Komplexe Parkettmuster – erstaunliche Materialien

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 23.01.2018

Einfache organische Moleküle bilden komplexe Materialien durch Selbstorganisation – Veröffentlichung in Nature Chemistry

Parkett kennt man aus dem Wohnzimmer. Aber auch Materialien können eine mikrostrukturierte Parkettierung aufweisen. Diese können etwa für außergewöhnliche elektrische Leitfähigkeit, spezielle Lichtreflektion oder extreme mechanische Belastbarkeit sorgen. Solche Strukturen gezielt zu erzeugen, bedarf großer molekularer Bausteine, die meist nicht mit den konventionellen Herstellungsprozessen kompatibel sind. Im Fachmagazin Nature Chemistry erklären Forscher des KIT und der TUM nun, wie Moleküle selbstorganisiert ein komplexes Parkettmuster bilden.

Das Team des Karlsruher Instituts für Technologie (KIT) und der Technischen Universität München (TUM) hat einen Reaktionsweg entdeckt, der aus einfachen zweidimensionalen Netzwerken exotische Schichten mit halbregulärer Struktur erzeugt. Solche Materialien sind interessant, weil sie häufig außerordentliche Eigenschaften besitzen. Bei dem Verfahren verbinden sich einfachere organische Moleküle zu größeren Bausteinen, die komplexe, halbreguläre Muster erzeugen.

Um eine Fläche mit gleichförmigen Kacheln lückenlos zu pflastern, kommen nur wenige geometrische Grundformen in Frage: Dreiecke, Vierecke und Sechsecke. Mit zwei oder mehr Kachelformen lassen sich wesentlich mehr und deutlich komplexere Muster erzeugen, die immer noch regelmäßig sind, die sogenannten Archimedischen Parkettierungen.

Auch Materialien können eine solche Parkettierung aufweisen und weisen dann häufig ganz besondere und erstrebenswerte Eigenschaften auf, zum Beispiel außergewöhnliche elektrische Leitfähigkeit, spezielle Lichtreflektion oder extreme mechanische Belastbarkeit. Doch es ist schwierig, solche Strukturen gezielt zu erzeugen. Dafür sind große molekulare Bausteine nötig, die nicht mit den konventionellen Herstellungsprozessen kompatibel sind.

Komplexes Parkettmuster durch Selbstorganisation

Bei einer Klasse supramolekularer Netzwerke ist nun einem internationalen Team um die Professoren Florian Klappenberger und Johannes Barth vom Lehrstuhl für Experimentalphysik an der TUM sowie Professor Mario Ruben vom Karlsruher Institut für Technologie ein Durchbruch gelungen: Sie brachten organische Moleküle dazu, sich zu größeren Bausteinen zu verbinden, die selbstorganisiert ein komplexes Parkettmuster bilden.

Als Ausgangsverbindung nutzten sie Ethynyl-Iodophenanthren, ein handliches organisches Molekül aus drei aneinandergekoppelten Kohlenstoffringen, das ein Iod- und ein Alkin-Ende besitzt. Auf einem Silbersubstrat bildet dieses Molekül zunächst ein regelmäßiges Netz mit großen sechseckigen Maschen. Eine Wärmebehandlung setzt dann eine Abfolge chemischer Prozesse in Gang, die einen neuartigen, deutlich größeren Baustein erzeugen, der dann quasi automatisch und selbstorganisiert eine komplexe Schicht mit kleinen sechs-, vier- und dreieckigen Poren bildet. Dieses Muster wird in der Sprache der Geometrie als semireguläre 3.4.6.4 Parkettierung bezeichnet.

