Muskeln zum Anziehen

Medienmitteilung der ETH Zürich vom 23.06.2022

Forschende der ETH Zürich haben einen tragbaren Exomuskel aus Stoff entwickelt – eine Art zusätzliche Muskelschicht. Diese soll Menschen mit Bewegungseinschränkungen mehr Kraft und Ausdauer im Oberkörper verleihen.

«In den Armen bin ich einfach zunehmend schwach», sagt Michael Hagmann, bei dem 2016 Bethlem-​Myopathie diagnostiziert wurde, eine seltene Muskelerkrankung. Um die fehlende Muskelkraft in den Armen zu kompensieren, macht Hagmann im Alltag Ausweichbewegungen, die wiederum zu einer unguten Haltung und Verspannungen führen. Marie Georgarakis, ehemalige Doktorandin am Sensory-​Motor Systems Lab der ETH Zürich, kennt das Problem. «Mittlerweile gibt es zwar viele gute Therapiegeräte in Kliniken. Diese sind aber oft sehr teuer und gross. Technische Hilfsmittel, die Patient:innen direkt im Alltag unterstützen und mit denen sie auch daheim trainieren können, gib es dagegen weniger. Diese Lücke wollen wir schliessen», sagt Georgarakis.

So viel Kraft wie nötig

Aus dieser Idee ist das Myoshirt entstanden, ein weicher, tragbarer Exomuskel für den Oberkörper. Dieser besteht aus einer Art Weste mit Manschetten für die Oberarme und einem kleinen Kasten, in dem die ganze Technik steckt, die nicht unmittelbar am Körper gebraucht wird. Und so funktioniert es: Ein intelligenter Algorithmus erkennt mithilfe von Sensoren im Stoff, was für eine Bewegung der Träger oder die Trägerin ausführen will und wie viel Kraft dafür benötigt wird. Ein Motor verkürzt daraufhin ein im Stoff parallel zu den Muskeln verlaufendes Kabel – eine Art künstliche Sehne – und unterstützt so die Bewegung. Die Unterstützung ist dabei immer in Einklang mit der vom Nutzer ausgeführten Bewegung und kann auf individuelle Präferenzen abgestimmt werden. Stets hat der Nutzer oder die Nutzerin die Kontrolle und kann das Gerät jederzeit übersteuern.

Mehr Ausdauer dank Exomuskel

Diesen ersten Prototypen haben die Forschenden nun in einer Studie mit 12 Proband:innen – zehn gesunden Personen, einer Person mit einer Muskelschwäche (Michael Hagmann) und einer Person mit einer Rückenmarksverletzung – erstmals getestet. Die Resultate sind vielversprechend: Alle Teilnehmer:innen konnten dank dem Exomuskel ihre Arme und/oder Gegenstände sehr viel länger heben. Die Ausdauerzeit erhöhte sich bei gesunden Teilnehmer:innen um rund einen Drittel, bei dem Teilnehmer mit Muskelschwäche erhöhte sie sich um 60 Prozent und der Proband mit einer Rückenmarksverletzung konnte die ihm aufgetragenen Übungen gar drei Mal so lange durchhalten. Die eigenen Muskeln wurden dabei weniger beansprucht und die überwiegende Mehrheit der Versuchsteilnehmenden empfanden das Gerät zudem als intuitiv in der Nutzung.

Mit Betroffenen testen und verbessern

Der Weg bis zum marktreifen Produkt ist aber dennoch ein langer: «In einem nächsten Schritt möchten wir unseren Prototyp ausserhalb des Labors in der natürlichen Umgebung der zukünftigen Träger:innen testen und das Gerät mithilfe dieser Ergebnisse weiter verbessern», sagt Michele Xiloyannis, der ebenfalls am Sensory-​Motors Systems Lab der ETH Zürich tätig ist und am Myoshirt forscht. Damit das Gerät dereinst unsichtbar und bequem unter der Kleidung getragen werden kann, muss es noch kleiner und leichter werden – heute wiegt die Antrieb-​ und Steuerungsbox noch vier Kilogramm. Um ein maximal reduziertes Produkt zu erhalten, wollen sich die Forschenden weiterhin auf eine Kernfunktion konzentrieren – das Unterstützen der Schulter beim Anheben der Arme. Zudem arbeiten sie eng mit dem ETH-​Spin-off MyoSwiss AG zusammen, das ein weiches Exoskelett – eine Art Roboteranzug zur Unterstützung der Beine – herstellt und vertreibt. «Dass die Forschenden ihre Ideen zusammen mit den potenziellen Nutzenden und iterativ weiterentwickeln, gefällt mir besonders», sagt Michael Hagmann, der bereits verschiedene technische Hilfsmittel der ETH vom Prototyp bis zum fertigen Produkt getestet und so entwickeln geholfen hat. Denn für ihn ist klar: Er möchte auch in Zukunft weiter aktiv bleiben und da kommt technische Unterstützung wie gerufen.

