LiDAR- und Radarsensoren – platzsparend im Scheinwerfer verbaut

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 04.10.2022

Der Mensch hat Augen und Ohren, mit denen er brenzlige Situationen im Straßenverkehr erkennen kann. Bei autonom fahrenden Autos übernehmen eine Reihe von Sensoren diese Aufgabe. Doch die steigende Anzahl der Sensoren benötigt auch immer mehr Platz, dem in der Regel die Wünsche der Designer entgegenstehen. Forschende der Fraunhofer-Gesellschaft haben nun einen Weg gefunden, einige der Sensoren unauffällig zu integrieren. Sie bauen diese in den Scheinwerfern ein – und kombinieren dabei optisches Licht, Radar und LiDAR.

Fahrzeuge können heute immer mehr Aufgaben selbst übernehmen: Der Tempomat hält automatisch den Abstand zum Vordermann, der Spurhalteassistent korrigiert die Spur, Notbremsungen werden eingeleitet, wenn der menschliche Fahrer unachtsam ist. Möglich machen das Kameras im Fahrgastraum und Radar-Sensoren im Kühlergrill. Künftig jedoch soll das Auto noch mehr Aufgaben übernehmen. Doch muss dafür die Sensordichte drastisch zunehmen. Die Idee, den Kühlergrill mit Sensoren vollzupflastern, ist bei Autodesignern nicht sehr beliebt.

Radar- und LiDAR-Sensoren im Scheinwerfer integriert

Fünf Fraunhofer-Institute, darunter das Institut für Hochfrequenzphysik und Radartechnik FHR, haben sich im Projekt »Smart Headlight« zusammengetan, um die Sensoren platzsparend und möglichst unauffällig einzubauen – ohne dass Funktion und Leistung beeinträchtigt werden. Ziel des Projekts ist die Entwicklung eines sensorintegrierten Scheinwerfers für Fahrerassistenzsysteme, bei dem unterschiedliche sensorische Elemente mit adaptiven Lichtsystemen kombiniert werden. Auf diese Weise sollen Objekte auf der Straße, insbesondere andere Verkehrsteilnehmer wie Fußgänger, von den Sensoren noch besser erkannt werden. So kommt der LiDAR-Sensor etwa bei elektronischen Bremsassistenten oder bei Abstandsregelungssystemen zum Einsatz.

»Wir integrieren Radar- und LiDAR-Sensoren in die Scheinwerfer, die ja sowieso vorhanden sind und die ein Optimum an Transmission für optische Sensoren und Lichtquellen sowie für Verschmutzungsfreiheit garantieren«, sagt Tim Freialdenhoven, Wissenschaftler am Fraunhofer FHR. LiDAR-Sensoren (Light Detection And Ranging) arbeiten mit einem Messprinzip, das auf der Bestimmung der Zeit zwischen dem Aussenden eines Laserpulses und dem Empfangen des reflektierten Lichts beruht, und kann auf diese Weise Entfernungen sehr genau messen.

Zunächst gilt es, das LiDAR-System für die Integration in automobile Systeme auszulegen. Hinzu kommt: Das Licht, das aus dem Scheinwerfer auf die Straße fällt, soll von den beiden zusätzlichen Sensoren nicht beeinflusst werden – allerdings liegen die lichtspendenden LEDs ganz hinten im Scheinwerfer. Die Forschenden platzieren deshalb die LiDAR-Sensoren oben und die Radar-Sensoren unten im Scheinwerfergehäuse. Dennoch sollen die Strahlen beider Sensorsysteme den identischen Weg nehmen wie das LED-Licht. Dies wird zusätzlich dadurch erschwert, dass alle Strahlen unterschiedliche Wellenlängen haben: Das sichtbare Scheinwerferlicht liegt im Bereich von 400 bis 750 Nanometern, die infraroten LiDAR-Strahlen mit 860 bis 1550 Nanometer recht nah am sichtbaren Bereich. Radarstrahlen haben dagegen eine Wellenlänge von vier Millimetern. »Diese drei Wellenlängen sollen koaxial – also gleichachsig – zusammengeführt werden, wir sprechen daher von einem Multispektral-Combiner«, betont Freialdenhoven. Die koaxiale Strahlenführung ist wichtig, um einen Parallaxenfehler zu vermeiden, der erst noch kompliziert herausgerechnet werden muss. Darüber hinaus würde die Anordnung der Sensoren nebeneinander deutlich mehr Raum in Anspruch nehmen als die die koaxiale Anordnung. Dieses Problem lösen die Forschenden über sogenannte Bi-Combiner: Dabei wird für die Kombination von LED-Licht und LiDAR-Licht ein speziell beschichteter di-chroidischer Spiegel eingesetzt, mit dem beide Strahlenbündel über eine wellenlängenspezifische Reflexion auf eine Achse gebracht werden. Gleiches erfolgt, wenn auch wegen der sehr unterschiedlichen Wellenlängen ungleich komplexer, am zweiten Combiner, bei dem LED-Licht, LiDAR-Licht und Radar miteinander vereint werden. Da Radarsensoren im Automobilbereich bereits weit verbreitet sind, soll der Bi-Combiner so ausgelegt werden, dass die Hersteller vorhandene Sensoren ohne Anpassung weiterverwenden können.

