Neues Verfahren macht Sauerstoff in Zellen sichtbar

Pressemitteilung der Universität Regensburg vom 18.02.2011

Chemiker weisen ungleichmäßige Verteilung nach

Sauerstoff ist für die meisten Lebewesen unentbehrlich. Dies gilt auch für den Menschen. Nur wenn Sauerstoff ausreichend vorhanden ist, sind die Atmung und der Stoffwechsel in jeder Zelle gewährleistet. Um beide Schlüsselprozesse – Atmung und Stoffwechsel – und deren Fehlfunktionen besser zu verstehen, untersucht die Forschung die Sauerstoffverteilung und den Sauerstoffverbrauch in den Zellen. So wären „Landkarten“ bzw. Bilder der Sauerstoffverteilung ein bedeutender Schritt. Mit herkömmlichen Messmethoden stießen Forscher dabei in den letzten Jahrzehnten immer wieder an ihre Grenzen. In jüngster Zeit wird deshalb verstärkt mit kleinsten bzw. molekularen Indikatoren und Sensoren gearbeitet, die in Gegenwart von Sauerstoff ihre Farbe ändern. Solche Indikatoren können in den Zellen mit Hilfe eines Mikroskops beobachtet werden, haben aber den Nachteil, dass sie an Zellbestandteile binden, was die Messung erschwert oder im schlimmsten Fall unmöglich macht.

Forschern der Universität Regensburg um Prof. Dr. Otto Wolfbeis und Dr. Hans-Heiner Gorris vom Institut für Analytische Chemie, Chemo- und Bioanalytik ist nun in diesem Zusammenhang ein wichtiger Durchbruch gelungen. Den Wissenschaftlern gelang es, einen empfindlichen Sauerstoff-Indikator in kleine Kügelchen aus Polystyrol – einem Kunststoff – einzuschließen. Die Kügelchen sind zwar für Sauerstoff durchlässig, aber sie schützen die Indikatoren vor dem Einfluss der Zellbestandteile. Sie werden von Zellen aufgenommen und können anschließend unter dem Mikroskop beobachtet werden.

Für ihre Untersuchungen platzierten die Chemiker zudem einen anderen Farbstoff in den Kügelchen, der gegenüber Sauerstoff unempfindlich ist und somit als Referenz dienen konnte. Über den Vergleich zwischen Sauerstoff-Indikator und Referenzfarbstoff konnten die Forscher standardisierte Messungen durchführen, die gegenüber äußeren Einflüssen unempfindlich waren.

Eine weitere Besonderheit der Kügelchen besteht darin, dass der Sauerstoff-Indikator lediglich auf dem roten Kanal einer digitalen RGB-Farbkamera aufgenommen werden kann, wohingegen der Referenzfarbstoff nur auf dem grünen Kanal erfasst wird. Das bedeutet, dass ein einziges RGB-Foto genügt, um ein Bild der zweidimensionalen Sauerstoffverteilung zu erhalten. Aufgrund der neuen Bilder erhielten die Regensburger Wissenschaftler Hinweise auf eine ungleichmäßige Sauerstoffverteilung in den Zellen und auf den Sauerstoffverbrauch in bestimmten Zellregionen.

Die Indikator-Kügelchen reagieren innerhalb von wenigen Sekunden auf Veränderungen der lokalen Sauerstoffkonzentration, so dass sie in Zukunft verstärkt zur Bestimmung des Zellstoffwechsels und der Zellatmung eingesetzt werden können. Zudem geht die Forschung derzeit davon aus, dass Krebszellen anhand ihres Sauerstoffverbrauchs von gesunden Zellen unterschieden werden können. Mit der neuen Sensortechnologie ist es nun möglich, diese Vermutung experimentell zu überprüfen.

Die Ergebnisse der Regensburger Wissenschaftler sind vor kurzem in der renommierten Fachzeitschrift „Chemical Science“ der britischen Royal Society of Chemistry erschienen (DOI: 10.1039/C0SC00610F). (Alexander Schlaak)

Externer Link: www.uni-regensburg.de

UV-transparente Schicht für Bildsensoren

Mediendienst der Fraunhofer-Gesellschaft vom Februar 2011

Bildsensoren, wie sie in Handys verbaut werden, sind in manchen Bereichen farbenblind. Das liegt an der Schicht, die UV-Licht nicht durchlässt. Daher eignen sich diese CMOS-Chips bislang nicht für die Spektroskopie. Ein neuer Fertigungsprozess macht die Schicht transparent – und die Sensoren für Spezialanwendungen tauglich.