Publikation:
Georgarakis M, Xiloyannis M, Wolf P, Riener R. A textile exomuscle that assists the shoulder during functional movements for everyday life. Nature Machine Intelligence. 22.06.2022.

Externer Link: www.ethz.ch

Beben auf mikroskopischer Skala

Presseaussendung der TU Wien vom 07.06.2022

Winzige Vibrationen verwendet man heute oft in der Sensortechnik. An der TU Wien wurde nun gezeigt: Auf besonders kleinen Größenskalen dominiert ein unerwarteter Effekt.

Eine Stimmgabel besteht aus zwei Armen, die in Schwingung versetzt werden und unten miteinander gekoppelt sind. So ähnlich kann man sich auch Sensoren vorstellen, die auf mikromechanischen Schwingungen beruhen – nur eben viel kleiner. Je nach Größenskala spricht man dann von MEMS (von mikroelektromechanischen Systemen) oder, wenn sie noch kleiner sind, von NEMS (von nanoelektromechanischen Systemen).

Die Kopplung zwischen den schwingenden Strukturen spielt dabei eine zentrale Rolle. Wie sich nun zeigte, verhält sich diese Kopplung auf winzigen, mikroskopischen Größenskalen aber ganz anders als man das von größeren Objekten gewohnt ist: Ausschlaggebend sind dann akustische Wellen, die sich nur an der Oberfläche des Sensorchips ausbreiten. Hendrik Kähler von der TU Wien gelang es nun, diese Wellen-Kopplung mathematisch zu beschreiben. Seine Arbeit soll nun die Grundlage für neuartige Mikro-Sensortechnik werden.

Schwingungen als vielseitige Messmethode

Viele wichtige Größen kann man mit schwingenden Mikrosystemen messen – etwa die Masse von Partikeln. „Wenn eine Mikrostruktur in Schwingung versetzt wird und sich dann ein Partikel auf dieser Struktur anlagert, dann ändert sich ihre Schwingungsfrequenz“, erklärt Hendrik Kähler vom Institut für Sensor- und Aktuatorsysteme der TU Wien, der derzeit im Forschungsteam von Prof. Silvan Schmid an seiner Dissertation arbeitet. Eine Änderung der Schwingungsfrequenz lässt sich sehr präzise messen – und daraus kann man dann beispielsweise auf die angelagerte Masse zurückschließen.

„Die Technik ist sehr vielseitig anwendbar, und in den letzten Jahren zeigte sich ein anhaltender Trend zur Miniaturisierung hin zu Strukturen mit Dimensionen deutlich kleiner als ein Mikrometer“, sagt Hendrik Kähler.

Die Folge ist, dass man das Verhalten der Strukturen auf andere Weise beschreiben muss als bisher. Wenn mehrere schwingende Strukturen auf demselben Sensorchip befestigt sind, dann beeinflussen sie einander. Wenn sie groß sind, dann kann man sich die Kopplung zwischen ihnen vorstellen, als wären sie durch eine dehnbare Feder miteinander verbunden. Doch bei extrem hohen Frequenzen tritt eine andere Art der Kopplung auf: Die Kopplung durch akustische Oberflächenwellen.

Oberflächlich aber folgenschwer

Akustische Oberflächenwellen sind ein Phänomen, das man aus anderen Forschungsbereichen kennt – etwa aus der Erdbebenforschung. Sie breiten sich rasch aus, dringen nicht ins Innere eines Körpers ein, sondern pflanzen sich nur an der Oberfläche fort.

Ein schwingender Resonator auf einem Sensorchip verursacht ebenfalls solche Oberflächenwellen. Diese können sich auf der Oberfläche des Chips ausbreiten und erreichen den anderen Resonator. Somit wird von der Schwingung des einen Resonators eine Kraft auf den anderen Resonator ausgeübt – so entsteht eine spezielle Art von Kopplung, die nicht wie bisher durch die Mathematik dehnbarer Federn erklärt werden kann, sondern bloß durch die Mathematik von akustischen Oberflächenwellen.

