Intelligente Türdichtung verhindert dicke Luft

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 03.06.2013

Lange Zeit war Wärmedämmung en vogue – über dicke Luft in Räumen machte man sich kaum Gedanken. Dabei stört zu viel CO2 die Konzentration. Jetzt haben Forscher ein intelligentes Türdichtungssystem entwickelt. Ständiges Lüften ist damit passé.

Hitzige Debatten und keine Einigung in Sicht: Die acht Mitarbeiter sitzen im kleinen Besprechungsraum, um das wichtige Projekt voranzutreiben. Doch bereits nach gut einer Stunde fällt es einigen Teilnehmern schwer, sich auf die Diskussion zu konzentrieren, manchem fallen sogar die Augen zu. Kein Wunder: Die Luft im Konferenzraum ist stickig und verbraucht, der erhöhte Gehalt an Kohlendioxid (CO2) macht sie müde und raubt ihnen die Konzentration.

Da bleibt nur noch eines: Lüften. Oder aber man setzt auf das intelligente Türdichtungssystem, das Forscher vom Fraunhofer-Institut für Mikroelektrische Schaltungen und Systeme IMS in Kooperation mit der Firma Athmer jetzt entwickelt haben. Wer das System nutzt, spart sich nicht nur das regelmäßige Lüften: Die Türdichtung funktioniert auch als Kältefeind, indem sie dämmt und so stets für ein perfektes Raumklima sorgt.

Besonders in neueren Bauten ist der CO2-Gehalt in Zimmern noch immer ein Problem. „Moderne Gebäude werden immer dichter“, sagt Hans-Jürgen Schliepkorte, Gruppenleiter am Fraunhofer IMS in Duisburg. Bessere Fenster und Bausubstanzen sorgten zwar für eine gute Wärmedämmung, was lange Zeit ein großes Thema gewesen sei. Dafür sei aber die Luftqualität auf der Strecke geblieben. »Vielfach wird noch immer durch Fensteröffnen gelüftet«, so Schliepkorte. »Das wirkt sich auf die Energieeffizienz aus.«

Sensor misst CO2-Gehalt in der Luft

Die elektronisch gesteuerte Türdichtung der IMS-Ingenieure öffnet oder schließt sich je nach CO2-Menge im Zimmer. Ein CO2-Sensor registriert den Gehalt in der Luft. Steigt dieser über einen bestimmten Schwellenwert, steuert ein kleiner Motor über eine Feder die Türdichtung am unteren Teil des Türflügels. Die Dichtung zieht sich nach oben, durch den Schlitz kann sich die Raumluft austauschen. Gleichzeitig schaltet das System über die Gebäudeleittechnik die Lüftungsanlage ein, die verbrauchte Luft aus dem Raum befördert.

»Wir richten uns dabei nach dem Pettenkofer-Wert von 1000 ppm«, erklärt Schliepkorte. Max von Pettenkofer war es, der bereits Mitte des vorletzten Jahrhunderts mit seinen Untersuchungen zur Innenluftqualität erkannte, ab welchem CO2-Wert sich die Menschen in einem Raum unwohl fühlen. Heutige Regelwerke und Richtlinien nach DIN für Arbeitsstätten setzen 1500 ppm (parts per million) als oberen Grenzwert an und empfehlen einen CO2-Gehalt von 1000 ppm. »Diesen können wir mit Hilfe der intelligenten Türdichtung erreichen – ohne dass Fenster oder Türen geöffnet werden müssen«, so Schliepkorte.

Das Türdichtungssystem ist elektronisch an die Gebäudeleittechnik gekoppelt. Ist eine Lüftungsanlage oder gar eine Wärmerückgewinnungsanlage vorhanden, können diese abhängig vom CO2-Gehalt und der Temperatur im Raum zusätzlich angestellt werden. »Das System berechnet immer den besten Kompromiss zwischen guter Raumluft und optimaler Ausnutzung der Energieeffizienz«, sagt Schliepkorte. Ab Juni dieses Jahres ist es im Fraunhofer-inHaus-Zentrum in Duisburg installiert, einer Innovationswerkstatt anwendungsorientierter und marktnaher Forschung für Raum- und Gebäudesysteme.