In der Unterhaltungselektronik sind sie längst Standard – und ihr Vormarsch in weitere Anwendungsbereiche ist nicht mehr zu stoppen: CMOS-Bildsensoren werden nicht mehr nur in Handy- und Digitalkameras verbaut. Die Automobilindustrie etwa hat das Potenzial der optischen Halbleiterchips entdeckt und setzt sie zunehmend als Fahrerassistenzsysteme ein; von der Einparkhilfe über die Fahrspurerkennung bis hin zum Totwinkel-Warner. Doch die Sensoren, die Lichtsignale in elektrische Impulse verwandeln, müssen bei Spezialanwendungen jede Menge aushalten können – beispielsweise hohe Umgebungstemperaturen oder Feuchtigkeit.

Deshalb sind CMOS-Bauelemente mit einer Siliziumnitrid-Schicht abgedeckt. Diese chemische Verbindung bildet harte Schichten, die den Sensor vor mechanischen Einflüssen und dem Eindringen von Feuchtigkeit und Ionen schützen. Die Schutzschicht erhält der Sensor im letzten Schritt des CMOS-Halbleiterverfahrens. Experten nennen das Passivierung. Diese ist seitens der Industrie vorgeschrieben. Doch bisher gibt es mit der Passivierung ein Problem: Die Siliziumnitrid-Schicht setzt den optischen Anwendungsbereichen Grenzen, denn sie ist für Licht im UV- und blauen Spektralbereich nicht durchlässig – CMOS-Sensoren für Industrie- oder Spezialkameras sind deshalb teilweise farbenblind.

Forscher des Fraunhofer-Instituts für Mikroelektronische Schaltungen und Systeme IMS in Duisburg haben für dieses Problem jetzt eine Lösung gefunden: »Wir haben einen neuen Prozessschritt entwickelt«, sagt Werner Brockherde, Abteilungsleiter am IMS. »Mit diesem kommen wir zu einer Schutzschicht, die für blaues und UV-Licht durchlässig ist, aber dennoch die gleichen Eigenschaften besitzt.« Letztendlich besteht der Trick darin, den Stickstoffanteil in der Schicht zu erhöhen. »Dadurch haben wir die sogenannte Bandlücke erhöht«, erklärt Brockherde. Das führt vereinfacht gesagt dazu, dass das Licht eine höhere Energie als die des UV-Lichts benötigt, um vom Material absorbiert zu werden – der Sensor ist somit für den blauen und den UV-Bereich transparent geworden. »Die CMOS-Bildsensoren sind dadurch auch in Wellenlängenbereichen bis hinunter zu 200 Nanometer einsetzbar«, sagt Brockherde. »Mit der Standard-Passivierung war bei etwa 450 Nanometer Schluss.« Um die Struktur des Siliziumnitrids zu verändern, mussten die Fraunhofer-Forscher die Abscheideparameter wie Druck oder Temperatur bei der Herstellung der Schicht optimal anpassen.

Dank dieser Prozessentwicklung haben die Experten das Anwendungsspektrum der CMOS-Bildtechnologie erweitert: Sie könnte vor allem UV-spektroskopische Methoden, die aus kaum einem Labor der Welt wegzudenken sind, revolutionieren und deren Genauigkeit deutlich verbessern. Ebenso können CMOS-Bildsensoren künftig in der professionellen Mikroskopie wie etwa in Fluoreszenzmikroskopen zum Einsatz kommen – und Wissenschaftlern auf diese Weise noch detailreichere Bilder liefern.

Externer Link: www.fraunhofer.de

Radiometer spürt Brandherde auf

Mediendienst der Fraunhofer-Gesellschaft vom Januar 2011

Waldbrände breiten sich meist rasend schnell und unkontrolliert aus. Feuer mit starker Rauchentwicklung fordern die Einsatzkräfte besonders heraus, denn die Brandherde lassen sich nur schwer ausfindig machen. Ein neuer radiometrischer Sensor lokalisiert die Ausbruchsstellen selbst bei eingeschränkter Sicht.

Die Anzahl und das Ausmaß von Waldbränden hat in den vergangenen Jahrzehnten drastisch zugenommen. Unvergessen sind Fernsehbilder von Flammeninfernos, die im Sommer in Russland, Australien und Kalifornien kilometerweit Flächen verwüsteten. Auch in Deutschland sind viele Regionen aufgrund des Klimawandels betroffen – Brandenburg etwa gehört zu den stark gefährdeten Gebieten in Europa.

