Intelligente Kniebandage soll künftig bei Arthrose entlasten

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 07.11.2019

Sportwissenschaftler, Mediziner, Informatiker und Industriepartner entwickeln einen mit Sensoren bestückten Prototyp, der mit selbstlernenden Algorithmen Belastungen einschätzen soll

Die intelligente Kniebandage „Anthrokinemat“ soll Arthrose-Patientinnen und -Patienten künftig bei der richtigen Dosierung ihrer alltäglichen Bewegungen unterstützen. Dabei werden sämtliche relevanten Daten zur Belastung der Gelenke gesammelt und aufs Handy der Betroffenen übertragen. Die Grundlagen für die Entwicklung der Bandage haben in den vergangenen drei Jahren Sportwissenschaftler des Karlsruher Instituts für Technologie (KIT) mit Fördermitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) geschaffen. Partner sind die Universität Bremen sowie der Bandagen-Hersteller Bauerfeind und das Sensortechnikunternehmen ITP. In einem zweiten Forschungsprojekt soll nun ein Prototyp entwickelt werden.

„Bei der Prävention und der Behandlung einer Arthrose-Erkrankung spielt außer Gewicht und Ernährung vor allem das richtige Maß an Bewegung eine wichtige Rolle“, sagt Sportorthopäde Professor Stefan Sell vom Institut für Sport und Sportwissenschaft (IfSS) des KIT. Dieses richtige Maß zu finden, sei allerdings keine einfache Aufgabe und nur wenige Menschen und gut austrainierte Sportlerinnen und Sportler könnten die Signale ihres Körpers ohne fachliche Unterstützung richtig deuten. Der mit zahlreichen Sensoren ausgestattete Anthrokinemat soll Arthrose-Patientinnen und -Patienten deshalb vor dem Überschreiten der Belastungsgrenze per Warnsignal aufs Handy für mögliche Folgeschäden sensibilisieren. „Wer an Arthrose leidet, sollte sich am besten jeden Tag eine gewisse Zeit lang intensiv bewegen“, rät Sell. Eine übermäßige Belastung wie etwa eine mehrstündige Wanderung könne dagegen für Stress in den geschädigten Gelenken sorgen. Die Folge solcher Überbelastung seien oft wochenlange Schmerzen.

Maschinelles Lernen: Algorithmen trainieren mit Bewegungsdaten

Als größte Herausforderung bei der bisherigen Entwicklung der Bandage bezeichnet Professor Thorsten Stein, Leiter des BioMotion Centers am IfSS, die Suche nach einem passenden Algorithmus zum Quantifizieren der Kniebelastung. „Die Sensoren können lediglich Bewegung messen, nicht die Belastung an sich. Bei der Arthrose dürfen die Gelenke aber nicht allzu stark belastet werden – und deshalb müssen wir die Kräfte im Innern des Knies möglichst genau einschätzen können“, betont Stein. Zur Lösung dieses Problems sind Algorithmen des Maschinellen Lernens – künstliche neuronale Netze – im Einsatz. Dabei wird ein Algorithmus mit Bewegungsdaten trainiert: Der Algorithmus lernt im Laufe des Trainingsprozesses automatisch die mit einer Bewegung einhergehenden Kräfte im Knie zu schätzen. Teile dieser Forschungsergebnisse haben die Arbeitsgruppen von Sell und Stein bereits in der Fachzeitschrift Sensors publiziert.

„Die Arthrose ist eine echte Volkserkrankung“, sagt Stefan Sell. Laut den offiziellen Statistiken haben in Deutschland rund 35 Millionen Menschen radiologische Zeichen einer Arthrose und rund zehn Millionen davon sind manifest erkrankt. Weil der Gelenkverschleiß mit steigendem Alter zunimmt, leidet jeder vierte Bundesbürger über 50 Jahre und etwa 80 Prozent der über 75-Jährigen an einer Arthrose. Am häufigsten betroffen ist die Wirbelsäule, ebenfalls weit verbreitet sind Arthrosen an Knie- und Hüftgelenk. (eki)

Publikation:
Bernd J. Stetter, Steffen Ringhof, Frieder C. Krafft, Stefan Sell, Thorsten Stein: Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning. Sensors, 2019. DOI: 10.3390/s19173690.