Hendrik Kähler gelang es nun, diesen Kopplungseffekt theoretisch zu beschreiben. Er konnte dabei zeigen, dass sich durch die Kopplung der Energieverlust der Resonatoren stark reduzieren kann. Seine Theorie der akustischen Oberflächenwellen-Kopplung wurde nun im Fachjournal „Communications Physics“ veröffentlicht. Sie soll dazu dienen, das Verhalten besonders kleiner Nanosensoren zu verstehen und neue Sensoren zu entwickeln. (Florian Aigner)

Originalpublikation:
H. Kähler, D. Platz, S. Schmid: Surface acoustic wave coupling between micromechanical resonators; Communications Physics 5, 118 (2022).

Externer Link: www.tuwien.at

Zug um Zug – neues Prüfverfahren entwickelt

Presseaussendung der TU Wien vom 16.05.2022

Forschende der TU Wien haben ein Zugprüfverfahren entwickelt, das für die mechanische Zugprüfung von Mikro- und Nanofasern geeignet ist. Das Besondere: Die Proben können reversibel an den Kraftsensor an- und abgekoppelt werden.

Möchte man die Steifigkeit oder Zugfestigkeit von Fasern im Nano- bis Mikrobereich testen, ist dies meist sehr aufwändig, denn die Proben müssen an beiden Seiten mit Klebstoff fixiert werden. Einerseits kostet die Trocknung des Klebstoffes Zeit, andererseits lässt sich der Sensor, an den die Faser angeklebt wird, nicht wiederverwenden.

Den TU-Forschern Mathis Nalbach, Philipp Thurner und Georg Schitter ist es nun gelungen, ein Testsystem zu entwickeln, das ebendiese Hürden überwindet. Das Funktionsprinzip ist wie folgt: Eine magnetische Kugel, die an die Nanofaser angebracht wird, lässt sich mit einer magnetischen Pinzette aufgreifen. So kann die Kugel in die an einen Kraftsensor angebrachten Gabel eingelegt und dadurch an den Sensor angekoppelt werden. Da sich die magnetische Kugel mittels der magnetischen Pinzette auch wieder aus der Gabel entfernen lässt, kann man umgehend eine weitere Nanofaser aufgreifen. Dadurch wird der Probendurchsatz signifikant erhöht. Das zum Patent angemeldete Zugprüfgerät „NanoTens“ stellten die Forschenden jüngst in der Zeitschrift „Review of Scientific Instruments“ vor.

An die Realbedingungen angepasst

Während man mit dem Rasterkraftmikroskop die mechanischen Eigenschaften einer Faser durch eine Nano-Eindringprüfung untersuchen kann, ermöglicht der NanoTens die Materialprüfung unter der für Fasern bedeutsameren mechanischen Belastung, der Zugbelastung. Philipp Thurner vom Forschungsbereich Biomechanik erklärt dies wie folgt: „Man kann sich die Vorrichtung wie einen mikroskopischen Gabelstapler vorstellen. Die magnetische Kugel, die an die Faser angeklebt wird, wird in die Gabel des Gabelstaplers eingelegt. Durch eine Auf- bzw. Abbewegung der Gabel kann man die Faser nun unter Zugbelastung testen. Diese Belastungsart ist vor allem für biologische Fasern wie z. B. Kollagenfibrillen relevant. Diese werden physiologisch hauptsächlich unter Zug belastet, und daher sind die mechanischen Eigenschaften unter eben dieser Belastung besonders relevant.“

Die Biomechaniker Nalbach und Thurner untersuchen zumeist natürliche Fasern wie Kollagen. Da deren mechanischen Eigenschaften stark von äußeren Bedingungen abhängen, ist es wichtig, diese auch bei der Zugprüfung zu berücksichtigen. „Dies gelingt uns, da mit dem NanoTens Zugversuche in unterschiedlichen Medien durchgeführt werden können. Eine trockene Kollagenfaser ist beispielsweise viel spröder und steifer als eine feuchte. Auch nimmt ihr Durchmesser signifikant ab, wenn sie ausgetrocknet wird“, sagt Mathis Nalbach, Erstautor der Studie.

