Innovative Dachkonstruktion besteht Praxistest

Medienmitteilung der ETH Zürich vom 12.10.2017

Mit neuartigen digitalen Planungs- und Herstellungsmethoden haben Wissenschaftler der ETH Zürich einen Prototyp für ein ultra-dünnes, geschwungenes Betondach gebaut. Nächstes Jahr soll die Methode zum ersten Mal an einem echten Gebäude eingesetzt werden.

Wissenschaftler der ETH Zürich haben mit neuartigen Design- und Fabrikationsmethoden einen Prototyp für ein ultra-dünnes und stark gewelltes Betondach gebaut. Das Dach gehört zu einer innovativen Wohneinheit mit dem Namen HiLo, die nächstes Jahr auf dem Forschungsgebäude NEST der Empa und Eawag in Dübendorf errichtet werden soll. Nach der Fertigstellung sollen Gastforschende der Empa darin wohnen und arbeiten. Wissenschaftler um Philippe Block, Professor für Architektur und Tragwerk und Arno Schlüter, Professor für Architektur und Gebäudesysteme, wollen dort neue Leichtbauweisen erproben und sie mit intelligenten und adaptiven Gebäudesystemen kombinieren.

Das selbsttragende und doppelt gekrümmte Schalendach besteht aus mehreren Schichten. Auf der inneren Betonlage kommen die Heiz- und Kühlschlangen zu liegen sowie eine Isolationsschicht. Gegen aussen schliesst eine weitere Betonschicht das Dach ab, auf welcher Dünnschicht-Solarzellen angebracht werden. Dank dieser Technologie und einer adaptiven Solar-Fassade soll die Wohneinheit dereinst mehr Energie generieren, als sie verbraucht.

Im Massstab 1:1 erprobt

Die Konstruktionsmethode für das Dach wurde von Forschern der Block Research Group unter der Leitung von Prof. Block und Dr. Tom Van Mele zusammen mit dem Architekturbüro supermanoeuvre entwickelt und an einem Prototyp im Massstab 1:1 erprobt. Der Prototyp, der bereits wieder rückgebaut wurde, um zukünftigen Experimenten Platz zu machen, war siebeneinhalb Meter hoch und hatte eine Fläche von 162 Quadratmetern. Die Dicke des Betons variierte zwischen 3 Zentimetern an den Rändern des Dachs und 12 Zentimetern an den Auflageflächen.

Anstatt auf herkömmliche Schalungen aus Holz oder Kunststoff, setzten die Forscher auf ein Netz aus Stahlseil, das in einer Gerüstkonstruktion aufgespannt wird. Auf dieses Netz kommt ein Textil aus Polymer zu liegen, das dem Beton als Schalung dient. So können die Wissenschaftler nicht nur massiv Baumaterial sparen, sondern auch Lösungen für die wirtschaftliche Herstellung ganz neue Design-Formen bereitstellen. Ein weiterer Vorteil dieser Methode ist, dass bereits während des Betonieren des Dachs die Fläche darunter frei bleibt und somit Bauarbeiten im Gebäudeinnern zeitgleich stattfinden können.

Algorithmen berechnen exakte Form

Das Drahtseil-Netz ist so konzipiert, dass es unter dem Gewicht des nassen Betons die gewünschte Form annimmt. Dies gelingt dank einer Berechnungsmethode, die Block und seine Gruppe im Rahmen des Nationalen Forschungsschwerpunkts Digitale Fabrikation weiterentwickelt haben. Die Algorithmen sorgen dafür, dass sich die Kräfte in jedem einzelnen Stahlseil richtig verteilen und das Dach exakt die vorbestimmte Form annimmt. «Wenn wir die Geometrie richtig berechnen, dann gewinnen wir die Stabilität primär aus der Geometrie und nicht aus dem Baumaterial», sagt Philippe Block. Das Kabelnetz wiegt nur 500 Kilogramm, das Textil 300 Kilogramm. Es handelt sich also um insgesamt nur 800 Kilo Material, die 20 Tonnen nassen Beton tragen.