Schon jetzt haben die Fraunhofer-Forscher weitere Anwendungen im Visier: Die Türdichtung soll auch helfen, die Luftfeuchtigkeit in Wohn- und Nutzgebäuden besser zu regulieren. Schimmelbildung zu Hause und trockene Augen im Büro könnten so bald der Vergangenheit angehören.

Externer Link: www.fraunhofer.de

So viel atmet eine einzelne Zelle

Presseinformation der Ruhr-Universität Bochum vom 07.05.2013

Angewandte Chemie: Elektrochemische Rastermikroskopie entscheidend optimiert

RUB-Forscher messen Sauerstoffverbrauch individueller Zellen

Wie aktiv eine lebende Zelle ist, lässt sich anhand ihres Sauerstoffverbrauchs ablesen. Die Methode, mit der man diesen Verbrauch bestimmt, haben Bochumer Chemiker nun entscheidend weiter entwickelt. Problematisch war bislang, dass die Messelektrode den Sauerstoffumsatz in der Umgebung der Zelle wesentlich stärker veränderte als die Zelle selbst. „Das haben wir schon vor 12 Jahren festgestellt“, sagt Prof. Dr. Wolfgang Schuhmann vom Lehrstuhl für Analytische Chemie der Ruhr-Universität „Nun ist es uns endlich gelungen, die Messelektrode zum Beobachter zu machen.“ Gemeinsam mit seinem Team berichtet er in der „International Edition“ der Zeitschrift „Angewandte Chemie“.

Messelektroden präzise positionieren

Zellen brauchen Sauerstoff für verschiedene Stoffwechselvorgänge, etwa um Glukose abzubauen. Um den Verbrauch zu messen, müssen Forscher sehr kleine Signale in einem großen Hintergrundrauschen detektieren. Sie nutzen dazu die elektrochemische Rastermikroskopie, für die sie Elektroden mit einem Durchmesser von fünf Mikrometer in einem Abstand von 200 Nanometer von der Zelle platzieren müssen. Dafür hat das RUB-Team im Lauf der letzten Jahre ein spezielles Verfahren entwickelt, mit dem sich der Abstand der Elektrode zur Zelle präzise kontrollieren lässt.

Den Zellen mit Mikroelektroden Konkurrenz machen

Mit der Elektrode erzeugen die Forscher zunächst Sauerstoff in der wässrigen Umgebung der Zelle; dann messen sie, wie viel die Zelle davon verwertet. Zu diesem Zweck legen sie zu Beginn ein bestimmtes Potenzial an der Elektrode an. Dieses bewirkt, dass dem Wasser in der Zellumgebung Elektronen entzogen werden; es entsteht Sauerstoff. Den Sauerstoff kann die Zelle für ihren Stoffwechsel nutzen; gleichzeitig machen die Forscher ihr aber mit der Mikroelektrode Konkurrenz. Sie ändern das Potenzial an der Elektrode so, dass sich die Reaktion umkehrt: Sauerstoff wird nun zu Wasser umgesetzt. Die dabei fließenden Elektronen messen die Wissenschaftler mit der Elektrode und erhalten so ein Maß für den Sauerstoffverbrauch in der lokalen Umgebung. Je mehr Sauerstoff die Zelle für ihren Stoffwechsel verbraucht, desto weniger Sauerstoff bleibt für die stromerzeugende Reaktion an der Elektrode. Je geringer also der gemessene Stromfluss, desto stärker die Aktivität der Zelle. Bei diesem Verfahren spricht man vom Redoxkompetitionsmodus.