Oftmals lassen sich die Feuer nur aus der Luft eindämmen. Um Brandherde gezielt bekämpfen zu können, müssen Löschflugzeuge präzise eingewiesen werden. Ein erprobtes Hilfsmittel hierfür sind Infrarot-Kameras (IR), da Feuer im Infrarotbereich am intensivsten strahlt. Die IR-Kameras messen die Wärmestrahlung und können so Brandherde lokalisieren. Zudem liefern sie hochaufgelöste Bilder. Allerdings können diese Bildaufnehmer Ausbruchsstellen nicht bei starker Rauchentwicklung finden, da Infrarotstrahlen durch Partikel von Staub und Rauch zu stark gedämpft werden.

Eine Lösung des Problems kennen die Forscher des Fraunhofer-Instituts für Hochfrequenzphysik und Radartechnik FHR in Wachtberg. Sie haben ein Radiometer entwickelt, das Brände auch bei eingeschränkter Sicht überwachen kann: Der radiometrische Sensor arbeitet im Mikrowellenbereich zwischen 8 und 40 GHz. Bei diesen niedrigen Frequenzen fällt die Streuung der Strahlen an Staubpartikeln deutlich geringer aus als bei den hohen IR-Frequenzen. »Bei unseren Testmessungen bei 22 GHz war die Dämpfung zu vernachlässigen. Partikel aus Staub und Rauch sind im Mikrowellenbereich quasi transparent. Dennoch ist die Strahlungsleistung ausreichend hoch, um Brandnester zu erkennen. Aus einer Höhe von 100 Metern konnten wir bei eingeschränkten Sichtverhältnissen ein Feuer mit einer Fläche von fünf mal fünf Metern detektieren«, sagt Dipl.-Ing. Nora von Wahl, Wissenschaftlerin am FHR. Für die Testflüge montierten die Forscherin und ihr Team den Mikrowellensensor an der Unterseite eines unbemannten Luftschiffs der FernUniversität Hagen. »Bestandteil des Radiometers sind neben der Sensorik eine Kalibrierungseinheit, eine planare Gruppenantenne und Software, um Daten aufzuzeichnen und zu visualisieren«, sagt die Expertin. Die Auflösung des Systems wird durch den Öffnungswinkel der Antenne bestimmt und hängt somit von Antennengröße, Frequenz und Entfernung zum Boden ab. Bei einer Antennengröße von 20 Zentimeter Kantenlänge, einer Frequenz von 22 GHz und in einer Höhe von 30 Metern löste das Radiometer 2,6 Meter große quadratische Zellen auf. »Zwar erreichen wir mit dem Radiometer nicht die Detailgenauigkeit von Infrarot-Kameras. Wir vergrößern die Antenne und können dadurch die Auflösung erhöhen«, sagt die Forscherin. Mit dem radiometrischen Sensor sind die Wissenschaftler sogar in der Lage, Brandnester durch Blattwerk hindurch zu bestimmen. Und: »Nach einem Waldbrand entfachen sich oft neue Feuer unter der Erde. Um diese zu entdecken, haben Feuerwehrleute den Boden bisher mit Haken per Hand umgegraben. Unser Radiometer kann Ausbruchsstellen unter der obersten Erdschicht erkennen«, erklärt Nora von Wahl. Das System lasse sich hauptsächlich beim Brandschutz mit Löschflugzeugen einsetzen. Denkbar sei auch, mit dem Radiometer Industrieanlagen zu überwachen, etwa um Schwelbrände in Müllverbrennungsanlagen frühzeitig zu orten.

Das 105 mal 150 mal 73 Millimeter große Radiometer liegt als Prototyp vor. Ziel der Wissenschaftler ist es, das Gerät noch kleiner zu konstruieren. Auch die Antenne wollen die Ingenieure optimieren. Künftige Modelle sollen sich zudem durch ihre chipbasierte Bauweise auszeichnen.

Externer Link: www.fraunhofer.de

Trägheit ade – der Sessel wird zum Fitnesstrainer

Pressemitteilung der TU München vom 13.01.2011

TUM-Wissenschaftler entwickeln intelligenten Stuhl, der zur Bewegung anregt

Sport machen, ohne den Wohnzimmerstuhl zu verlassen – dieser Wunschtraum könnte bald in Erfüllung gehen. Ein Team mit Forschern der Technischen Universität München (TUM) entwickelt einen Sessel, der über Sensoren Bewegung und Vitalfunktionen misst und an eine Informationsplattform schickt. Diese soll Ernährungstipps geben, Ärzte informieren und zum Training motivieren: Am Fernseher werden Übungen und Spiele vorgeschlagen, die der Nutzer mit seinen Bewegungen im Sessel steuert.