Der Bau des Dachs wäre ohne die Hilfe modernster Computer- und Herstellungstechniken nicht denkbar. Bauroboter kamen dennoch nicht zum Einsatz, stattdessen setzten die Wissenschaftler auf die Präzision und auf das Können von Handwerkerinnen und Handwerkern. Spezialisten der Firmen Bürgin Creations und Marti haben den Beton mit einer eigens dafür entwickelten Methode aufgespritzt. Sie mussten darauf achten, dass das Textil dem Druck jederzeit standhalten konnte. Gemeinsam mit Holcim Schweiz definierten die Wissenschaftler die richtige Betonmischung, die flüssig genug sein musste, um aufgespritzt werden zu können und zähflüssig genug, um auch an den vertikalen Stellen haften zu bleiben.

Bewiesen, dass es funktioniert

Den Prototypen haben die Wissenschaftler um Block im Robotic Fabrication Lab der ETH Zürich innerhalb von sechs Monaten gebaut. Er stellt einen wichtigen Meilenstein für das Projekt dar. «Wir haben bewiesen, dass es möglich ist, ein leichtes und flexibles Schalungssystem für Beton zu bauen und dass komplexe Betonstrukturen ohne grossen Materialaufwand möglich sind. In enger Zusammenarbeit mit den Unternehmen konnten wir zeigen, dass unser System auch auf der NEST-Baustelle funktionieren wird», sagt Block.

Vom Projektstart bis zum fertigen Prototypen dauerte es vier Jahre. Dies auch, weil Philippe Block die zahlreichen Industriepartner eng in die Entwicklung des Prototyps einbeziehen wollte. Nächstes Jahr will Block das Dach in acht bis zehn Wochen auf dem NEST-Gebäude neu bauen. Die einzelnen Komponenten der Dachkonstruktion lassen sich beliebig oft wiederverwenden. Das Drahtseilnetz lässt sich in wenige Teile zerlegen, die innerhalb kurzer Zeit wieder zusammengefügt und neu aufgehängt werden können.

Externer Link: www.ethz.ch

Strom mit Elastomerfolien erzeugen

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.10.2017

Mit rund 33 Prozent ist Wasser noch immer der bedeutendste erneuerbare Energieträger Bayerns, wie der Energie-Atlas Bayern zeigt. Doch vor allem konventionelle Kleinstwasserkraftwerke mit überschaubarem Ertrag sind umstritten – sie greifen in das Ökosystem ein. Fraunhofer-Forscher arbeiten an einer umweltschonenden Alternative: Neuartige Elastomermaterialien sollen künftig die mechanische Energie von Wasserströmungen in kleinen Flüssen direkt in elektrische Energie umwandeln.

Mit ihrem Energieprogramm hat die Bayerische Staatsregierung neue Ziele zur Umsetzung der Energiewende gesetzt: Rund 40 Prozent des bayerischen Strombedarfs sollen bis 2025 aus heimischen erneuerbaren Energien gedeckt werden. Einen innovativen Ansatz zur regenerativen Stromerzeugung verfolgt das Fraunhofer-Institut für Silicatforschung ISC im Projekt DEGREEN und setzt dabei auf Wasserkraft: Die Würzburger Forscher nutzen extrem dehnbare, hauchdünne Elastomerfolien, die wie ein Kondensator funktionieren. Die Folien aus Silikon sind beidseitig mit einer elastischen leitfähigen Schicht sowie einer isolierenden Schutzschicht versehen. In kleinen Flüssen und Bächen installiert, wird durch einen Wechselzyklus aus Dehnung und Entspannung die mechanische Bewegungsenergie des Wassers direkt in elektrische Energie umgewandelt. Das fließende Wasser dehnt die weiche Folie, die einem Luftballon ähnelt. In gedehntem Zustand wird sie durch das Anlegen einer hohen elektrischen Spannung geladen. Anschließend wird das Elastomer wieder mechanisch entspannt und in den ursprünglichen Zustand gebracht. »In diesem Zustand ist jetzt eine höhere elektrische Energie aufgebracht, die wir über eine Schaltung quasi absaugen. Dieser Kreisprozess aus Spannung und Entspannung erfolgt einmal pro Sekunde«, erläutert Dr. Bernhard Brunner, Projektleiter und Wissenschaftler am ISC. »Legen wir eine Spannung von 4000 Volt an, können wir bei jeder Dehnung eine elektrische Leistung von 100 Milliwatt pro Folie erzeugen.«