Schnelle Messung

Bei den bisher eingesetzten Verfahren war der durch die Elektrode erzeugte Sauerstoffverbrauch wesentlich größer als der Verbrauch der Zelle. „Die Messung selbst hat die Sauerstoffkonzentration lokal also stärker verändert als der Zellstoffwechsel“, erklärt Prof. Schuhmann. Entscheidend war es, die Aktivität der Zelle sehr schnell, nachdem der Sauerstoff an der Mikroelektrode erzeugt worden war, zu messen – nämlich nach 20 Millisekunden. Wartet man länger, so entzieht die Elektrode der Zelle Sauerstoff, anstatt den Sauerstoff aus der Umgebung zu verwenden, den die Forscher zuvor künstlich erzeugten. Drei Faktoren waren also maßgeblich für den Erfolg der Bochumer Methode: die sehr genaue Position der Elektroden, der Redoxkompetitionsmodus und die schnelle Messzeit. (Julia Weiler)

Titelaufnahme:
M. Nebel, S. Grützke, N. Diab, A. Schulte, W. Schuhmann (2013): Visualization of oxygen consumption of single living cells by scanning electrochemical microscopy: the influence of the faradaic tip reaction, Angewandte Chemie International Edition, DOI: 10.1002/anie.201301098

Externer Link: www.ruhr-uni-bochum.de

Schneller als Blitzeis: System der TU Graz ermöglicht Prognosen zum Straßenzustand

Pressemitteilung der TU Graz vom 09.04.2013

Kombination aus punktgenauen Messdaten und Wetterinfos als Entscheidungshilfe für Autobahnbetreiber und Straßendienste

Wenn wie bei Tunnelportalen zwei „Klimazonen“ aufeinandertreffen, kann der Straßenzustand innerhalb kürzester Zeit gefährlich werden. Um die Unfallgefahr bei Blitzeis zu minimieren, hilft nur „blitzschnelles“ Handeln, nämlich Streuen und eine verordnete Geschwindigkeitsreduktion. Ein Team des Instituts für Hochfrequenztechnik der TU Graz hat ein „Weather Data Management System“ entwickelt, das Daten von speziellen Sensoren am Straßenrand wie etwa Bodentemperatur oder Luftfeuchte mit großräumigen Wetterinformationen verknüpft. Die Software erlaubt Prognosen über den Straßenzustand und informiert Autobahnbetreiber und Straßeneinsatzkräfte in Echtzeit über kritische Stellen. In Bayern ist das System bereits erfolgreich im Einsatz.

Tunnelportale, Autobahnbrücken, kurvige Landstraßen: Kritische Stellen auf Autobahnen und Straßen werden noch kritischer, wenn sich der Straßenzustand „blitzartig“ verändert, beispielsweise vereist. „Gerade im Bereich der Tunnelportale kann sich der Straßenzustand sehr schnell verschlechtern. Fahrzeuge schleppen Staub und Nässe hinein, dazu kommt ein oft nicht unerheblicher Temperaturunterschied“, erklärt Wolfgang Bösch, Leiter des Instituts für Hochfrequenztechnik der TU Graz. Sein Team hat eine Software entwickelt, die die Unfallgefahr in solchen Situationen mildern kann: „Unser ‚Weather Data Management System‘, kurz WDMS, kann laufend und punktgenau den Straßenzustand erheben, Prognosen abgeben und diese Infos direkt Autobahnbetreibern und Straßendiensten übermitteln“, erläutert der Forscher.

Vernetzte Prognose

Konkret überlagert WDMS sehr punktuell ortsbezogene Daten, die von verschiedenen Sensoren entlang der Straße oder Autobahn erhoben werden, mit großflächigen Wetterinformationen und berücksichtigt auch jede zuvor erfolgte Straßenreinigung oder Streumaßnahme. „Die Sensoren messen an besonders kritischen Stellen unterschiedliche Werte wie etwa Luftfeuchte, Straßenbelagstemperatur oder Niederschlag. WDMS wertet diese Daten in Verbindung mit Informationen aus dem Wetterradarnetz aus und schlägt Alarm, sollte der Straßenzustand kritisch sein oder in Kürze kritisch werden“, erklärt Walter Randeu, der ebenso dem Forscherteam der TU Graz angehört. Das Besondere ist die Möglichkeit, dank WDMS gefährliche Straßenzustände sehr rasch zu erkennen und im Akut-Fall entsprechende Sofortmaßnahmen wie Streudienste oder Geschwindigkeitsreduktionen einzuleiten. „Die Daten werden nicht nur aufgezeichnet, sondern gehen laufend aktualisiert an das Autobahn- und Straßenpersonal, egal ob in ortsfesten Stützpunkten oder unterwegs im Einsatzfahrzeug“, so Randeu.