Radar-Systeme durchdringen Nebel

Doch warum überhaupt die Kombination von optischen Systemen, LiDAR und Radar? »Jedes einzelne System hat seine Stärken, aber auch seine Schwächen«, erklärt Freialdenhoven. So kommen optische Systeme bei Nebel und Staub an ihre Grenzen, sprich bei optisch schlechten Sichtbedingungen. Radar-Systeme dagegen schauen nahezu ungehindert durch dichte Nebelschwaden. Doch ist ihre Klassifikationsfähigkeit nicht sehr hoch: Radar kann zwar erkennen, ob es sich um einen Menschen oder um einen Baum handelt, doch es kommt nicht an die Klassifikationsfähigkeit vom LiDAR heran. »Wir arbeiten zudem daran, die Daten von Radar und LiDAR zu fusionieren – was insbesondere in puncto Zuverlässigkeit einen extremen Mehrwert bietet«, sagt Freialdenhoven. Ein Patent wurde bereits angemeldet, derzeit arbeitet das Team am Aufbau eines Prototyps.

Mit der Technologie werden die Möglichkeiten der Sensorintegration für Fahrerassistenzsysteme deutlich erweitert. Kleinere Lichtmodule, kompaktere LiDAR-Sensoren und integrierte Radarsensoren erlauben die Umsetzung von Multisensorkonzepten, insbesondere für das autonome Fahren bei steigenden Designanforderungen und begrenztem Bauraum. Auf diese Weise können autonome Systeme künftig nicht nur einen Menschen erkennen, sondern zudem seine Geschwindigkeit, seine Entfernung und den Winkel analysieren, in dem er zum Auto steht.

Externer Link: www.fraunhofer.de

Fraunhofer-Technologie verleiht Umweltsatelliten Sehkraft

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.08.2022

Kunststoffteile in Meeren, Chlorophyllgehalt von Gewässern, Dürregrad von Äckern – seit April 2022 umkreist der deutsche Umweltsatellit »EnMAP« unsere Erde und sammelt zahlreiche Daten während seiner fünfjährigen Mission. Das Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM sowie das Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF haben verschiedene Kernkomponenten für das optische System des hyperspektralen Satelliten entwickelt.

Am 1. April 2022 um 18:24 Uhr mitteleuropäischer Zeit war es soweit: Der deutsche Umweltsatellit »EnMAP« – kurz für »Environmental Mapping Analysis Program« – startete vom US-Raumflughafen Cape Canaveral seine Reise ins All. Von dort aus soll er fünf Jahre lang die Erde analysieren und u.a. Daten zu Klimawandelauswirkungen, der Verfügbarkeit und Qualität von Wasser oder Änderungen der Landnutzung liefern. Die ersten Daten, die der Satellit zur Erde sandte, stammten vom Bosporus: Analysiert wurde das Frequenzspektrum, das typisch für Algenanreicherungen im Wasser ist. Auf diese Weise wollen Forschende die Algenwanderung und den Algenbesatz untersuchen. Möglich werden solcherlei Analysen unter anderem durch Fraunhofer-Technologie in gleich zweifacher Ausführung.