Die Arbeitsgruppe von Mario Ruben am Institut für Nanotechnologie des KIT war im Projekt für die maßgeschneiderte, zielgerichtete Synthese und Charakterisierung von mehrkernigen Molekülkomplexen verantwortlich, die als Bausteine des Parketts dienen. „Wir haben einen völlig neuen Weg entdeckt, um komplexe Materialien aus einfachen organischen Bausteinen herzustellen“, fassen Klappenberger und Ruben zusammen. „Das ist wichtig, um Materialien mit neuen und extremen Eigenschaften gezielt synthetisieren zu können. Außerdem tragen diese Ergebnisse dazu bei, ein spontanes Auftauchen – der Emergenz – von Komplexität in chemischen und biologischen Systemen besser zu verstehen.“

Die an der TUM durchgeführten Rastertunnelmikroskopie-Messungen zeigen deutlich, dass am Molekülumbau viele Reaktionen beteiligt sind, was normalerweise zu zahlreichen Abfallprodukten führt. Im neuen Prozess werden Abfallprodukte wiederverwendet, so dass der Gesamtprozess in einer hohen Atomökonomie zum gewünschten Endprodukt führt. Wie es dazu kommt, fanden die Forscher durch weitere Experimente heraus.

Mit Hilfe röntgenspektroskopischer Messungen am Elektronenspeicherring BESSY II des Helmholtz-Zentrums Berlin konnte entschlüsselt werden, wie sich Iod vom Ausgangsstoff abspaltet, Wasserstoffatome zu neuen Plätzen wandern und die Alkin-Gruppen ein Silber-Atom einfangen. Mit Hilfe des Silber-Atoms binden sich in der Folge zwei Ausgangsbausteine zu einem neuen, größeren Baustein aneinander. Die neuen Bausteine bilden anschließend die beobachtete komplexe Porenstruktur.

Die Arbeiten wurden gefördert mit Mitteln der Deutschen Forschungsgemeinschaft (im Rahmen des Exzellenzclusters Munich-Centre for Advanced Photonics sowie des Schwerpunktprogramms SPP 1459, des Transregio TRR 88 3Met C5 und des DFG Projekts KL 2294/3) und des European Research Councils (ERC Advanced Grant MolArt). Die Synthese und Charakterisierung der Moleküle wurden in der Karlsruhe Nano Micro Facility durchgeführt. (aba/kes)

Publikation:
Yi-Qi Zhang, Mateusz Paszkiewicz, Ping Du, Liding Zhang, Tao Lin, Zhi Chen, Svetlana Klyatskaya, Mario Ruben, Ari P. Seitsonen, Johannes V. Barth, and Florian Klappenberger: Complex supramolecular interfacial tessellation through convergent multistep reaction of a dissymmetric simple organic precursor, Nature Chemistry 2017. DOI: 10.1038/nchem.2924

Externer Link: www.kit.edu

TU Wien optimiert chemische Wärmespeicher

Presseaussendung der TU Wien vom 17.01.2018

Energie chemisch speichern und wieder freisetzen – dieses vielversprechende Konzept wird an der TU Wien erforscht. Nun gelang ein wichtiger Schritt auf der Suche nach dem passenden Material.

Das Grundprinzip kennt man schon aus der Antike: Schon damals wurde Kalk gebrannt und gelöscht. Man führt dem Kalkstein im Brennofen Energie zu und löst dadurch eine chemische Reaktion aus. Das Produkt ist Branntkalk, in dem ein Teil der zugeführten Energie gespeichert bleibt, bis man ihn mit Wasser ablöscht. Dabei entsteht Löschkalk, und die Energie wird in Form von Hitze wieder abgegeben.

Ganz ähnliche Möglichkeiten des chemischen Energiespeicherns untersucht man an der TU Wien. Ein wichtiger Durchbruch gelang jetzt auf dem Weg zum Magnesium-Wärmespeicher: Mit quantenchemischen Rechnungen, aufwändigen Experimenten und hochentwickelter Analysetechnik fand man das optimale Magnesium-basierte Speichermaterial: Aus einer speziellen Mischung aus Magnesium und Calcium lässt sich eine Struktur herstellen, die sich bestens als Wärmespeicher für Industrieanlagen eignet.