Qualität und Quantität steigen

Den Forschenden gelingt es mit ihrer Methode nicht nur, physiologische Bedingungen zu simulieren, auch gewinnen die mit NanoTens generierten Ergebnisse an Validität. Denn um aussagekräftige Ergebnisse über biologische Materialien wie Kollagenfibrillen zu erhalten, bedarf es einer Vielzahl von Messungen. „Herkömmliche Verfahren erlauben uns nur, ein bis zwei Proben pro Woche zu untersuchen. Das macht es quasi unmöglich, statistisch aussagekräftige Studien durchzuführen“, schildert Nalbach das Problem. Philipp Thurner ergänzt: „Die neue Methode erlaubt ein schnelles An- und Abkoppeln der Fasern. Dadurch – und da der Sensor wiederverwendet wird – können wir nicht nur die Anzahl der Zugversuche auf bis zu 50 Messungen pro Woche, sondern auch die Präzision der Messung erhöhen.“

Die Zugversuche können – je nach Wahl – über einen großen Kraftbereich und zudem über eine Regelung auch kraftkontrolliert durchgeführt werden. Dies ist wichtig, da Zugprüfverfahren normalerweise davon ausgehen, dass das Material linear elastische Eigenschaften hat. Bei biologischen Geweben, wie beispielsweise Kollagenfibrillen, ist das jedoch nicht der Fall: Sie sind viskoelastisch. Durch kraftkontrollierte Zugversuche wird die Untersuchung eben dieser Viskoelastizität ermöglicht.

Von der Erfindung zum Produkt

NanoTens wurde bereits von der TU Wien international zum Patent angemeldet. Auch die Machbarkeit der Methode konnte nachgewiesen werden (TRL 6), wie in der Studie von Nalbach et al. nachzulesen ist. „Der nächste Schritt wäre, sich mit industriellen Partnern zusammenzuschließen. Wir hoffen, mit Hilfe des Forschungs- und Transfersupports eine_n Lizenznehmer_in zu finden. Wir sind an Kooperationen mit der Industrie zu diesem Thema interessiert“, sagt Mathis Nalbach. NanoTens ist dabei so konstruiert, dass es sich generell in jedes Eindrucksmessgerät oder auch Rasterkraftmikroskop integrieren lässt. Neben der Materialwissenschaft findet die Zugprüfung auch – unter anderem – in den Biowissenschaften, der Halbleitertechnik sowie der Elektronik Anwendung. (Sarah Link)

Externer Link: www.tuwien.at

Neuer Drohnentyp erlaubt weltweit erstes Echtzeit-Tracking von Personen in dichter Bewaldung

Pressemeldung der JKU Linz vom 25.04.2022

AOS ist ein spezielles Bildgebungsverfahren, bei dem bei Drohnen-Luftaufnahmen die Verdeckung (z.B. ein Blätterdach im Wald) in Echtzeit weggerechnet werden kann. Nun wurde das System neuerlich verbessert. Beim AOS werden aus der Luft (z.B. mittels Kamera-Drohne) mehrere Einzelaufnahmen von unterschiedlichen Positionen aufgenommen und rechnerisch so kombiniert, dass verdeckende Bewaldung aus dem Bildmaterial von der Software entfernt wird.

Potenzielle Anwendungen findet AOS z.B. in der Wildbeobachtungen, für Such- und Rettungseinsätze von vermissten Personen in Waldgebieten oder für das Aufspüren von Waldbränden und Glutnestern. Bisher gab es ein Problem: Es war nur für unbewegte Objekte verwendbar. Sowohl vermisste Menschen als auch Wild neigen natürlich dazu, sich zu bewegen. Bisher war es mit keiner Technologie möglich, solche bewegliche Objekte zu erkennen oder gar zu verfolgen – auch mit AOS nicht, da der sequentielle Aufnahmeprozess der Einzelbilder, die zum Wegrechnen des Waldes nötig waren, deutlich mehr Zeit in Anspruch nahm als die Bewegung einer Person, Tiers, oder Fahrzeug. Vor allem sich schnell bewegende Objekte gehen – ähnlich wie bei Langzeitbelichtungen – in den Ergebnisbildern durch Bewegungsunschärfe unter.

Ein neuer Drohnenprototyp, der in Zusammenarbeit der JKU Institute für Computergrafik (Leitung: Prof. Oliver Bimber) und Konstruktiven Leichtbau (Leitung: Prof. Martin Schagerl) entwickelt wurde, stellt nun weltweit die allererste Möglichkeit dar, bewegte Objekte unter dichter Bewaldung zu finden und in Echtzeit zu verfolgen. Auch wenn es seit einigen Jahren internationale Anstrengungen in diese Richtung gibt, galt „through-foilage tracking“ unter realistischen Bedingungen bisher als weitgehend ungelöstes Problem.