Heimische Technologie erfolgreich im Ausland

In Bayern ist das System nun bereits das dritte Jahr erfolgreich im Einsatz, rund 200 Sensoren liefern den Grazer Forschern die entsprechenden Daten. „Ziel ist es, dass letztlich kein Fleck auf bayrischen Straßen und Autobahnen WDMS-frei bleibt“, so Randeu. Auch in Österreich wäre der Einsatz der heimischen Software sehr gut machbar.

Externer Link: www.tugraz.at

Flugzeug-Sensoren ohne Batterie und Kabel

Presseaussendung der TU Wien vom 18.03.2013

Eine Idee von EADS und TU Wien hebt ab: Gemeinsam wurden Flugzeug-taugliche Energy Harvester Module getestet, die zukünftig Sensoren mit elektrischem Strom versorgen sollen.

Wie ein Nervensystem sollen Netze aus Sensoren in Zukunft wichtige Daten auf der Flugzeughülle registrieren und weiterleiten. Eine Verkabelung dieser Sensoren wäre viel zu aufwändig und zu schwer. In gemeinsamer Forschungsarbeit entwickelten daher nun EADS Innovation Works und die TU Wien ein wenige Zentimeter großes „Energy Harvesting Modul“, das Sensorsysteme im Flugzeug mit Energie versorgen kann. Der Sensor leitet seine Daten per Funk weiter – so soll eine völlig neue Sensor-Einheit in der Flugzeugwand entstehen.  Die Energie wird aus dem Temperaturunterschied zwischen eisigen Höhen und wärmerer Bodenluft gewonnen. Nun wurden diese Energy Harvesting Module erstmals in Testflügen unter realen Flugbedingungen erprobt – mit Erfolg.

Kostenfaktor Flugzeugwartung

Die Wartung von Flugzeugen ist teuer: Mit ca. 20% der Gesamtkosten ist sie einer der wichtigsten Kostenfaktoren des Fliegens, neben den Gehältern des Flugpersonals, Treibstoffkosten und der altersbedingten Wertminderung des Flugzeugs. Anstatt das ganze Flugzeug mühsam zu inspizieren sollen daher in Zukunft autonome Sensoren die nötigen Daten liefern. Diese Daten werden über Funk an Wartungsrechner gesendet und am Boden ausgelesen.

„Ein solches System hat also offensichtlich große Vorteile. Das Hauptproblem liegt allerdings in der Energieversorgung“, erklärt Prof. Ulrich Schmid vom Institut für Sensor- und Aktuatorsysteme der TU Wien. „Herkömmliche Batterien sind für die großen Temperaturwechsel, die ein Flugzeug permanent ausgesetzt ist, nicht ausgelegt. Außerdem will niemand regelmäßig all die Sensorbatterien im ganzen Flugzeug auswechseln. Eine Verkabelung wiederum würde das Flugzeuggewicht empfindlich erhöhen.“ Zusammen mit EADS Innovation Works entwickelte er daher eine Methode, direkt an der Flugzeugwand elektrische Energie für die Sensoren zu gewinnen.

Energie aus Temperaturunterschieden

Wenn zwei Punkte, an denen unterschiedliche Temperaturen herrschen, mit zwei verschiedenen elektrisch leitfähigen Materialien verbunden werden, kann elektrische Spannung entstehen – dieses Phänomen bezeichnet man als „Seebeck-Effekt“. Die Außenwand des Flugzeugs macht bei Start und Landung eine massive Temperaturänderung durch, dabei entstehen Temperaturunterschiede zwischen der Außenseite und der Innenseite der Wand. „Optimal nützen können wir das durch einen kleinen Wärmespeicher“, erklärt Alexandros Elefsiniotis, Dissertand von Prof. Schmid. „Ein Wasserreservoir mit etwa zehn Kubikzentimetern Fassungsvermögen wird aufgewärmt, wenn das Flugzeug am Boden steht und speichert die Wärme, sodass dann hoch in der Luft damit Strom erzeugt werden kann.“ Während des Fluges kühlt das Wasser ab und friert ein. Bei der Landung ist dann die Außenseite des Flugzeuges wärmer als das Wasserreservoir, derselbe Effekt kann in umgekehrter Richtung noch einmal genutzt werden.