Externer Link: www.kit.edu

Sanftere künstliche Beatmung

Presseinformation der Fraunhofer-Gesellschaft vom 04.11.2019

In der Intensivmedizin ist die künstliche Beatmung häufig das letzte Mittel, um das Leben eines Patienten zu retten. Leider kann sie mit akuten oder chronischen Lungenschädigungen einhergehen – insbesondere wenn das Beatmungsgerät gegen den Atemimpuls des Patienten arbeitet. Forscherinnen und Forscher der Mannheimer Fraunhofer-Projektgruppe für Automatisierung in der Medizin und Biotechnologie entwickeln einen neuartigen Sensor, mit dessen Hilfe gerade bei Frühgeborenen und Kindern die Beatmung sanfter gestaltet werden soll. Ein Prototyp des Sensors ist vom 18. bis 21. November 2019 auf der MEDICA in Düsseldorf zu sehen (Halle 10, Stand G05).

In der intensivmedizinischen Pflege von Frühchen ist eine künstliche Beatmung aufgrund der unterentwickelten Lunge häufiger notwendig. Dabei können verschiedene Komplikationen auftreten: Ein Volutrauma entsteht, wenn das Beatmungsgerät zu viel Luft in die kleine Lunge presst. Zu einem sogenannten Barotrauma kommt es, wenn der Apparat Luft mit zu hohem Druck einleitet, besonders wenn das Frühchen eigentlich gerade ausatmen möchte. Um beides zu vermeiden, gehen die Ärzte bei den Kleinsten besonders vorsichtig vor. Beispielsweise wird der Tubus nicht wie beim Erwachsenen luftdicht mit der Luftröhre abgedichtet. So kann immer ein wenig Luft entweichen und das Risiko eines Traumas wird verringert. Die optimale Beatmung der kleinen Patienten wird dadurch jedoch erschwert.

Jan Ringkamp und Dr. Jens Langejürgen von der Fraunhofer-Projektgruppe für Automatisierung in der Medizin und Biotechnologie PAMB des Fraunhofer-Instituts für Produktionstechnik und Automatisierung IPA arbeiten deshalb an einem sanfteren Verfahren. Thorax-Monitoring heißt der kleine Apparat, den die Forscher entwickelt haben. »Im Prinzip ist das ein Messgerät, das erkennt, ob ein künstlich beatmeter Patient gerade ein- oder ausatmen möchte«, erklärt Ringkamp. »Damit wäre ein Beatmungsgerät in der Lage, sich ohne Verzögerung an die Wünsche des Patienten anzupassen. Keine Volu- oder Barotraumata mehr und eine optimale Beatmung – so die Vision.«, ergänzt Langejürgen.

Thorax-Monitoring erkennt den Wunsch des Patienten

Das Thorax-Monitoring verwendet zwei Antennen, die sich auf oder neben dem Brustkorb des Patienten anbringen lassen. Die eine sendet eine elektromagnetische Welle aus, die andere empfängt sie. Dabei machen es sich die Wissenschaftler zunutze, dass Muskeln, Fett und Gewebe andere elektrische Eigenschaften besitzen als die Atemluft in der Lunge. Klingt kompliziert, ist aber ganz einfach: Beim Einatmen füllen sich die Lungenflügel mit Luft und dehnen sich aus. In der Luft kommt die elektromagnetische Welle schneller voran als im Gewebe. Beim Ausatmen ist es umgekehrt: Die Lungenflügel fallen in sich zusammen, die elektromagnetische Welle muss sich vor allem durch Gewebe kämpfen und kommt langsamer vorwärts.

Es gibt also einen deutlich messbaren Unterschied zwischen Ein- und Ausatmen, den das Thorax-Monitoring registriert. Das funktioniert auch bei Frühchen und anderen Patienten, die nicht selbst atmen können, dies aber versuchen. »Selbst wenn sich die Lunge nur minimal ausdehnt oder zusammenzieht, wirkt sich das auf den Signalverlauf aus. Wir können im Labor nachstellen, dass wir Änderungen deutlich unter einem Milliliter identifizieren können«, erklärt Ringkamp. »Thorax-Monitoring erkennt also sozusagen den Wunsch des Patienten und kann das Beatmungsgerät anweisen, ihn dabei zu unterstützen. Ein Vorteil unseres Ansatzes besteht darin, dass wir den Patienten hierfür nicht berühren müssen. Dies ist gerade bei der empfindlichen Haut von Frühchen wichtig«, so Langejürgen.