Wer kennt das nicht: Sitzt man erst einmal gemütlich auf dem Sofa, kann man das abendliche Sportprogramm abschreiben, obwohl man doch unbedingt aktiver werden sollte. Um einen Ausweg aus dem Teufelskreis von Trägheit und schwindender Beweglichkeit zu finden, will eine Forschergruppe einen ungewöhnlichen Fitnesstrainer schaffen: den Sessel selbst. „Wir wollen die Menschen an ihrem Lieblingsplatz zur Bewegung anregen“, sagt Thomas Linner vom TUM-Lehrstuhl für Baurealisierung und Baurobotik. „Sie sollen in einem Möbelstück aktiv werden können, ohne aufstehen zu müssen.“

Das Prinzip ähnelt demjenigen moderner Videospiel-Konsolen: Über den Fernseher wählen die Nutzer Sport- und Spielprogramme aus. Mikrosensoren in Sitzfläche und Lehnen des Sessels sowie in einem Gürtel als Zusatzgerät registrieren Bewegungen und Kraftaufwand und setzen sie in die Programme um. Der Nutzer steuert so mit seinem Körper ein Spiel am Bildschirm oder bekommt dort Rückmeldungen, etwa über falsche Belastungen bei einer Trainingseinheit.

„Auch im Sitzen können jede Menge Muskeln und die Beweglichkeit trainiert werden“, sagt Thorsten Schulz vom Lehrstuhl für Sport und Gesundheitsförderung. Ein Beispiel: Der Nutzer bewegt seine Beine gegen einen Widerstand am unteren Sesselrand. Klingt einfach – und entspricht damit dem Ziel der Wissenschaftler. „Es geht ja gerade darum, die Schwelle für inaktive Menschen so niedrig wie möglich zu halten“, sagt Schulz. „Wenn sie ihre Übungen beherrschen, können sie sogar gleichzeitig ihre Lieblingssendung im Fernsehen schauen.“ Als Zielgruppe sehen die Forscher neben allen, „die das Gefühl haben, mehr tun zu müssen, aber sich nur schwer motivieren können“, auch gehbehinderte Senioren.

In einem zweiten Schritt wollen die Entwickler den Bewegungssessel nicht nur als Sportgerät, sondern auch zur Gesundheitsüberwachung einsetzen. Ebenfalls über Sensoren soll er Blutdruck und Puls, Atemfrequenz und Sauerstoffsättigung messen sowie als EKG-Gerät einsetzbar sein. Eine Informationsplattform soll die übermittelten Daten auswerten und in einfache Worte übersetzt auf Fernseher, Handy oder PC anzeigen. Servicedienste oder Ärzte könnten Applikationen anbieten, die über diese Plattform arbeiten: Ernährungs- und Sportprogramme leiten aus den Gesundheitsdaten Empfehlungen und Trainingspläne ab. Mediziner und Pfleger nutzen die Daten für ihre Behandlung. Notfalldienste werden bei einem kritischen Zustand informiert. „Über allem steht das Ziel, die Vitalität zu fördern“, sagt Thomas Linner. Und weil man daran nicht oft genug arbeiten kann, können sich die Wissenschaftler vorstellen, nach dem Prototypen für Zuhause auch Bewegungsstühle für Büro, Bahn und Flugzeug zu entwickeln.

Neben den beiden TUM-Lehrstühlen sind weitere Forschungseinrichtungen und mehrere Unternehmen am Projekt „Gesund wohnen mit Stil (GewoS)“ beteiligt, das das Bundesministerium für Bildung und Forschung mit insgesamt mehr als zwei Millionen Euro in drei Jahren fördert. Der Projekttitel deutet an, dass die Herausforderung für die Entwickler nicht nur in Technik und Sportprogramm liegt – sondern auch im Design. „Die Leute sollen sich den Sessel gerne ins Wohnzimmer stellen“, sagt Thomas Linner. „Da sollte er schon schick aussehen.“

Externer Link: www.tu-muenchen.de

Roboter mit Fingerspitzengefühl

Mediendienst der Fraunhofer-Gesellschaft vom Dezember 2010

Zwei Arme, drei Kameras, Fingerspitzengefühl und Mimik – das sind die Kennzeichen des pi4-Workerbot. Da er ähnliche Proportionen wie ein Mensch hat, lässt sich der Roboter an jedem modernen Arbeitsplatz der industriellen Fertigung einsetzen. Der Workerbot soll helfen, die Produktion in Europa wettbewerbsfähig zu halten.