Doch wie gelingt die periodische Dehnung der Folien? Hierfür haben Brunner und sein Team ein pfiffiges mechanisches Anregungskonzept umgesetzt: Strömt Wasser durch ein verengtes Rohr, entsteht in diesem ein Luftunterdruck – auch Venturi-Effekt genannt –, durch den die Elastomerfolie gedehnt wird. Der Unterdruck wird durch Öffnen eines Belüftungsventils ausgeglichen, was die Elastomerfolie wieder in den ungedehnten Zustand versetzt. Der Clou: Das Ventil ist selbststeuernd, es öffnet und schließt sich selbsttätig ohne den Einfluss von Elektronik und Strom.

Idealer Standort: Bäche und kleine Flüsse

Durch Ändern des Foliendurchmessers können die Forscher den Druck anpassen. Dadurch ist der Generator im Hinblick auf die Strömungsgeschwindigkeiten der Gewässer skalierbar. Das komplette System, das sich aus Folien, Rohr, Ventil, Pumpe, Luftleitung, Elektronik und Gleichrichter zusammensetzt, ist modular aufgebaut, auch der Rohrdurchmesser lässt sich einstellen. Je nach Tiefe und Breite der Gewässer werden die Rohre entsprechend angepasst und übereinander, hintereinander oder nebeneinander montiert. Bei einem breiten, aber nicht tiefen Fluss empfiehlt es sich, die Rohre nebeneinander zu verbauen. »Ein großer Vorteil unseres Konzepts ist, dass wir nicht auf große Wassertiefen angewiesen sind, wir nutzen die Fließenergie des Wassers. Unsere Elastomergeneratoren eignen sich vor allem für kleine Flüsse und funktionieren schon bei Wassergeschwindigkeiten ab 0,5 Meter pro Sekunde und bei Wassertiefen von 0,5 Metern. In Bayern gibt es kleinste Flüsse mit einer Gesamtlänge von 30 000 Kilometern, in denen sich unser von Wind und Sonne unabhängiges System optimal einsetzen ließe. Würden wir 1000 unserer Anlagen installieren, könnten wir die Energiewende in Bayern entscheidend unterstützen«, sagt Brunner. Eine Gesamtleistung von 876 MWh pro Jahr könnte in das Netz eingespeist werden. Auch Österreich und die Schweiz mit ihren kleinen Gebirgswasserläufen sowie Entwicklungsländer würden von dem neuartigen mechanischen Anregungskonzept profitieren.

Dezentrale Stromversorgung

Die Elastomergeneratoren sind so ausgelegt, dass sie in flachen und kleinen Gewässern ohne Querbauwerke geräuschlos betrieben werden können. Sie eignen sich beispielsweise für die dezentrale Stromversorgung von Campingplätzen oder abgelegenen Siedlungen, die direkt an Gewässern liegen.

Im Labor konzipieren Brunner und sein Team derzeit zwei Versionen der Stromerzeuger: eine schwimmende Variante sowie eine, die am Ufer montiert wird. Aktuell wird der Aufbau miniaturisiert – der fertige, wetter- und hochwasserfeste Generator soll zum Projektende in Schaltschrankgröße vorliegen. Parallel zu den Laborversuchen laufen in enger Abstimmung mit Gemeinde, Wasserwirtschaftsamt und Umweltbehörden erste Freilandtests mit Prototypen an der Wern und der Tauber. Dort führen die Würzburger Forscher realitätsnahe Experimente durch. Ziel ist es, 100 Watt pro Kraftwerk elektrische Leistung kontinuierlich zu erzeugen.

Externer Link: www.fraunhofer.de

Erdgasanlagen ohne CO2-Ausstoß

Presseaussendung der TU Wien vom 10.05.2017

So umweltfreundlich war Erdgasnutzung noch nie: Die TU Wien leitete ein Forschungsprojekt, das nun eine neue Methode der Erdgasverbrennung hervorgebracht hat – ganz ohne CO2-Ausstoß.