Einen frühen Prototyp haben die Wissenschaftler bereits gebaut und getestet. Im November stellen sie ihn auf der MEDICA dem Fachpublikum in Halle 10 am Stand G05 vor. Zu sehen ist auf dem Messestand eine kleine Puppe, die an einen Beatmungsbeutel angeschlossen ist und von Besuchern beatmet werden kann. Der Körper der Puppe ist mit Wasser gefüllt, ihre künstliche Lunge verdrängt das Wasser im Körper, auf ihrem Brustkorb sind die beiden Antennen angebracht. Ein Bildschirm zeigt das verarbeitete Signal des Thorax-Monitoring.

Externer Link: www.fraunhofer.de

Bessere Versorgung für diabetische Füße

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.10.2019

Menschen mit Typ2-Diabetes leiden oftmals an schlecht heilenden, infizierten Wunden an den Füßen. Bisher dauert es jedoch zwei Tage, um über eine Bakterienkultur die Erreger samt ihrer Resistenzen zu identifizieren, die die Wunde infizieren – und somit ein wirksames Antibiotikum zu finden. Mit Hilfe eines neuartigen Schnelltests von Fraunhofer-Forscherinnen und -Forschern funktioniert dies künftig in einer Stunde.

Fast tausend Menschen erkranken Tag für Tag in Deutschland an Diabetes – mehr als 90 Prozent davon an Typ2-Diabetes. Und das mit steigender Tendenz: Sowohl in Europa als auch weltweit nehmen die Erkrankungszahlen zu. Zu den Begleiterkrankungen bei Typ2-Diabetes gehört unter anderem eine Schädigung von Nervenzellen: Die Betroffenen verlieren das Gefühl in den Extremitäten und ziehen sich häufig schlecht heilende Wunden zu. Diese Wunden werden oft mit verschiedenen Erregern infiziert. Ärzte behandeln daher üblicherweise mit Antibiotika. Das Problem: Nicht jedes Antibiotikum wirkt gegen jeden Erreger, es treten mittlerweile viele Resistenzen auf. Die Mediziner nehmen aus diesem Grund einen Abstrich der Wunde und lassen im Labor eine Bakterienkultur anlegen. Diese gibt Aufschluss über die Art der Erreger ebenso wie über die vorhandenen Resistenzen. Allerdings dauert es zwei Tage, bis ein solches Ergebnis vorliegt. Kritisch ist das unter anderem in Indien, wo die Anreise zum nächsten Krankenhaus oftmals sehr lange dauert und die meist nicht-stationäre Behandlung vielfach erst nach einigen Wochen angepasst werden kann. Auch fördert eine Behandlung mit Breitbandantibiotika oder nicht wirkungsvollen Antibiotika langfristig die weitere Ausbildung von Resistenzen.

Eine Stunde statt zwei Tage

Ein neuartiger Schnelltest ermöglicht es Medizinern, von Anfang an auf das passende Antibiotikum zu setzen. Entwickelt haben ihn Forscherinnen und Forscher der Fraunhofer-Institute für Zelltherapie und Immunologie, Institutsteil Bioanalytik und Bioprozesse IZI-BB (Potsdam) und für Elektronische Nanosysteme ENAS (Chemnitz) gemeinsam mit der Firma BiFlow Systems GmbH und Partnern in Indien im Projekt MIDARDI. Das Bundesministerium für Bildung und Forschung BMBF und das Indo-German Science & Technology Centre IGSTC fördern das Vorhaben. »Mit unserem Schnelltest lässt sich innerhalb von einer Stunde bestimmen, welche Bakterien die Wunde besiedeln und welche Resistenzen sie aufweisen – und somit bereits direkt zu Beginn der Behandlung das passende Antibiotikum auswählen«, sagt Dr. Harald Peter, Gruppenleiter am Fraunhofer IZI-BB.

