auch Biomaterialien wie Proteine und Enzyme in Frage. Diese Medien applizieren die Wissenschaftler je nach Anforderung auf Glas, Textilien, Metalle, keramische Platten und viele andere Werkstoffe. »Mit der neuen Fertigungsstraße können wir verschiedenste Materialien kombinieren und Produkte nach Kundenwunsch fertigen. Im Prinzip erhalten Bauteile völlig neue Funktionen – so kann eine Glasscheibe mit integriertem Temperatursensor Wärme messen. Gedruckte Sensorik eignet sich auch zur Bauteilüberwachung, um frühzeitig Risse und Schädigungen zu erkennen. Zum Beispiel können aerosolgedruckte Dehnungsmessstreifen auf einer Aluminiumoberfläche rechtzeitig auf Materialermüdungen in Karosseriebauteilen hinweisen«, erläutert Zöllmer.

Mit der robotergestützten Fertigungsstraße verkürzen sich auch die  Entwicklungzeiten. Um Bauteile mit Sensorstrukturen auszurüsten, werden die Sensoren häufig nachträglich in die Bauteile integriert – ein zeitaufwändiger Prozess. Die IFAM-Forscher benötigen – je nach Anwendung – nur wenige Sekunden bis Minuten, um ein Bauteil zu bedrucken. Von den kurzen Entwicklungszeiten könnten viele Branchen profitieren, wie die Automobil- und Luftfahrtbranche, aber auch die Mikrosystemtechnik. »Wir können die Industrie bei der Produktentwicklung unterstützen, Klein- und Nullserien lassen sich mit der Fertigungsstraße herstellen«, sagt Zöllmer. Dabei hat der Kunde auch die Möglichkeit, die modulare Fertigungsstraße mit eigenen Prozessen zu erweitern.

Externer Link: www.fraunhofer.de

Diamanten mit Röntgentechnik aufspüren

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.04.2014

Röntgenstrahlen durchdringen Objekte und geben Informationen über deren Inneres preis. Mit zwei Röntgenspektren lassen sich unterschiedliche Materialien identifizieren. Ein neuer Algorithmus ermöglicht es, Diamanten in Gestein zu finden.

Das Entwicklungszentrum Röntgentechnik EZRT in Fürth hat einen Demonstrator entwickelt, der Diamanten in Gestein vulkanischen Ursprungs aufspürt. Das EZRT ist ein Bereich des Fraunhofer-Instituts für Integrierte Schaltungen IIS, der eng mit dem Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP in Saarbrücken kooperiert. Die Schwerpunkte liegen bei den Themen Röntgensensorik, Computertomographie, Bildverarbeitung und optischen 3D-Prüfsystemen sowie -Applikationen.

Das Verfahren basiert auf dem Dual-Energy-Röntgen. Dabei werden zwei Bilder desselben Objekts mit zwei unterschiedlichen Röntgenspektren erzeugt. Ein am EZRT entwickelter Algorithmus filtert aus den beiden Aufnahmen die jeweiligen Materialinformationen heraus. Die neue Technologie ist in der Lage, wenige Millimeter große Diamanten in Kimberlitgestein mit Korngrößen bis 50 Millimeter zu entdecken. Zusammen mit den Kollegen des Fraunhofer-Instituts für Optronik, Systemtechnik und Bildauswertung IOSB in Karlsruhe arbeiten die Forscher gerade daran, den Demonstrator weiterzuentwickeln. Ziel ist ein Prototyp, der das Gestein vollautomatisch an einem sortiertypischen Bandgerät prüft.

Die Diamantenindustrie nutzt bereits heute Röntgenstrahlen, um die begehrten Edelsteine zu finden. Die aktuellen Verfahren können die Diamanten jedoch nur an der Oberfläche des Gesteins aufspüren. Die mit Röntgenlicht bestrahlten und angeregten Diamanten leuchten im optischen Bereich. »Bei besonders reinen Exemplaren funktioniert die Technik aber nicht, denn gerade diese weisen die Leuchteigenschaft unter Röntgenstrahlung nicht auf«, erklärt der Physiker Jörg Mühlbauer vom EZRT. Um die Edelsteine dennoch zu finden, ist es bislang notwendig, das Vulkangestein in sehr kleine Stücke zu zerbrechen. Das verschlingt große Mengen an Wasser und Energie. »Außerdem besteht die Gefahr, dass dabei größere und damit wertvollere Diamanten beschädigt werden«, sagt Mühlbauer.

Durchleuchten statt Zerkleinern

Beim Demonstrator des EZRT wandert das abgebaute Geröll mit einer Geschwindigkeit von drei Metern pro Sekunde durch einen Röntgenapparat hindurch. Die beiden dabei erzeugten Röntgenbilder geben Informationen über die chemische Ordnungszahl der Materialien, der Anzahl der Protonen in deren Atomkern. Diamant ist reiner Kohlenstoff, ein relativ leichtes Element mit der Ordnungszahl 6. In Kimberlit kommen üblicherweise Silikate und Aluminate vor. Je nach Abbaugebiet und Mine pendeln die Ordnungszahlen zwischen 12 und 14. Der neue Algorithmus nutzt diese Informationen. Er verknüpft sie mit den Daten aus den beiden Röntgenbildern, separiert die Diamanten vom Kimberlit und zeigt die Ergebnisse auf zwei getrennten Bildern an.

Die Methode ist nicht auf das Aufspüren von Diamanten begrenzt. Überall dort, wo es gilt, Materialen zu identifizieren und sauber zu trennen, ist ihr Einsatz denkbar. Ein weiteres Anwendungsbeispiel ist die Aufbereitung von Industriekohle. Dort müssen Steine aussortiert oder der Aschegehalt gering gehalten werden. Die Röntgenspürnase könnte außerdem die begehrten Seltenen Erden finden, die in alten Handys, Computern oder Fernsehern versteckt sind und diese nutzbar machen. »Auf die Diamanten kamen wir durch eine Anfrage aus der Branche. Erste Praxistests hat der Demonstrator in einer Diamantmine bereits bestanden. Jetzt wollen wir die Technologie zusammen mit den Kollegen vom IOSB zur Industriereife führen. Unser Ziel ist es, einen industriellen Prüfprozess zu entwickeln, bei dem mehrere Tonnen Gestein pro Stunde durch die Anlage laufen und analysiert werden«, so Mühlbauer.

Mehrere tausend Euro pro Karat

Diamanten gehören zu den teuersten Rohstoffen weltweit. Im Gegensatz zum Goldpreis hielt sich der Diamant-Index 2013 robust auf hohem Niveau. Brillanten, geschliffene und bearbeitete Rohdiamanten, erzielten Ende 2013 Preise von mehreren tausend Euro pro Karat – etwa 0,2 Gramm. Die Edelsteine entstehen unter hohem Druck und großen Temperaturen in Tiefen zwischen 150 bis 650 Kilometern. Gasreiche vulkanische Gesteine und magmahaltige Kimberlite transportieren die Diamanten bei ihren Eruptionen mit Bruchstücken des Erdmantels nach oben. Die größten Diamantenvorkommen befinden sich in Russland, Afrika, Australien, Kanada und Brasilien.

Externer Link: www.fraunhofer.de