Wie kann man Erdgas verbrennen, ohne dabei CO2 in die Luft abzugeben? Dieses Kunststück gelingt mit einem speziellen Verbrennungsverfahren, an dem die TU Wien seit Jahren forscht – der „Chemical Looping Combustion“ (CLC). Dabei wird das CO2 direkt während der Verbrennung ohne zusätzlichen Energieaufwand abgeschieden und kann anschließend gespeichert werden. Somit wird verhindert, dass es in die Atmosphäre gelangt.

In einer Versuchsanlage mit einer Leistung von 100 kW wurde die Methode bereits erfolgreich angewandt. Jetzt gelang es in einem internationalen Forschungsprojekt, die Technik auf einen größeren Maßstab hochzuskalieren, sodass nun alle Voraussetzungen dafür geschaffen wurden, eine voll funktionsfähige Demonstrationsanlage mit einer Leistung im Bereich von 10 MW zu bauen.

CO2 vom Restabgas abscheiden

Die Verbrennung von Erdgas ist deutlich sauberer als die Verbrennung von Erdöl oder Kohle. Trotzdem hat Erdgas den großen Nachteil, dass bei der Verbrennung klimaschädliches CO2 entsteht. Dieses CO2 bildet normalerweise einen Teil des Abgas-Gemischs, gemeinsam mit Stickstoff, Wasserdampf und anderen Inhaltsstoffen. In dieser gemischten Form lässt sich das CO2 weder speichern noch sinnvoll verwerten.

„In den Anlagen, mit denen wir arbeiten, funktioniert die Verbrennung aber grundlegend anders“, erklärt Stefan Penthor vom Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften der TU Wien. „Bei unserer Verbrennungstechnik kommt das Erdgas gar nicht in Kontakt mit der Luft, weil wir den Prozess auf zwei getrennte Kammern aufteilen.“

Zwischen den beiden Kammern zirkuliert ein Granulat aus Metalloxid, das für den Sauerstofftransport zuständig ist: „Durch eine Kammer pumpen wir einen Luftstrom, dort nehmen die Partikel Sauerstoff auf. Sie gelangen dann in die zweite Kammer, die vom Erdgas durchströmt wird. Dort geben sie den Sauerstoff ab, es kommt dort zu einer Verbrennung ohne Flamme, dabei entsteht CO2 und Wasserdampf“, erklärt Penthor.

Durch die Aufteilung in zwei Kammern hat man es auch mit zwei getrennten Abgasströmen zu tun: Aus der einen Kammer entweicht sauerstoffarme Luft, aus der anderen Wasserdampf und CO2. Der Wasserdampf kann ganz einfach abgetrennt werden, übrig bleibt fast reines CO2. Dieses CO2 kann für andere technische Anwendungen genutzt werden – oder man speichert es. „Die unterirdische Lagerung von CO2 in großem Stil, in ehemaligen Erdgas-Lagerstätten, könnte in Zukunft eine wichtige Rolle spielen“, glaubt Stefan Penthor. Auch das Intergovernmental Panel on Climate Change (IPCC) der Vereinten Nationen sieht die unterirdische Lagerung von CO2 als wesentlichen Bestandteil einer künftigen Klimapolitik, doch CO2 zu lagern ist nur möglich, wenn es – wie bei der neuen Verbrennungstechnik CLC – in möglichst reiner Form abgeschieden wird.

Durch diese Trennung der beiden Abgasströme erspart man sich den sehr energieintensiven Schritt, das CO2 aus dem Abgas herauszuwaschen. Trotzdem wird auf übliche Weise Strom erzeugt, die Menge der freigesetzten Energie ist genau dieselbe wie bei der herkömmlichen Verbrennung von Erdgas.

Erfolgreich auf großen Maßstab skaliert

Dass die CLC-Verbrennungsmethode funktioniert, konnte an der TU Wien bereits vor einigen Jahren anhand einer Versuchsanlage demonstriert werden. Die große Herausforderung war es nun, den Prozess so umzugestalten, dass er auf wirtschaftlich interessante Großanlagen übertragen werden kann. Dafür war es notwendig, das gesamte Anlagen design zu überarbeiten, außerdem mussten neue Herstellungsverfahren für die Metalloxid-Partikel entwickelt werden. Als Basis für das überarbeitete Anlagendesign dienten zwei Patente der TU Wien im Bereich Wirbelschichttechnik.