Statt wie bisher eine Bakterienkultur anzulegen und zu beobachten, wie die Bakterien auf verschiedene Antibiotika reagieren, analysiert der Schnelltest die DNA der Bakterien. Der Arzt nimmt einen Abstrich der Wunde und gibt die Wundflüssigkeit auf den Eingangsbereich der etwa Smartphone-großen Kartusche. Im Inneren werden die Bakterien extrahiert, ihre DNA freigelegt und zerteilt. Auf einem Biosensor, der in der Kartusche integriert ist, befinden sich spezielle Fängermoleküle: Sie bilden das passende Gegenstück zu den Erbgutsträngen der Bakterien bzw. des mutierten Erbguts, das bestimmte Resistenzen hervorruft. Passt ein Erbgutstrang zu einem bestimmten Fänger, bindet dieses DNA-Stück daran, während die Erbgutstränge an allen anderen Fängern durch einen Spülgang entfernt werden. Das Leuchten der fluoreszenzmarkierten bakteriellen DNA verrät, an welchen Fängermolekülen das Erreger-Erbgut gebunden hat – und somit auch, um welche Erreger es sich handelt und welche Resistenzen diese aufweisen.

Das Forscherteam vom Fraunhofer ENAS hat Teile der aufwändigen Probenvorbereitung der DNA-Stränge entwickelt. »Wir haben beispielsweise dabei geholfen, dass die DNA der Erreger in Stücke passender Länge verdaut werden und somit an die immobilisierten Fängermoleküle binden kann«, erläutert Andreas Morschhauser, Gruppenleiter am Fraunhofer ENAS. Die BiFlow Systems GmbH stellte die Kartusche bereit, die sowohl den Biochip aufnimmt als auch das gesamte Probenhandling realisiert. Sie sorgten unter anderem dafür, dass die Flüssigkeiten wie gewünscht durch den Chip bewegt werden – etwa indem elektrisch gesteuert Gas erzeugt wird, das wiederum eine Membran wie einen Ballon aufbläst und somit die Flüssigkeit weiterpumpt. Die Kolleginnen und Kollegen des Fraunhofer IZI-BB konzipierten den Biochip. »Auf 5×5 Millimetern können wir – wenn nötig – bis zu 400 unterschiedliche Fängerstränge unterbringen, in Abständen von weniger als hundert Mikrometern«, beschreibt Dr. Peter den Biosensor.

Auch für andere medizinische Analysen geeignet

Der Schnelltest ist keineswegs auf infizierte Wunden beschränkt. So lässt er sich auch bei Blutvergiftungen oder im Veterinärbereich für eine Mastitis – also eine Milchdrüsenentzündung – bei Milchkühen einsetzen. Nötig ist nur ein anderer Biochip mit angepassten Fängermolekülen. »Innerhalb von etwa zwei Wochen können wir den Biochip an eine andere Fragestellung anpassen«, konkretisiert Dr. Peter. Auch kann der Schnelltest für alle Arten von Proben ausgelegt werden, sei es Wundflüssigkeit, Blut, Urin oder Kot. In etwa zwei bis drei Jahren, so schätzen die Experten, könnte der Schnelltest auf dem Markt sein.

Externer Link: www.fraunhofer.de

Beinprothese mit Gespür verbessert die Gesundheit

Medienmitteilung der ETH Zürich vom 09.09.2019

Erstmals spüren zwei Personen mit Beinamputation oberhalb des Knies ihren künstlichen Fuss und ihr künstliches Bein in Echtzeit. Ermöglicht wird dies durch eine neuartige bionische Prothese mit Sensoren, die mit den Nerven im Oberschenkel verbunden sind. Dank dem Neurofeedback leiden Patienten weniger unter Phantom­schmerzen.

Menschen mit intakten Beinen spüren, wenn sie ihr Knie bewegen oder wenn ihre Füsse den Boden berühren. Ihr Nervensystem nutzt ständig solche sensorischen Rückmeldungen, um die Muskeln präzise zu steuern. Wer eine Beinprothese tragen muss, weiss jedoch nicht so genau, wo sich die Prothese befindet und wie sie sich bewegt. Beim Gehen der Prothese zu vertrauen, ist für diese Personen schwierig, und sie verlassen sich deshalb oft zu stark lediglich auf ihr intaktes Bein. Ihre Beweglichkeit ist daher eingeschränkt, und sie ermüden schnell. Zudem leiden Menschen mit einer amputierten Extremität häufig unter Phantomschmerzen, welchen mit Medikamenten nur schwer beizukommen ist.