Der Clou des neue Drohnenprototyps ist ein fast 10 Meter langer Ausleger aus Carbon, der mit 10 Kameras bestückt ist, die gleichzeitig Bilder aufnehmen. Die rechnerische Kombination dieser Aufnahmen über die große Synthetische Apertur des Auslegers ermöglicht das Wegrechnen der Verdeckung in der Geschwindigkeit der Kameraaufnahmen – also in Echtzeit. In ersten Experimenten erkennt ein Farbanomalie-Detektor Personen und verfolgt diese durch den Wald.

Erste Ergebnisse wurden nun im Science Partner Journal of Remote Sensing veröffentlicht, und zeigen nicht nur, dass „through-foilage tracking“ realistisch möglich ist, sondern auch, dass Anomaliedetektion, die häufig auch bei der automatisierten Bildsuche für Such- und Rettungsaktionen Anwendung findet, durch AOS stark verbessert wird. (Christian Savoy)

Externer Link: www.jku.at

Detektion von Wasserstoff durch Glasfasersensoren

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.04.2022

Wasserstoff spielt in der deutschen Energie- und Klimapolitik eine zentrale Rolle. Kommt er zum Einsatz, sind Sicherheitsmaßnahmen von entscheidender Bedeutung. Denn im Unterschied zu anderen gasförmigen oder flüssigen Energieträgern besteht bei Wasserstoff neben einer erhöhten Brandgefahr durch Leckagen unter bestimmten Bedingungen auch Explosionsgefahr. Um die Sicherheit im Umgang mit Wasserstoff noch weiter zu erhöhen, arbeiten Forschende am Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI an Glasfaser-basierten Sensoren zu dessen Detektion, die herkömmlichen Sensoren in vielerlei Hinsicht überlegen sind.

Um die gesetzten Klimaziele zu erreichen und die globale Erwärmung einzudämmen, müssen alle Staaten den Anteil an fossilen Energieträgern schnellstmöglich auf ein Minimum reduzieren. Als nachhaltige Alternative wird verstärkt auf Wasserstofftechnologien gesetzt – vor allem im Produktions- und Mobilitätssektor. Überall wo mit Wasserstoff gearbeitet wird, er gelagert, transportiert und weitergeleitet wird, dürfen entsprechende Sicherheitsvorkehrungen nicht fehlen. Denn obwohl Wasserstoff nicht giftig ist, er weniger wiegt als Luft und somit nach oben steigt, kann es zu gefährlichen Situationen kommen: Überschreitet nämlich die Wasserstoffkonzentration in der Luft einen Schwellenwert von vier Prozent, was bei ausreichend Druck in einem Wasserstofftank oder bei mangelnder Belüftung eines Raumes schnell erreicht werden kann, genügt eine kleine Zündquelle, ein einzelner Funken, um eine Explosion auszulösen.

Klein, gut integrierbar und ohne immanentes Sicherheitsrisiko

Dies gilt es vorausschauend zu verhindern und Dr. Günter Flachenecker, Senior Scientist am Fraunhofer HHI, weiß, wie. An der Außenstelle Abteilung Faseroptische Sensorsysteme des Fraunhofer HHI in Goslar forscht der promovierte Physiker zusammen mit seinem Team an Möglichkeiten zur Wasserstoffdetektion mithilfe von Sensoren aus Glasfasern: »Herkömmliche Sicherheitssensoren, die zur Erfassung von Wasserstoff derzeit kommerziell verfügbar sind – das sind in der Regel katalytische Wärmetönungssensoren oder elektrochemische Zellen –, benötigen eine elektrische Stromversorgung. Beide Varianten könnten so, wenn das Gerät oder die elektrischen Zuleitungen einen Defekt aufweisen, im schlimmsten Fall selbst als Zündquelle die Explosion auslösen, die sie eigentlich verhindern sollten«, erklärt Flachenecker. »Bei unseren Glasfasersensoren besteht diese Gefahr nicht. Gleichzeitig müssen sie nicht aufwändig verkabelt werden, sind klein und lassen sich gut in verschiedenste Strukturen der zu überwachenden Anlage oder des Fahrzeugs integrieren.«

Lichtleitende Glasfasern sind aufgrund ihres geringen Durchmessers von etwa einem Viertel Millimeter und ihrer Robustheit geradezu prädestiniert für sensorische Applikationen in einer sicherheitsrelevanten Umgebung. Damit eine Glasfaser zum Wasserstoffsensor wird, muss sie an verschiedenen Stellen modifiziert werden. Hierfür werden zunächst mit einem Laser bestimmte Strukturen in den Glasfaserkern eingeprägt, sodass ein sogenanntes Faser-Bragg-Gitter entsteht – eine periodische Brechungsindexmodulation, die dafür sorgt, dass Licht bei einer bestimmten Wellenlänge reflektiert wird.