Durch eigens entwickelte elektronische Schaltungen wird sichergestellt, dass die zeitlich fluktuierenden Thermo-Ströme in einen gleichmäßigen Strom mit ausreichend hoher Spannung umgewandelt wird, mit dem ein Sensor stundenlang versorgt werden kann.

Erfolgreiche Tests bei EADS

Am Beginn des Projektes standen Simulationsrechnungen und Klimakammer-Experimente, in den letzten Monaten wurden aber von EADS Innovation Works erstmals Testflüge auf Airbus-Flugzeugen mit Energy Harvesting Modulen durchgeführt. Alexandros Elefsiniotis analysierte die Ergebnisse: „Wir konnten pro Flug etwa 23 Joule Energie gewinnen – für den Sensorbetrieb reicht das aus.“ Je nach Außentemperatur könnten auch andere Materialien oder andere Flüssigkeiten als Wasser besser geeignet sein – derzeit wird noch an passenden Strategien für Extremfälle geforscht, etwa für Flugrouten in sehr kalten Regionen.

„EADS Innovation Works will auch in Zukunft die beste verfügbare Technologie für die autonome Sensorik verwenden, daher ist die neue Methode für uns höchst interessant“, erklärt Prof. Becker von EADS Innovation Works. „Wir sind zuversichtlich, dass die selbstversorgenden Sensoren schon bald in unseren Flugzeugen mitfliegen werden.“ (Florian Aigner)

Externer Link: www.tuwien.ac.at

Schleimfressern im Darm auf der Spur

Pressemeldung der Universität Wien vom 04.03.2013

Einem Team um die Mikrobiologen David Berry, Alexander Loy und Michael Wagner von der Fakultät für Lebenswissenschaften der Universität Wien ist es in Zusammenarbeit mit ForscherInnen der Max F. Perutz Laboratories (Universität Wien und Medizinische Universität Wien) mit Hilfe der NanoSIMS-Technologie erstmals gelungen, in den Darm hineinzuschauen und Mikroorganismen beim Fressen der Darmschleimhaut zu beobachten. Die Ergebnisse dieses Forschungsprojektes erscheinen aktuell in der renommierten Zeitschrift „Proceedings of the National Academy of Sciences“ (PNAS).

Wer das Forschungsprojekt von Michael Wagner und seinem Team verstehen will, muss bereit sein, dem Wissenschafter in die Untiefen des Mäusedarms zu folgen. Michael Wagner, Professor für Mikrobielle Ökologie der Universität Wien, erklärt das vereinfacht so: „Wie die Kuh auf der Wiese weidet, so weiden dort die Bakterien auf dem durch die Darmschleimhaut ausgeschiedenen Schleim. Sie ernähren sich also nicht vom Futter der Mäuse. Es gibt eine Gruppe von Mikroorganismen, die darauf spezialisiert ist, Ausscheidungsprodukte ihres Wirts zu fressen.“ Die Schleimschicht im Darm ist eine wesentliche Barriere für das Eindringen krankheitserregender Mikroorganismen in den Körper und spielt auch bei entzündlichen Darmerkrankungen eine große Rolle. Darum interessiert sich die Wissenschaft dafür, welche Bakterien im gesunden Organismus diese Schleimschicht bewohnen und somit möglicherweise die Besiedelung und den Abbau dieser Barriere durch Krankheitserreger unterdrücken.