Ein internationales Forscherteam unter der Leitung der ETH Zürich und des Lausanner Start-ups Sensars hat nun eine Schnittstelle entwickelt, um eine Beinprothese mit den Nerven im Oberschenkel der Nutzer zu verbinden und so sensorisches Feedback zu ermöglichen. In einer Studie in Zusammenarbeit mit der Universität Belgrad testeten die Wissenschaftler dieses Neurofeedback-System an zwei freiwilligen Prothesenträgern, denen ein Bein oberhalb des Knies amputiert worden ist.

«Unsere Machbarkeitsstudie zeigt, wie vorteilhaft es für die Gesundheit von Beinamputierten ist, eine Prothese zu haben, die mit neuronalen Implantaten arbeitet, um das sensorische Feedback wiederherzustellen», sagt Stanisa Raspopovic, Professor am Institut für Robotik und Intelligente Systeme der ETH Zürich. Er und seine Kollegen berichten darüber in der aktuellen Ausgabe der Fachzeitschrift Nature Medicine.

Künstliche Signale in natürliche umwandeln

In der Studie verwendeten die Wissenschaftler eine kommerziell erhältliche Prothese mit einem elektronischen Hightech-Kniegelenk. An der Sohle des Prothesenfusses befestigten sie Berührungssensoren. Während der dreimonatigen Studiendauer platzierten Chirurgen winzige Elektroden im Oberschenkel der Probanden und verbanden sie mit den dort vorhandenen Beinnerven.

«Das Ziel der Operation war es, Elektroden an den richtigen Stellen im Inneren des Nervs anzubringen, um die Wiederherstellung von lebensechtem sensorischem Feedback zu ermöglichen und die Stabilität der Elektroden zu gewährleisten», sagt Marko Bumbasirevic, Professor und orthopädischer Mikrochirurg am Klinischen Zentrum von Serbien in Belgrad, der für das Implantieren der Elektrode verantwortlich war. Entwickelt wurden die Elektroden von Forschenden der Universität Freiburg i.Br., die Prothesen kamen von der Prothesenfirma Össur, die beide aktiv am Projekt beteiligt waren.

Das Forschungsteam entwickelte Algorithmen, um die Informationen des Tastsensors an der Fusssohle sowie der Bewegungssensoren im elektronischen Kniegelenk in Stromimpulse – die Sprache des Nervensystems – zu übersetzen. Die Elektroden leiteten diese Pulse an den Nerv weiter, und die Natur kümmerte sich um den Rest: die Nervensignale werden ans Gehirn weitergeleitet, die Träger konnten dadurch die Prothese wahrnehmen und ihren Gang entsprechend anpassen. Maschine und Körper wurden so zu einer Einheit.

Geringerer Kraftaufwand beim Gehen

Im Rahmen der Studie absolvierten die Probanden eine Reihe von Tests, abwechselnd mit und ohne Neurofeedback. Die Ergebnisse machten deutlich, wie vorteilhaft das Feedback war: Das Gehen mit Neurofeedback war für die Probanden körperlich viel weniger anstrengend, was sich in einem deutlich reduzierten Sauerstoffverbrauch zeigte. Auch mental war das Gehen mit Neurofeedback weniger anstrengend, wie die Forschende mit Messungen der Gehirnaktivität zeigten. Die Probanden mussten sich nicht so sehr auf das Gehen konzentrieren und konnten Ihre Aufmerksamkeit stattdessen auf andere Aufgaben richten.

In einem schwierigen Test mussten die Probanden über Sand gehen. Das Feedback ermöglichte ihnen, deutlich schneller zu gehen. In Umfragen gaben die Probanden an, dass das Neurofeedback ihr Vertrauen in die Prothese stark erhöhte.