„Für eine große Anlage braucht man viele Tonnen dieser Partikel, daher hängt die Wirtschaftlichkeit des Konzepts nicht zuletzt davon ab, dass man sie einfach und in ausreichender Qualität herstellen kann“, sagt Stefan Penthor.

Dreieinhalb Jahre lang wurde nun im Forschungsprojekt SUCCESS an solchen Fragen geforscht. Neben der TU Wien, von der das Projekt koordiniert wurde, waren 16 Partnereinrichtungen aus ganz Europa beteiligt. Tatsächlich konnten alle wichtigen technischen Fragestellungen geklärt werden. „Das Ziel ist erreicht: Wir haben die Technologie nun so weit entwickelt, dass man jederzeit beginnen kann, eine Demonstrationsanlage im Bereich von 10 Megawatt zu errichten“, sagt Stefan Penthor. Das ist nun aber nicht mehr die Aufgabe der Forschungseinrichtungen, für diesen nächsten Schritt werden nun private Geldgeber gebraucht. Auch vom Willen der Politik und künftigen Rahmenbedingungen in der Energiewirtschaft wird der Erfolg dieser Technologie abhängen. Der nächste Schritt ist auch deswegen wichtig, weil nur so die nötige Erfahrung zum Langzeitbetrieb im industriellen Maßstab gesammelt werden kann.

Inzwischen hat das Forschungsteam an der TU Wien auch bereits das nächste wissenschaftliche Ziel ins Visier genommen: „Wir möchten das Verfahren so weiterentwickeln, dass man nicht nur Erdgas, sondern auch Biomasse verbrennen kann“, sagt Penthor. „Wenn man Biomasse verbrennt und CO2 abscheidet, würde man nicht nur CO2-neutral arbeiten, man würde sogar den CO2-Gehalt der Luft reduzieren. Man könnte also gleichzeitig Energie gewinnen und etwas Gutes für das Weltklima tun.“ (Florian Aigner)

Externer Link: www.tuwien.ac.at

Solarzellen mit Nanostreifen

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 12.04.2017

Wissenschaftler des KIT gewinnen neue Einblicke in die Struktur von Perowskit-Solarzellen

Solarzellen aus Perowskiten erreichen inzwischen hohe Wirkungsgrade: Sie wandeln über 20 Prozent des einfallenden Lichts direkt in nutzbaren Strom um. Auf der Suche nach den zugrunde liegenden physikalischen Mechanismen haben Forscher am Karlsruher Institut für Technologie (KIT) nun in Perowskit-Schichten streifenförmige Nanostrukturen mit sich abwechselnden elektrischen Feldern nachgewiesen, die als Transportpfade für Ladungen dienen könnten. Darüber berichten sie im Journal Energy & Environmental Science. (DOI: 10.1039/c7ee00420f)

Die von den Karlsruher Forschern verwendeten Perowskite sind metallorganische Verbindungen mit spezieller Kristallstruktur und hervorragenden photovoltaischen Eigenschaften. So haben Perowskit-Solarzellen seit ihrer Entdeckung 2009 eine rasante Entwicklung durchlaufen und erreichen inzwischen Wirkungsgrade von über 20 Prozent. Dies macht sie zu einer der vielversprechendsten Photovoltaik-Technologien. Die Forschung an Perowskit-Solarzellen steht allerdings noch vor zwei Herausforderungen: die lichtabsorbierenden Schichten robuster gegen Umwelteinflüsse zu machen sowie das darin enthaltene Schwermetall Blei durch umweltfreundlichere Elemente zu ersetzen. Dazu bedarf es tieferer Einblicke in die physikalischen Mechanismen, die es ermöglichen, dass Perowskite einen so hohen Anteil der absorbierten Solarenergie in elektrische Energie umwandeln.