Dass die Glasfaser nun speziell auf Wasserstoff reagiert, wird erreicht, indem rund um den Glasfasermantel eine spezifische funktionelle Beschichtung aufgetragen wird: »Wir arbeiten mit katalytischen Schichten, zum Beispiel Palladium oder Palladiumlegierungen«, so Flachenecker. »Palladium hat die Eigenschaft, dass es Wasserstoff aufsaugt, ähnlich wie ein Schwamm. Sobald die beiden Stoffe aufeinandertreffen, zerfällt der Wasserstoff in seine atomaren Fragmente und die freigesetzten Wasserstoffatome dringen in das Kristallgerüst des Palladiums ein. Dies führt zu einer Dehnung in der Glasfaser, die sich über das eingebaute Faser-Bragg-Gitter augenblicklich als Veränderung in den rückgemeldeten Lichtimpulsen messen lässt. Sobald die Wasserstoffkonzentration in der Luft dann wieder abnimmt, löst sich der Wasserstoff auch wieder aus dem Palladium.« Die Beschichtung trägt dadurch also keinen Schaden davon und der Sensor kann wiederverwendet werden. Gleichzeitig funktioniere der beschriebene Vorgang nur, weil Wasserstoffatome sehr klein sind, betont Flachenecker. Andere Stoffe können auf diesem Wege nicht in die Palladiumschicht eindringen.

Potenzial in vielen verschiedenen Anwendungskontexten

Doch das ist nicht die einzige Methode, die von den Forschenden getestet wurde. So ist eine Wasserstoffdetektion auch mit Glasfasern möglich, deren Mantel weggeätzt wurde, oder mit einer sehr dünnen Schicht aus Nanopartikeln, die auf den Glasfasermantel aufgetragen werden. »Das ist eine große Spielwiese und es gibt einiges, was wir noch ausprobieren wollen«, sagt Flachenecker. »Entscheidend ist es für uns, Möglichkeiten zur Wasserstoffdetektion zu finden, die schnell genug sind, um Unfälle zu verhindern, und die zuverlässig im benötigten Empfindlichkeitsbereich reagieren. Und da sind wir aktuell auf einem sehr guten Weg.«

In der Praxis könnten die neuen Glasfasersensoren zum Beispiel integraler Bestanteil von Fahrzeugen mit Wasserstoffantrieb werden und zur Überwachung von Wasserstofftankstellen, Autowerkstätten oder Elektrolyseuren eingesetzt werden. Auch der Aufbau eines größeren Sensornetzwerks, das eine Wasserstoff-Infrastruktur an vielen Stellen gleichzeitig überwacht, ließe sich leicht umsetzen. Die Elektronik für die Messdatenaufnahme, also zum Beispiel ein Spektrometer für die optische Auswertung der Glasfasersensoren, kann räumlich beliebig weit entfernt an einem sicheren Ort installiert sein. Wird eine bestimmte Wasserstoffkonzentration überschritten und der Sensor schlägt an, so wird das je nach konkretem Anwendungsfall angebundene Alarmmanagement ausgelöst und spezifische Maßnahmen, zum Beispiel ein akustisches Warnsignal, das Schließen von Ventilen oder das Öffnen von Fenstern können in Sekundenschnelle eingeleitet werden.

Das derzeitige Forschungsprojekt unter der Leitung von Günter Flachenecker wird vom Bundesministerium für Wirtschaft und Klimaschutz gefördert und findet in Kooperation mit einem lokalen Brandschutzunternehmen statt. Es startete vor zwei Jahren und endet nach einem derzeit noch nicht abgeschlossenen Praxistest, bei dem die Glasfasersensoren in LKWs eingebaut werden, im Sommer. Anschließend ist ein Folgeprojekt geplant, in dem die neuen Sensoren noch ausführlicher getestet und weitere vorbereitende Schritte in Richtung Zertifizierung und Kommerzialisierung unternommen werden sollen. Das Ziel ist klar: Ein noch sichereres und unfallfreies Arbeiten mit Wasserstoff.

Externer Link: www.fraunhofer.de