Weniger Phantomschmerzen

Die Schnittstelle zum Nervensystem kann auch dazu genutzt werden, die Nerven unabhängig von der Prothese zu stimulieren. Bevor sie mit der Studie begannen, klagten beide Studienteilnehmer über Phantomschmerzen. Savo Panic, einer der Probanden, wachte nachts oft wegen Phantomschmerzen auf. «Der Zeh, den ich nicht habe, tat mir weh – mein grosser Zeh, mein Fuss, meine Ferse, mein Knöchel und meine Wade, alles schmerzte, und dabei habe ich das alles gar nicht mehr», sagt er. Im Rahmen eines einmonatigen Neurostimulation-Therapieprogramms gelang es den Wissenschaftlern, diesen Schmerz beim einen Probanden deutlich zu reduzieren, bei Panic, verschwand der Schmerz sogar vollständig. «Seitdem ich mit der Neurostimulation begonnen habe, habe ich keine Phantomschmerzen mehr», sagt dieser.

Diese Ergebnisse stimmen die Forschenden optimistisch. Sie weisen jedoch darauf hin, dass eine längere Untersuchung, in der eine grössere Zahl von Probanden das System im Alltag testet, nötig ist, um zuverlässigere Schlussfolgerungen ziehen zu können. Für die zeitlich begrenzte klinische Studie wurden die Signale der Prothese über Kabel durch die Haut zu den Elektroden im Oberschenkel geleitet. Das bedeutete, dass sich die Versuchsteilnehmer regelmässig einer medizinischen Untersuchung unterziehen mussten. Um dies zu vermeiden, wollen die Wissenschaftler ein vollständig implantierbares System entwickeln. «Bei Sensars planen wir die Entwicklung eines drahtlosen Neurostimulationsgerätes, das wie ein Herzschrittmacher vollständig in den Patienten implantiert und auf den Markt gebracht werden kann», sagt Francesco Petrini, CEO von Sensars.

An dem Projekt waren neben der ETH Zürich, den Universitäten Belgrad und Freiburg i.Br., Sensars und Össur auch Forschende der EPFL, der Scuola Superiore Sant’Anna in Pisa, der Universität Montpellier und der Firma mBrainTrain beteiligt.

Publikation:
Petrini FM, Bumbasirevic M, Valle G, Ilic V, Mijović P, Čvančara P, Barberi F, Katic N, Bortolotti D, Andreu D, Lechler K, Lesic A, Mazic S, Mijović B, Guiraud D, Stieglitz T, Alexandersson Á, Micera S, Raspopovic S: Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nature Medicine, 9. September 2019, doi: 10.1038/s41591-019-0567-3

Externer Link: www.ethz.ch

Umweltsündern auf der Spur

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.09.2019

Kriminelle Machenschaften nachzuweisen, kann mitunter schwierig sein: Etwa bei Akteuren, die schädliche Abwässer heimlich in die Kanäle einleiten. Ein neues Sensorsystem von Fraunhofer-Forscherinnen und Forschern und ihren Partnern könnte die Sicherheitsbehörden künftig bei dem Nachweis unterstützen: Im Abwasserkanal positioniert, spürt es entsprechende Inhaltstoffe auf und hilft, Umweltsünder einzugrenzen und zu entlarven.

Schwarze Schafe gibt es immer wieder – auch in der Industrie. Denn während der Großteil der Firmen ihre Abwässer ordnungsgemäß entsorgt, scheuen einige wenige die damit verbundenen Kosten und leiten das schädliche Abwasser heimlich, still und leise in die Kanäle ein. Bislang fehlen den Sicherheitsbehörden größtenteils die Möglichkeiten, einer solchen Umweltkriminalität großflächig auf die Schliche zu kommen: Dies würde die Kapazitäten der Mitarbeiterinnen und Mitarbeiter bei Weitem übersteigen. Die Betreiber von Kläranlagen stellen solche gesetzeswidrigen Abwässer jedoch vor große Herausforderungen – sie können sogar dazu führen, dass die Kläranlagen kippen.