Herzstück des Satelliten: Ein Doppelspalt aus dem Fraunhofer IMM

Für seine Analysen detektiert der Satellit das Licht der Sonne, das von der Erde reflektiert wird. Allerdings ist der Wellenlängenbereich von 420 bis 2420 Nanometer, also vom sichtbaren Licht bis ins tiefe Infrarot, zu groß, um ihn mit nur einem Spektrometer aufzunehmen. Hier hilft eine Technologie des Fraunhofer IMM. »Wir haben einen hochpräzisen Doppelspalt gefertigt, der das einfallende Licht in zwei Detektoren lenkt«, erläutert Stefan Schmitt, Gruppenleiter am Fraunhofer IMM in Mainz. Da die beiden Spalte naturgemäß räumlich ein wenig voneinander entfernt sind, blicken sie nicht auf die gleichen Stellen der Erde. »Es dauert also den Bruchteil einer Sekunde, bis der zweite Spalt dieselbe Stelle der Erde betrachtet wie der erste«, sagt Schmitt. Dieser Versatz muss genauestens bekannt sein, um die Aufnahmen überlagern zu können und die gewünschte Auflösung von 30 Metern zu erreichen.

Der Clou liegt zum einen in der äußerst präzisen Fertigung des Doppelspalts, was nur mit Siliziumtechnologie möglich ist. »Zwar sind die Techniken, über die wir am Institut verfügen, recht gut geeignet, um diese Anforderungen zu erfüllen, dennoch gab es zahlreiche herausfordernde Details«, erinnert sich Schmitt. Beispielsweise erwiesen sich die anfangs rechteckigen Spalte mechanisch als nicht stabil genug. Die Forscherinnen und Forscher fertigten daher Spalte mit einem gestuften Querschnitt. »Trotz umfangreicher Simulationen und Analysen unserer Partner mussten wir das Design und weitere Anforderungen während der laufenden Prozessphase ändern. Solche Dinge passieren gelegentlich, wenn man Neuland betritt, aber wir sind darauf vorbereitet«, sagt Schmitt. Auch weitere Komponenten der Baugruppe – etwa zur Lichtumlenkung oder zur Unterdrückung von Streulicht – mussten die Forschenden mit höchster Präzision aus weltraumgerechten Materialien wie Aluminium, Edelstahl, Nickel und Invar fertigen, deren Eigenschaften präzise vermessen und dokumentiert wurden. Trickreich war zudem der Zusammenbau der Baugruppe mit dem Doppelspalt. »Die Toleranzen waren kleiner als fünf Mikrometer, also kleiner als ein Zehntel eines Haars«, erläutert Schmitt. All dies ist hervorragend gelungen.

Leicht und präzise: Metallspiegel aus dem Fraunhofer IOF

Auch das Fraunhofer IOF brachte seine Expertise in den Satelliten ein: Als einer der besten Metalloptik-Entwickler der Welt wurden alle Metallspiegel der EnMAP-Optik am IOF hergestellt. »Für Weltraumanwendungen müssen die Spiegel nicht nur eine extrem glatte Oberfläche aufweisen und äußerst präzise geformt sein, sondern auch ein möglichst geringes Gewicht aufweisen«, sagt Dr. Stefan Risse, Projektleiter am Fraunhofer IOF in Jena. »Dabei konnten wir die Anforderungen sogar übertreffen: Statt der geforderten Rauheit von 1 Nanometer RMS (Root Mean Square) weisen unsere Metallspiegel, im Weißlicht (Vergrößerung 50x) gemessen, eine Rauigkeit von weniger als 0,5 Nanometer RMS auf. Auch die zulässige Formabweichung konnten wir nicht nur auf 18 Nanometer RMS, sondern zum Teil sogar auf unter 10 Nanometer RMS genau einhalten.« Dazu nutzten die Forscherinnen und Forscher Aluminium, auf das sie eine röntgenamorphe Metalllegierung aus Nickel und Phosphor abschieden. Diese Dickschicht hat strukturell ähnliche Eigenschaften wie Glas und lässt sich mit Diamantwerkzeugen sehr gut bearbeiten und brillant polieren. Was die finale Form der Metallspiegel angeht, so stellte das Forscherteam diese durch Korrekturverfahren wie das Ionenstrahlpolieren (IBF, eng. Ion Beam Figuring) ein.