Ein multidisziplinäres Team von Forschern des KIT um Dr. Alexander Colsmann, Leiter der Arbeitsgruppe Organische Photovoltaik am Lichttechnischen Institut (LTI) und am Materialwissenschaftlichen Zentrum für Energiesysteme (MZE), hat nun Perowskit-Solarzellen mithilfe der Piezoresponse Force Microscopy, einer besonderen Rasterkraft-Mikroskopietechnik, vermessen und dabei in den lichtabsorbierenden Schichten ferroelektrische Nanostrukturen nachgewiesen. Ferroelektrizität bedeutet, dass Kristalle eine elektrische Polarisation besitzen. Dabei bilden die ferroelektrischen Kristalle Bereiche mit gleicher Polarisationsrichtung, sogenannte Domänen. Die Karlsruher Wissenschaftler beobachteten, dass der Bleihalogenid-Perowskit während der Entstehung dünner Schichten rund 100 Nanometer breite streifenförmige ferroelektrische Domänen mit sich abwechselnden elektrischen Feldern bildet. Diese alternierende elektrische Polarisation im Material könnte eine entscheidende Rolle beim Transport der photogenerierten Ladungen aus der Solarzelle heraus spielen und somit die besonderen Eigenschaften der Perowskite in der Photovoltaik erklären.

„Die ferroelektrischen Strukturen in der Größe von wenigen zehn Nanometern könnten nahezu perfekt getrennte Transportpfade für Ladungen in der Solarzelle bilden“, erklärt Alexander Colsmann. Nach derartigen Strukturen suchen Forscher schon seit Jahren, um den Wirkungsgrad von Solarzellen zu verbessern. „In Perowskit-Solarzellen entstehen diese Strukturen unter gewissen Bedingungen offensichtlich von selbst“, sagt Professor Michael J. Hoffmann, Leiter des Instituts für Angewandte Materialien – Keramische Werkstoffe und Technologien (IAM-KWT) des KIT. Er kennt ähnliche ferroelektrische Strukturen aus der Keramikforschung. Theoretische Arbeiten anderer Forscher hatten diese vorteilhaften Nanostrukturen zuvor bereits vorhergesagt. Bisher war der Nachweis jedoch ausgeblieben. Die Wissenschaftler des KIT untersuchten die Ferroelektrizität von Bleihalogenid-Perowskiten im Rahmen des von der Baden-Württemberg Stiftung finanzierten Projekts „NanoSolar“. Ihre Ergebnisse veröffentlichten sie in der renommierten Zeitschrift Energy & Environmental Science. (or)

Publikation:
Holger Röhm, Tobias Leonhard, Michael J. Hoffmann and Alexander Colsmann: Ferroelectric domains in methylammonium lead iodide perovskite thin-films. Energy & Environmental Science, 2017 (DOI: 10.1039/c7ee00420f)

Externer Link: www.kit.edu

Forschen am Bau

Medienmitteilung der ETH Zürich vom 22.09.2016

Das Arch_Tec_Lab zeigt auf, wie die Digitalisierung zu einer ressourcenschonenden, emissionsfreien und verdichteten Bauweise beitragen kann. Sechs Professuren der ETH Zürich haben ihre Forschungsansätze gebündelt und das neuartige Gebäude gemeinsam als Prototyp entwickelt.

Sechs Jahre dauerte der weitgehend digitale Planungs- und Bauprozess, an dem Architekten, Bauingenieurinnen, Gebäudetechniker und Bauphysikerinnen aus sechs Professuren des Instituts für Technologie in der Architektur der ETH Zürich beteiligt waren. Gemeinsam wollten sie herausfinden, wie sie mittels digitaler Technologien und kollaborativer Planungsprozesse zu einer ressourcenschonenderen und räumlich verdichteten Bauweise beitragen können. Sie schufen ein Reallabor, in dem sie ihre neusten Erkenntnisse im Massstab 1:1 anwendeten. Auf dem Campus Hönggerberg ist so ein Neubau auf dem Dach einer bestehenden Parkgarage entstanden, der Nachhaltigkeit in allen Dimensionen verkörpert. Das Gebäude ist über eine Passerelle mit dem bestehenden Gebäude des Departements Architektur verbunden.

Mit der Leichtigkeit von Holz und Stahl

Um auf den bestehenden Gebäudestrukturen aufbauen zu können, setzten die Wissenschaftler konsequent auf Leichtbautechnologie und verbauten bewusst weniger Baumasse. Im Vergleich zu herkömmlichen Hochbauten, bei denen auf einen Kubikmeter bis zu 400 Kilogramm Material kommen, beträgt die durchschnittlich verbaute Masse des Arch_Tec_Labs lediglich 240 Kilogramm.