Vorsichtig nimmt der Roboter das Zahnrad in die eine und das Gehäuse in die andere Hand. Dann steckt er die beiden Teile zusammen. Da sie nicht gleich einrasten, unterbricht er seine Bewegung. Langsam dreht er das Zahnrad ein kleines Stück zurück. Jetzt lässt es sich ohne Widerstand in der Halterung bewegen. Lächelnd legt er die erfolgreich zusammengesteckte Verbindung auf das Laufband. Dem pi4-Workerbot gelingt motorisch vieles, was normale Roboter nicht können. Er ist das Glanzstück des mit europäischen Mitteln geförderten PISA-Projekts. Ziel des Forschungsvorhabens ist es, mit Hilfe von Robotern bei Montageaufgaben einer industriellen Massenfertigung flexibler zu sein.

Wer in Deutschland produziert, braucht eine Technologie, die anpassungsfähig ist – an unterschiedliche Produktvarianten und schwankende Stückzahlen. Weil je nach Auftragslage auch der Bedarf an Arbeitskräften variiert, sollen Hersteller den Roboter sogar leasen können. »Wir haben den Workerbot so entwickelt, dass er ähnliche Proportionen wie ein Mensch hat«, sagt Dr.-Ing. Dragoljub Surdilovic, Arbeitsgruppenleiter am Fraunhofer-Institut für Produktionsanlagen und Kons-truktionstechnik IPK in Berlin. So lässt sich der Hightech-Helfer an jedem modernen Stehsitzarbeitsplatz der industriellen Fertigung einsetzen.

Der Roboter ist mit drei Kameras ausgestattet. Die Umgebung erfasst er mit einer hochmodernen 3D-Kamera in der Stirn. Zu Inspektionszwecken dienen die beiden anderen Kameras. Die Bandbreite seiner Fähigkeiten ist groß: »Er kann Gegenstände vermessen oder unterschiedliche Oberflächen inspizieren«, sagt Matthias Krinke, Geschäftsführer von pi4-Robotics, dem Unternehmen, das den Workerbot auf den Markt bringt. Über die Reflektion des Lichts auf dem Material erkennt der Roboter, ob die Chromschicht auf einem Werkstück makellos aufgetragen wurde. »Wenn man zwei unterschiedliche Kameras einsetzt, kann er mit dem linken Auge einen anderen Aspekt prüfen als mit dem rechten«, sagt Krinke. Zudem ist der Workerbot in der Lage, Bauteile 24 Stunden lang zu inspizieren. Das ist in Bereichen, in denen es auf Präzision ankommt, besonders wichtig: Etwa in der Medizintechnik, wo ein fehlerhaftes Teil im schlimmsten Fall das Leben von Menschen in Gefahr bringen kann.

Eine weitere Besonderheit des pi4-Workerbot: Er verfügt über zwei Arme. »Das erlaubt neue Arten von Bewegungsabläufen«, sagt Surdilovic. »Die Roboter können ein Werkstück von einer Hand in die andere reichen.« Etwa, um kompliziert gebaute Teile aus allen Winkeln zu betrachten. »Konventionelle Roboterarme haben meist nur ein einziges Drehgelenk in der Schulter, alle anderen Gelenke sind Knickgelenke. Das heißt, sie verfügen über sechs Freiheitsgrade und nicht über sieben wie der menschliche Arm.« Der Workerbot hat neben dem Drehgelenk in der Schulter eine zusätzliche Drehmöglichkeit, die dem Handgelenk beim Menschen entspricht. Die Arbeitsgruppe von Surdilovic arbeitete die Steuerung aus. »Eine besondere Herausforderung war es, das Zusammenspiel der beiden Arme zu ermöglichen – etwa wenn sie gemeinsam ein Werkstück inspizieren oder zwei Bauteile zusammenbauen«, erläutert der Fraunhofer-Forscher. »Dazu bedarf es einer zusätzlichen Sensorik.«

Zudem haben die Forscher ihn mit Fingerspitzengefühl versehen. »Wenn man die Greifkräfte richtig einstellt, nimmt er ein Ei, ohne es zu zerquetschen«, sagt Surdilovic. Der Roboter kann sich sogar mit Mimik ausdrücken. Läuft die Arbeit reibungslos, lächelt er zufrieden. Sieht er gelangweilt aus, wartet er auf Arbeit, und der Produktionsleiter weiß, dass der Produktionsprozess beschleunigt werden kann.

Externer Link: www.fraunhofer.de