Ein weiteres wichtiges Qualitätsmerkmal der Spiegel neben der geringen Oberflächenrauigkeit ist ihr Leichtgewicht. Auch hier punktete das Verfahren des Fraunhofer IOF. »Wir konnten die Masse über ein von uns patentiertes Verfahren um mehr als 40 Prozent reduzieren – mittlerweile sind durch den Einsatz von additiven Verfahren bereits bis zu 70 Prozent Einsparung möglich«, sagt Risse. Das gelang dem Team, indem es die Struktur des Spiegels wie ein Kapitell in einer Kirche anlegte: Kreuzungsbohrungen, die orthogonal aufeinandertreffen, verbinden die Vorder- und Rückseite des Spiegels, die entstehende Säulenstruktur stützt die Flächen. Vorder- und Rückseite des Spiegels sind geschlossen, was dem Element eine große mechanische Steifigkeit verleiht. Insgesamt stellte das Team elf ultrapräzise Metallspiegel inklusive hochreflektiver Silber- und Goldschichten für »EnMAP« her und vergütete zudem die Glasoptiken, wobei auf das Glas eine dünne Schicht mit geringerer Brechkraft aufgebracht wurde.

Externer Link: www.fraunhofer.de

Muskeln zum Anziehen

Medienmitteilung der ETH Zürich vom 23.06.2022

Forschende der ETH Zürich haben einen tragbaren Exomuskel aus Stoff entwickelt – eine Art zusätzliche Muskelschicht. Diese soll Menschen mit Bewegungseinschränkungen mehr Kraft und Ausdauer im Oberkörper verleihen.

«In den Armen bin ich einfach zunehmend schwach», sagt Michael Hagmann, bei dem 2016 Bethlem-​Myopathie diagnostiziert wurde, eine seltene Muskelerkrankung. Um die fehlende Muskelkraft in den Armen zu kompensieren, macht Hagmann im Alltag Ausweichbewegungen, die wiederum zu einer unguten Haltung und Verspannungen führen. Marie Georgarakis, ehemalige Doktorandin am Sensory-​Motor Systems Lab der ETH Zürich, kennt das Problem. «Mittlerweile gibt es zwar viele gute Therapiegeräte in Kliniken. Diese sind aber oft sehr teuer und gross. Technische Hilfsmittel, die Patient:innen direkt im Alltag unterstützen und mit denen sie auch daheim trainieren können, gib es dagegen weniger. Diese Lücke wollen wir schliessen», sagt Georgarakis.

So viel Kraft wie nötig

Aus dieser Idee ist das Myoshirt entstanden, ein weicher, tragbarer Exomuskel für den Oberkörper. Dieser besteht aus einer Art Weste mit Manschetten für die Oberarme und einem kleinen Kasten, in dem die ganze Technik steckt, die nicht unmittelbar am Körper gebraucht wird. Und so funktioniert es: Ein intelligenter Algorithmus erkennt mithilfe von Sensoren im Stoff, was für eine Bewegung der Träger oder die Trägerin ausführen will und wie viel Kraft dafür benötigt wird. Ein Motor verkürzt daraufhin ein im Stoff parallel zu den Muskeln verlaufendes Kabel – eine Art künstliche Sehne – und unterstützt so die Bewegung. Die Unterstützung ist dabei immer in Einklang mit der vom Nutzer ausgeführten Bewegung und kann auf individuelle Präferenzen abgestimmt werden. Stets hat der Nutzer oder die Nutzerin die Kontrolle und kann das Gerät jederzeit übersteuern.

Mehr Ausdauer dank Exomuskel

Diesen ersten Prototypen haben die Forschenden nun in einer Studie mit 12 Proband:innen – zehn gesunden Personen, einer Person mit einer Muskelschwäche (Michael Hagmann) und einer Person mit einer Rückenmarksverletzung – erstmals getestet. Die Resultate sind vielversprechend: Alle Teilnehmer:innen konnten dank dem Exomuskel ihre Arme und/oder Gegenstände sehr viel länger heben. Die Ausdauerzeit erhöhte sich bei gesunden Teilnehmer:innen um rund einen Drittel, bei dem Teilnehmer mit Muskelschwäche erhöhte sie sich um 60 Prozent und der Proband mit einer Rückenmarksverletzung konnte die ihm aufgetragenen Übungen gar drei Mal so lange durchhalten. Die eigenen Muskeln wurden dabei weniger beansprucht und die überwiegende Mehrheit der Versuchsteilnehmenden empfanden das Gerät zudem als intuitiv in der Nutzung.