Eine Frage des Materials

„Wir haben uns in den letzten Jahren intensiv mit der Frage beschäftigt, welche Materialien und welche chemischen Reaktionen sich am besten zum Speichern von Abwärme eignen“, sagt Peter Weinberger vom Institut für Angewandte Synthesechemie der TU Wien. Welcher chemische Speicher sinnvoll ist, hängt ganz entscheidend von der verfügbaren Temperatur ab: Das wohlbekannte Kalkbrennen etwa funktioniert nur bei sehr hohen Temperaturen. Für Abwärme mit einer Temperatur von unter 400°C, wie sie in der Industrie oft anfällt, braucht man andere Reaktionen.

„Man hat daher schon längere Zeit mit Magnesiumoxid experimentiert – allerdings mit recht gemischtem Erfolg“, berichtet Weinberger. „Magnesiumoxid reagiert zwar genau im richtigen Temperaturbereich, aber wie sich herausstellte, ist es sehr schwer, die Reaktion vollständig ablaufen zu lassen.“ Das liegt an recht komplizierten Prozessen auf mikroskopischer Skala. So können sich etwa winzige Partikel bilden, die nur an ihrer Oberfläche chemische Reaktionen erlauben, während ihr Inneres abgeschirmt bleibt. Auch die genaue Form der Kristallstruktur, die das Magnesiumoxid ausbildet, spielt eine wichtige Rolle für die Effizienz der Reaktion.

Doch wie kann man die Eigenschaften von Magnesiumoxid grundlegend verbessern? Um dieses Problem zu lösen, musste die Expertise mehrerer Arbeitsgruppen gebündelt werden: „Ursprünglich entstand das Projekt bei unseren Kollegen an der Fakultät für Maschinenwesen und Betriebswissenschaften, im Team von Prof. Andreas Werner“, sagt Peter Weinberger. „Entscheidende Ideen kamen zunächst von meinem Postdoc Danny Müller, und bald waren alle vier Chemie-Institute der TU Wien bei dem Projekt dabei, dazu kam noch unser Röntgenzentrum. Das ist sehr ungewöhnlich, war aber die einzige Chance, einem so schwierigen Problem auf den Grund zu gehen.“

Die perfekte Mischung

Computersimulationen ergaben, dass die Effizienz des Prozesses vom Abstand zwischen den einzelnen Atomen abhängt: Die Magnesium-Atome im Magnesium-Oxid sitzen einfach ein bisschen zu nahe beisammen. Dadurch gelingt es ihnen nicht optimal, beim Löschen die Wassermoleküle zu spalten. Da sich die fundamentalen Eigenschaften eines Atoms nicht ändern lassen, blieb nur eine Alternative: Man fügte Fremdatome in das Magnesium-Oxid ein.

„Quantenchemische Berechnungen sagten voraus, dass ein Beimischen von 10% Calcium optimal sein sollte, sofern es gelingt, Magnesium und Calcium auf atomarer Ebene gründlich durchzumischen – das hätte man eigentlich nicht erwartet“, sagt Peter Weinberger. Doch man versuchte es und hatte tatsächlich Erfolg: In genau der richtigen Mischung lassen sich tatsächlich 100% des Magnesium- und Calcium-Oxids chemisch umsetzen – und zwar auf reversible Weise, sodass der Prozess in vielen Zyklen immer und immer wieder ablaufen kann.

Nun soll dieser Prozess verfahrenstechnisch weiter verbessert werden. „Bis die Idee in der Industrie eingesetzt wird, müssen wir noch klären, wie man optimale Reaktoren baut und der Prozess möglichst effizient und kostengünstig abläuft. Aber wir wissen nun, dass die Grundidee funktioniert“, sagt Peter Weinberger. Weitere Versuchsanlagen sind an der TU Wien bereits in Planung. (Florian Aigner)

Originalpublikation:
Müller et al., Adv. Sustainable Syst. 2018, 2, 1700096

Externer Link: www.tuwien.ac.at

Bei Zuckermangel in der Zelle leben Boten-RNAs länger

Medienmitteilung der Universität Basel vom 08.01.2018

Leidet eine Zelle unter Zuckermangel, speichert sie bestimmte Boten-RNAs, um so ihr Leben zu verlängern. Wie eine Forschungsgruppe am Biozentrum der Universität Basel nun herausfand, entscheidet das Protein Puf5p bei Zuckermangel in der Zelle darüber, ob eine Boten-RNA aufbewahrt oder abgebaut wird. Wie die in eLife veröffentlichte Studie zeigt, schickt das Protein die Boten-RNAs dazu in eine Zellorganelle, wo ihr Schicksal besiegelt wird.