Umweltschädigende Substanzen im Abwasser nachweisen

Ein neuartiges Sensorsystem könnte es den Sicherheitsbehörden künftig erleichtern, solche Delikte aufzudecken. Entwickelt haben die Technologie – gemeinsam mit Partnern – die Forscherinnen und Forscher der Fraunhofer-Institute für Integrierte Schaltungen IIS und für Zuverlässigkeit und Mikrointegration IZM im EU-Projekt Micromole. »Das Sensorsystem soll bestimmte Substanzen im Wasser nachweisen, die in solchen Abwässern typischerweise enthalten sind«, erläutert Dr. Matthias Völker, Gruppenleiter am Fraunhofer IIS. »Es besteht aus zwei Sensorkomponenten: Physikalischen Sensoren und einem chemischen Sensor. Weitere Systeme sind: Energiemanagement, Steuerung- und Kommunikation und ein Probenentnahmesystem.« Führen solche Abwässer an Kläranlagen wiederholt zu Problemen, könnten die Sicherheitsbehörden das Abwassersystem an bestimmten Stellen überprüfen, den Übeltäter durch mehrere Messungen immer weiter eingrenzen und schließlich enttarnen.

Für solche Messungen setzt ein Roboter im Abwasserrohr drei Ringe ein. Der erste Ring wird direkt vor dem Zulauf der verdächtigen Firma positioniert, der zweite direkt dahinter. An beiden dieser Ringe befindet sich jeweils ein physikalischer Sensor, der Parameter wie die Temperatur, den pH-Wert oder auch die Leitfähigkeit des Wassers misst. Über eine Funkverbindung stehen diese beiden Ringe miteinander in Kontakt und vergleichen die von ihren Sensoren gemessenen Werte. Unterscheiden sie sich, könnte dies darauf zurückzuführen sein, dass aus dem fokussierten Gebäude schädliche Abwässer eingeleitet wurden. Auf das entsprechende Signal des zweiten Rings »erwachen« nun die Systeme am dritten Ring, der etwas weiter hinten im Abwasserkanal befestigt ist: Genauer gesagt ein chemischer Sensor und ein Probenentnahmesystem. Für den chemischen Sensor entnimmt eine Mikropumpe einige Mikroliter des Abwassers, verdünnt diese und leitet sie auf den chemischen Sensor. Auf diesem befinden sich sechs Elektroden, die jeweils mit einer speziellen Beschichtung aus Polymeren überzogen sind. Das Besondere: In diesen Polymerschichten befinden sich Lücken, in die bestimmte Schadstoffe jeweils genau hineinpassen – ähnlich wie Puzzleteilchen. Binden sie auf diese Weise an die Polymerschicht, ändert sich ihre elektrische Kapazität. Solche Kapazitätsänderungen auf den Elektroden legen also nahe, dass sich bestimmte Schadstoffe im Abwasser befinden. Vor Gericht gilt dies jedoch nicht als Beweis. Daher entnimmt das System zudem eine kleine Probe des Abwassers, das dann von Menschenhand im Labor genau überprüft werden kann. Damit der chemische Sensor für mehrere Messungen eingesetzt werden kann, spült eine Waschlösung die angebundenen Moleküle nach jeder Messung wieder heraus.

Das Sensorsystem ist in einer Kooperation mehrerer Forschungseinrichtungen und weiterer Partner entstanden. Die Forscherinnen und Forscher des Fraunhofer IIS haben dabei die Entwicklung der Elektronik, der Signalerfassung und -auswertung des Sensormoduls sowie der Energieversorgung des Systems übernommen. Ihre Kolleginnen und Kollegen vom Fraunhofer IZM waren für das BUS-System auf dem Metallring zuständig und für den Entwurf der wasserdichten Steckkontakte zu den einzelnen Komponenten sowie der wasser- und chemikaliendichten Gehäuse. Zudem haben sie die physikalischen Sensoren miniaturisiert.

Großangelegter Testlauf geplant

Die einzelnen Komponenten wurden zunächst bei den Partnern im Labor geprüft, anschließend im Zusammenspiel in einem künstlichen Abwassersystem mit realem Abwasser. In einem dritten Schritt wurden verschiedene Komponenten in einem realen Abwasserrohr getestet. Die ersten Ergebnisse sind vielversprechend: »Das System konnte verdächtige Abwässer aufspüren und einen entsprechenden Alarm auslösen«, fasst Harald Pötter, Abteilungsleiter am Fraunhofer IZM, zusammen. In einem Nachfolge-Projekt wollen die Forscherinnen und Forscher des Fraunhofer IZM nun mit Partnern in fünf europäischen Städten einen großangelegten Testlauf der physikalischen Sensoren des Systems durchführen.

Externer Link: www.fraunhofer.de