Mit Betroffenen testen und verbessern

Der Weg bis zum marktreifen Produkt ist aber dennoch ein langer: «In einem nächsten Schritt möchten wir unseren Prototyp ausserhalb des Labors in der natürlichen Umgebung der zukünftigen Träger:innen testen und das Gerät mithilfe dieser Ergebnisse weiter verbessern», sagt Michele Xiloyannis, der ebenfalls am Sensory-​Motors Systems Lab der ETH Zürich tätig ist und am Myoshirt forscht. Damit das Gerät dereinst unsichtbar und bequem unter der Kleidung getragen werden kann, muss es noch kleiner und leichter werden – heute wiegt die Antrieb-​ und Steuerungsbox noch vier Kilogramm. Um ein maximal reduziertes Produkt zu erhalten, wollen sich die Forschenden weiterhin auf eine Kernfunktion konzentrieren – das Unterstützen der Schulter beim Anheben der Arme. Zudem arbeiten sie eng mit dem ETH-​Spin-off MyoSwiss AG zusammen, das ein weiches Exoskelett – eine Art Roboteranzug zur Unterstützung der Beine – herstellt und vertreibt. «Dass die Forschenden ihre Ideen zusammen mit den potenziellen Nutzenden und iterativ weiterentwickeln, gefällt mir besonders», sagt Michael Hagmann, der bereits verschiedene technische Hilfsmittel der ETH vom Prototyp bis zum fertigen Produkt getestet und so entwickeln geholfen hat. Denn für ihn ist klar: Er möchte auch in Zukunft weiter aktiv bleiben und da kommt technische Unterstützung wie gerufen.

Publikation:
Georgarakis M, Xiloyannis M, Wolf P, Riener R. A textile exomuscle that assists the shoulder during functional movements for everyday life. Nature Machine Intelligence. 22.06.2022.

Externer Link: www.ethz.ch

Beben auf mikroskopischer Skala

Presseaussendung der TU Wien vom 07.06.2022

Winzige Vibrationen verwendet man heute oft in der Sensortechnik. An der TU Wien wurde nun gezeigt: Auf besonders kleinen Größenskalen dominiert ein unerwarteter Effekt.

Eine Stimmgabel besteht aus zwei Armen, die in Schwingung versetzt werden und unten miteinander gekoppelt sind. So ähnlich kann man sich auch Sensoren vorstellen, die auf mikromechanischen Schwingungen beruhen – nur eben viel kleiner. Je nach Größenskala spricht man dann von MEMS (von mikroelektromechanischen Systemen) oder, wenn sie noch kleiner sind, von NEMS (von nanoelektromechanischen Systemen).

Die Kopplung zwischen den schwingenden Strukturen spielt dabei eine zentrale Rolle. Wie sich nun zeigte, verhält sich diese Kopplung auf winzigen, mikroskopischen Größenskalen aber ganz anders als man das von größeren Objekten gewohnt ist: Ausschlaggebend sind dann akustische Wellen, die sich nur an der Oberfläche des Sensorchips ausbreiten. Hendrik Kähler von der TU Wien gelang es nun, diese Wellen-Kopplung mathematisch zu beschreiben. Seine Arbeit soll nun die Grundlage für neuartige Mikro-Sensortechnik werden.

Schwingungen als vielseitige Messmethode

Viele wichtige Größen kann man mit schwingenden Mikrosystemen messen – etwa die Masse von Partikeln. „Wenn eine Mikrostruktur in Schwingung versetzt wird und sich dann ein Partikel auf dieser Struktur anlagert, dann ändert sich ihre Schwingungsfrequenz“, erklärt Hendrik Kähler vom Institut für Sensor- und Aktuatorsysteme der TU Wien, der derzeit im Forschungsteam von Prof. Silvan Schmid an seiner Dissertation arbeitet. Eine Änderung der Schwingungsfrequenz lässt sich sehr präzise messen – und daraus kann man dann beispielsweise auf die angelagerte Masse zurückschließen.