Kooperation: Department für Mikrobielle Ökologie und Max F. Perutz Laboratories

Das Team um Michael Wagner und Alexander Loy wollte im Rahmen ihres durch das österreichische Genomforschungsprogramms GEN-AU unterstützten Projektes wissen: Für welche Organismen in gesunden Mäusen ist die Mucosa, die Darmschleimschicht, eine Delikatesse? „Wir haben uns einen Versuchsaufbau ausgedacht, mit dessen Hilfe es uns weltweit zum ersten Mal gelungen ist, in den Darm hineinzuschauen und die Organismen beim Abweiden des Schleims direkt zu beobachten und zu messen, wie viel Schleim von ihnen aufgenommen wurde“, erklärt Gruppenleiter Alexander Loy vom Department für Mikrobielle Ökologie der Universität Wien. Dazu haben MikrobiologInnen mit Unterstützung der Teams um Thomas Decker vom Department für Mikrobiologie, Immunbiologie und Genetik der Max F. Perutz Laboratories und Bärbel Stecher von der LMU München eine Aminosäure mit stabilen Isotopen markiert, von der man weiß, dass ein Gutteil nach der Aufnahme in die Blutbahn im Schleim landet. Wagner sagt: „Nach wenigen Stunden konnten unsere Kooperationspartner Andreas Richter und Wolfram Wanek vom Department für Terrestrische Ökosystemforschung der Universität Wien mit Hilfe der Isotopenverhältnis-Massenspektrometrie tatsächlich feststellen, dass die Isotopen im Darmschleim angekommen sind und dort von Bakterien abgebaut wurden.“ Damit waren die Voraussetzungen geschaffen, um jene Bakterien identifizieren zu können, die sich von der Schleimschicht ernähren.

Forschungserfolg durch NanoSIMS-Facility der Universität Wien

Schlüsseltool bei den Untersuchungen war die hochauflösende Sekundärionen-Massenspektrometrie, kurz NanoSIMS genannt. Dabei handelt es sich um ein mehr als zwei Millionen Euro teures Gerät, das seit Februar 2010 an der Fakultät für Lebenswissenschaften der Universität Wien im Einsatz ist und seitdem vom Team um Michael Wagner für Anwendungen in der Mikrobiologie und Ökologie weiterentwickelt wird. „Mit Hilfe dieser Technik können wir für jede Mikrobenzelle in einer Darmprobe die Menge an aufgenommenen stabilen Isotopen genau quantifizieren“, erläutert Arno Schintlmeister, der das Gerät an der Fakultät als Operator betreibt.

„Die Invesititonskosten für das NanoSIMS-Gerät waren sehr hoch, und es hat eine Weile gedauert, bis wir dieses hochkomplexe Gerät in unsere Forschung vollständig integrieren konnten. Jetzt werden wir allerdings belohnt: Die Universität Wien hat damit weltweit die erste Studie, bei der man die Funktion einzelner Darmbakterienzellen nicht nur indirekt abzuleiten versucht, sondern wirklich direkt misst“, so Mikrobiologe Michael Wagner. Dieser Forschungsansatz hat großes Potenzial und ist ein Thema, das am Department für mikrobielle Ökologie in den von David Berry und Alexander Loy geleiteten Arbeitsgruppen einen Schwerpunkt in den nächsten Jahren darstellen wird.

Darm-Mikrobiota ist heißes Forschungsthema

Die durch die NanoSIMS-Facility vermessenen Bakterienzellen wurden anschließend mit Hilfe der Fluoreszenz-in-situ-Hybridisierung – kurz FISH genannt – im konfokalen Laser Scanning Mikroskop identifiziert. „Wir konnten eine Reihe von schleimfressenden Mikroorganismen eindeutig identifizieren. Die wichtigsten Player sind Akkermansia muciniphilia und Bacteroides acidifaciens“. erläutert Wagner und weiter: „Die Darm-Mikrobiota ist weltweit ein ganz heißes Forschungsthema, da viele Krankheiten mit der Zusammensetzung unserer Darm-Mikroorganismengemeinschaften zu korrelieren scheinen – von Fettleibigkeit über Autismus bis zu entzündlichen Darmerkrankungen.“

Originalpublikation:
Host-compound foraging intestinal microbiota revealed by single-cell stable isotope probing. Von: David Berry, Bärbel Stecher, Arno Schintlmeister, Jochen Reichert, Sandrine Brugiroux, Birgit Wild, Wolfgang Wanek, Andreas Richter, Isabella Rauch, Thomas Decker, Alexander Loy und Michael Wagner. In: „Proceedings of the National Academy of Sciences“ (PNAS), März 2013.

Externer Link: www.univie.ac.at