Ist eine Zelle Stress ausgesetzt, sei es durch Mangel an Nährstoffen oder einem Zuviel an Spurenelementen, reagiert die Zelle unmittelbar darauf, um ihr Überleben zu sichern. Die Forschungsgruppe von Prof. Anne Spang am Biozentrum der Universität Basel hat nun untersucht, wie sich unterschiedlichen Stresssituation auf Prozesse in der Zelle auswirken.

Das Team fand heraus, dass sogenannte P-Bodies, kleine Zellorganellen, dabei eine wichtige Funktion übernehmen: Sie bauen nicht nur – wie bislang angenommen – die Boten-RNAs (mRNAs) ab, die in der jeweiligen Stresssituation für die Zelle unbrauchbar sind. Sie sorgen im Gegenzug ebenfalls dafür, dass Boten-RNAs, die für die jeweilige Stresssituation von Nutzen sind, gespeichert werden. Als mobile Träger von Erbinformationen sind mRNAs in der Zelle Vorlage für die Produktion lebenswichtiger Proteine. Mit Puf5p fand das Forschungsteam zudem genau das Protein, das die Entscheidung über das Schicksal der mRNAs fällt.

Protein entscheidet über das Schicksal von mRNAs

Spang und ihr Team haben am Beispiel der Hefezelle untersucht, welche Prozesse in der Zelle bei Zuckermangel ablaufen und haben diese mit anderen Stresssituationen verglichen. Es zeigte sich, dass die P-Bodies, bei Zuckermangel vermehrt sogenannte mitochondriale mRNAs einlagern. Die Produkte der mRNAs sorgen dafür, dass der Energiestoffwechsel in den Kraftwerken der Zelle, den Mitochondrien, umgestellt wird. «Nur so lässt sich das weitere Überleben der Zelle gewährleisten», sagt Spang. Zeitgleich werden in den P-Bodies alle mRNAs abgebaut, die in dieser Mangelsituation unnötig sind. Bislang ging man davon aus, dass P-Bodies lediglich für den Abbau von mRNAs zuständig sind.

Zudem gelang es den Forschenden, den Entscheidungsträger für diese Selektion zu identifizieren: «Wir konnten zeigen, dass das Protein Puf5p im Vorfeld über das jeweilige Schicksal einer mRNA entscheidet und diese zum Ort des Geschehens, den P-Bodies, transportiert», berichtet Spang.

Bei Stress leben Zellen länger

Zahlreiche wissenschaftliche Untersuchungen der Vergangenheit haben gezeigt, dass sich gewisser Stress, insbesondere Nährstoffmangel, positiv auf die Lebenserwartung einer Zelle und auch auf den Menschen auswirken kann. Die Untersuchung von Spang liefert nun einen weiteren Baustein, um die genauen Prozesse, die den lebensverlängernden Prozessen zugrunde liegen, zu verstehen. «Auch die Speicherung von mRNAs in den P-Bodies bei Zuckermangel scheint für die gesamte Lebensdauer einer Zelle von Vorteil zu sein», so Spang.

Originalbeitrag:
Congwei Wang, Fabian Schmich, Sumana Srivatsa, Julie Weidner, Niko Beerenwinkel and Anne Spang
Context-dependent deposition and regulation of mRNAs in P-bodies
eLife (2018), doi: 10.7554/eLife.29815

Externer Link: www.unibas.ch

Bioinformatiker der Saar-Uni berechnen die Gensequenzen beider Elternteile

Pressemitteilung der Universität des Saarlandes vom 11.01.2018

Bei der Analyse des menschlichen Genoms blieben Forscher bisher eine Antwort schuldig: Sie konnten nicht sagen, wie sich die beiden von Mutter und Vater vererbten Varianten eines Gens unterscheiden. Dabei erhöht diese Information die Wahrscheinlichkeit, bestimmte Krankheiten erfolgreich zu behandeln. Die so genannte dritte Generation von Sequenzierungstechnologien macht dies nun möglich. Eines der wichtigsten Hilfsmittel für dieses komplexe Puzzle: Eine spezielle Software, entwickelt von Wissenschaftlern am Zentrum für Bioinformatik der Universität des Saarlandes. Die renommierte Fachzeitschrift „Nature Communications“ berichtet daher gleich zweimal über ihre Forschung.