„Die Technik ist sehr vielseitig anwendbar, und in den letzten Jahren zeigte sich ein anhaltender Trend zur Miniaturisierung hin zu Strukturen mit Dimensionen deutlich kleiner als ein Mikrometer“, sagt Hendrik Kähler.

Die Folge ist, dass man das Verhalten der Strukturen auf andere Weise beschreiben muss als bisher. Wenn mehrere schwingende Strukturen auf demselben Sensorchip befestigt sind, dann beeinflussen sie einander. Wenn sie groß sind, dann kann man sich die Kopplung zwischen ihnen vorstellen, als wären sie durch eine dehnbare Feder miteinander verbunden. Doch bei extrem hohen Frequenzen tritt eine andere Art der Kopplung auf: Die Kopplung durch akustische Oberflächenwellen.

Oberflächlich aber folgenschwer

Akustische Oberflächenwellen sind ein Phänomen, das man aus anderen Forschungsbereichen kennt – etwa aus der Erdbebenforschung. Sie breiten sich rasch aus, dringen nicht ins Innere eines Körpers ein, sondern pflanzen sich nur an der Oberfläche fort.

Ein schwingender Resonator auf einem Sensorchip verursacht ebenfalls solche Oberflächenwellen. Diese können sich auf der Oberfläche des Chips ausbreiten und erreichen den anderen Resonator. Somit wird von der Schwingung des einen Resonators eine Kraft auf den anderen Resonator ausgeübt – so entsteht eine spezielle Art von Kopplung, die nicht wie bisher durch die Mathematik dehnbarer Federn erklärt werden kann, sondern bloß durch die Mathematik von akustischen Oberflächenwellen.

Hendrik Kähler gelang es nun, diesen Kopplungseffekt theoretisch zu beschreiben. Er konnte dabei zeigen, dass sich durch die Kopplung der Energieverlust der Resonatoren stark reduzieren kann. Seine Theorie der akustischen Oberflächenwellen-Kopplung wurde nun im Fachjournal „Communications Physics“ veröffentlicht. Sie soll dazu dienen, das Verhalten besonders kleiner Nanosensoren zu verstehen und neue Sensoren zu entwickeln. (Florian Aigner)

Originalpublikation:
H. Kähler, D. Platz, S. Schmid: Surface acoustic wave coupling between micromechanical resonators; Communications Physics 5, 118 (2022).

Externer Link: www.tuwien.at

Zug um Zug – neues Prüfverfahren entwickelt

Presseaussendung der TU Wien vom 16.05.2022

Forschende der TU Wien haben ein Zugprüfverfahren entwickelt, das für die mechanische Zugprüfung von Mikro- und Nanofasern geeignet ist. Das Besondere: Die Proben können reversibel an den Kraftsensor an- und abgekoppelt werden.

Möchte man die Steifigkeit oder Zugfestigkeit von Fasern im Nano- bis Mikrobereich testen, ist dies meist sehr aufwändig, denn die Proben müssen an beiden Seiten mit Klebstoff fixiert werden. Einerseits kostet die Trocknung des Klebstoffes Zeit, andererseits lässt sich der Sensor, an den die Faser angeklebt wird, nicht wiederverwenden.

Den TU-Forschern Mathis Nalbach, Philipp Thurner und Georg Schitter ist es nun gelungen, ein Testsystem zu entwickeln, das ebendiese Hürden überwindet. Das Funktionsprinzip ist wie folgt: Eine magnetische Kugel, die an die Nanofaser angebracht wird, lässt sich mit einer magnetischen Pinzette aufgreifen. So kann die Kugel in die an einen Kraftsensor angebrachten Gabel eingelegt und dadurch an den Sensor angekoppelt werden. Da sich die magnetische Kugel mittels der magnetischen Pinzette auch wieder aus der Gabel entfernen lässt, kann man umgehend eine weitere Nanofaser aufgreifen. Dadurch wird der Probendurchsatz signifikant erhöht. Das zum Patent angemeldete Zugprüfgerät „NanoTens“ stellten die Forschenden jüngst in der Zeitschrift „Review of Scientific Instruments“ vor.