Den Menschen machen 46 Chromosomen aus. Sie tragen die Gene und definieren das Erbgut, das sogenannte Genom. Damit sich die Anzahl der Chromosomen nicht von Generation zu Generation verdoppelt, sind lediglich 23 Chromosomen in der männlichen und weiblichen Keimzelle enthalten, die zu einer befruchteten Eizelle und damit neuem Leben verschmelzen. Diesen halben Chromosomensatz bezeichnet man als „haploid“. „Welche Genvarianten ich von meinem Vater oder meiner Mutter erhalte, kann darüber entscheiden, ob ich krank werde und auch, wie ich am besten medizinisch behandelt werden kann“, erklärt Tobias Marschall, Professor für Bioinformatik an der Universität des Saarlandes. Dort leitet er die Gruppe „Algorithms for Computational Genomics“ am Zentrum für Bioinformatik.

Analysieren zu können, welche Genvarianten von welchem Elternteil vererbt wurden und damit den sogenannten Haplotyp zu bestimmen, ist der neue Quantensprung bei der Sequenzierung des menschlichen Genoms. Zwei Entwicklungen sind hierfür entscheidend: Zum einen liefern die sogenannten Sequenziertechnologien der dritten Generation, etabliert von Unternehmen wie Oxford Nanopore, 10x Genomics und Pacific Biosciences, eine andere Art von Gendaten. „Durch sie bekommen wir nun viel längere Gen-Schnipsel und können damit nun endlich das praktizieren, was wir in der Theorie schon lange studiert haben“, so Marschall. An der zweiten Voraussetzung ist er aktiv beteiligt. Er entwickelt die Rechenverfahren, die diese Gendatenberge beherrschbar machen. Ein Teil davon ist auch in die Software eingeflossen, die Marschall mit seinen Kollegen entwickelt und auf den Namen „WhatsHap“ getauft hat.

„Stellen sie sich ein äußerst schwieriges Puzzle vor. Mit ‚WhatsHap‘ lösen wir gleich zwei davon und zwar gleichzeitig“, umschreibt Marschall das Vorgehen der Software. Der Bioinformatiker ist überzeugt, dass mit Hilfe solcher Programme in absehbarer Zeit die Bestimmung des Haplotyps ebenso zu einer Routineuntersuchung in Krankenhäusern wird, wie es die Bestimmung der Blutgruppe bereits heute ist. Die beiden Aufsätze in der Fachzeitschrift „Nature Communications“ sind für ihn dafür der erste Meilenstein.

Die Relevanz dieser Arbeiten bekräftigte auch die Deutsche Forschungsgemeinschaft (DFG), indem sie vergangene Woche die finanzielle Förderung von gleich zwei Projekten bekannt gab, die mit „WhatsHap“ zusammenhängen. Im ersten Projekt wird Professor Marschall gemeinsam mit Professor Gunnar Klau von der Heinrich-Heine-Universität in Düsseldorf an noch leistungsfähigeren Rechenverfahren zur Haplotypisierung arbeiten. Im zweiten Projekt fördert die DFG im Rahmen der Initiative „Nachhaltigkeit von Forschungssoftware“ die dauerhafte Pflege der WhatsHap-Software und ebnet so den Weg in den klinischen Alltag. Insgesamt stehen für diese Projekte 800.000 Euro zur Verfügung, von denen 550.000 Euro an die Saar-Uni fließen, um dort neue Stellen für Forscher und Entwickler zu schaffen.

Externer Link: www.uni-saarland.de