An die Realbedingungen angepasst

Während man mit dem Rasterkraftmikroskop die mechanischen Eigenschaften einer Faser durch eine Nano-Eindringprüfung untersuchen kann, ermöglicht der NanoTens die Materialprüfung unter der für Fasern bedeutsameren mechanischen Belastung, der Zugbelastung. Philipp Thurner vom Forschungsbereich Biomechanik erklärt dies wie folgt: „Man kann sich die Vorrichtung wie einen mikroskopischen Gabelstapler vorstellen. Die magnetische Kugel, die an die Faser angeklebt wird, wird in die Gabel des Gabelstaplers eingelegt. Durch eine Auf- bzw. Abbewegung der Gabel kann man die Faser nun unter Zugbelastung testen. Diese Belastungsart ist vor allem für biologische Fasern wie z. B. Kollagenfibrillen relevant. Diese werden physiologisch hauptsächlich unter Zug belastet, und daher sind die mechanischen Eigenschaften unter eben dieser Belastung besonders relevant.“

Die Biomechaniker Nalbach und Thurner untersuchen zumeist natürliche Fasern wie Kollagen. Da deren mechanischen Eigenschaften stark von äußeren Bedingungen abhängen, ist es wichtig, diese auch bei der Zugprüfung zu berücksichtigen. „Dies gelingt uns, da mit dem NanoTens Zugversuche in unterschiedlichen Medien durchgeführt werden können. Eine trockene Kollagenfaser ist beispielsweise viel spröder und steifer als eine feuchte. Auch nimmt ihr Durchmesser signifikant ab, wenn sie ausgetrocknet wird“, sagt Mathis Nalbach, Erstautor der Studie.

Qualität und Quantität steigen

Den Forschenden gelingt es mit ihrer Methode nicht nur, physiologische Bedingungen zu simulieren, auch gewinnen die mit NanoTens generierten Ergebnisse an Validität. Denn um aussagekräftige Ergebnisse über biologische Materialien wie Kollagenfibrillen zu erhalten, bedarf es einer Vielzahl von Messungen. „Herkömmliche Verfahren erlauben uns nur, ein bis zwei Proben pro Woche zu untersuchen. Das macht es quasi unmöglich, statistisch aussagekräftige Studien durchzuführen“, schildert Nalbach das Problem. Philipp Thurner ergänzt: „Die neue Methode erlaubt ein schnelles An- und Abkoppeln der Fasern. Dadurch – und da der Sensor wiederverwendet wird – können wir nicht nur die Anzahl der Zugversuche auf bis zu 50 Messungen pro Woche, sondern auch die Präzision der Messung erhöhen.“

Die Zugversuche können – je nach Wahl – über einen großen Kraftbereich und zudem über eine Regelung auch kraftkontrolliert durchgeführt werden. Dies ist wichtig, da Zugprüfverfahren normalerweise davon ausgehen, dass das Material linear elastische Eigenschaften hat. Bei biologischen Geweben, wie beispielsweise Kollagenfibrillen, ist das jedoch nicht der Fall: Sie sind viskoelastisch. Durch kraftkontrollierte Zugversuche wird die Untersuchung eben dieser Viskoelastizität ermöglicht.

Von der Erfindung zum Produkt

NanoTens wurde bereits von der TU Wien international zum Patent angemeldet. Auch die Machbarkeit der Methode konnte nachgewiesen werden (TRL 6), wie in der Studie von Nalbach et al. nachzulesen ist. „Der nächste Schritt wäre, sich mit industriellen Partnern zusammenzuschließen. Wir hoffen, mit Hilfe des Forschungs- und Transfersupports eine_n Lizenznehmer_in zu finden. Wir sind an Kooperationen mit der Industrie zu diesem Thema interessiert“, sagt Mathis Nalbach. NanoTens ist dabei so konstruiert, dass es sich generell in jedes Eindrucksmessgerät oder auch Rasterkraftmikroskop integrieren lässt. Neben der Materialwissenschaft findet die Zugprüfung auch – unter anderem – in den Biowissenschaften, der Halbleitertechnik sowie der Elektronik Anwendung. (Sarah Link)

Externer Link: www.tuwien.at