Die Wahl der Materialien fiel bei der Dachkonstruktion auf Holz und beim Skelett des Tragsystems auf Stahl, weil diese Materialien im Verhältnis zu ihrer Masse eine optimale Steifigkeit aufweisen. Darüber hinaus kommt die Stahlstruktur ohne tragende Kerne und Schächte aus, was einerseits eine flexible Nutzung ermöglicht und andererseits auch erlaubt, die Raumgestaltung an sich wandelnde Bedürfnisse anzupassen.

Robotergefertigtes Holzdach

Das geschwungene Holzdach des Arch_Tec_Labs hat ein einzelner Portalroboter komplett vorgefertigt. Die Grundlage dafür bildete ein integrierter digitaler Planungs- und Produktionsprozess, der unter der Leitung der Professur für Architektur und digitale Fabrikation mit beteiligten Fachplanern und Erne als ausführender Firma entwickelt wurde. So entstand aus über 48‘000 einzelnen Kanthölzern mit Längen bis zu 3,10 Metern eine Dachstruktur mit Spannweiten von rund 15 Metern. 168 seriell gefügte, robotisch assemblierte und genagelte Fachwerkträger führen die Lasten in fünf Feldern auf Stahlträger ab und integrieren die gesamte Technik vom Brandschutz bis zur Beleuchtung. Ohne weitere Verkleidung lässt die fein gegliederte Struktur der Fachwerkträger das rund 2‘300 Quadratmeter überspannende Dach als eine Gesamtform erscheinen, die mit elegantem Schwung und wechselndem Lichteinfall die offenen oberen Geschosse des Arch_Tec_Labs überwölbt.

Nicht nur in der Planungs- und Bauphase wollten die ETH-Wissenschaftler mit möglichst wenigen Ressourcen auskommen. Das Arch_Tec_Lab soll auch emissionsfrei funktionieren, wenn sie das Gebäude beziehen und darin arbeiten. Als Gebäudetechnik kommt deshalb die an der ETH Zürich seit 2010 entwickelte Null-Emissions-Technologie zum Einsatz. In der doppelten Bodenstruktur des Gebäudes befinden sich 120 so genannte Airboxen, die an das Anergie-Netz des Campus Hönggerberg angeschlossen sind. Diese Airboxen übernehmen die Lüftung und dienen zusätzlich der Heizung und Kühlung des Gebäudes. Der doppelte Boden beherbergt einerseits das Leitungsnetz und sorgt andererseits dafür, dass die Luft durch leichten Überdruck über Bodenauslässe in die Räume gelangt. Für Ulrich Weidmann, Vizepräsident für Personal und Ressourcen der ETH Zürich, ist das Arch_Tec_Lab ein Glücksfall: «Die Wissenschaftler der ETH Zürich entwickeln Innovationen zur Lösung von infrastrukturellen Herausforderungen. Am Beispiel des Arch_Tec_Labs beweisen sie, dass sich verdichtetes Bauen und eine hohe Baukultur nicht gegenseitig ausschliessen. Damit leisten sie einen Beitrag zur nachhaltigen Nutzung des Bodens, von dem wir als ETH nun sogar selbst profitieren.»

Kollaborativen Ansatz weiterverfolgen

Den kollaborativen Ansatz, den die Wissenschaftler beim Bau des Arch_Tec_Labs wählten, wollen sie auch künftig intensiv weiterverfolgen. Im Neubau gibt es keine Einzelbüros, dafür mehr Gemeinschaftsfläche für kleinere und grössere Gruppen. Das von Gramazio Kohler Research initiierte und geplante Robotic Fabrication Laboratory im Erdgeschoss verdeutlicht den mit dem Arch_Tec_Lab verbundenen Anspruch neue Räume für interdisziplinäre Experimente im Bauwesen zu schaffen. Hier ermöglicht ein deckenmontiertes Portalsystem die grossmassstäbliche Ausführung von Bauaufgaben mittels vier kooperierenden Industrierobotern. Das Robotiklabor dient neben den Forschenden des Instituts für Technologie in der Architektur auch den Forschenden des Nationalen Forschungsschwerpunkts Digitale Fabrikation. Realisiert wurde es in enger Zusammenarbeit mit den Firmen ABB und Güdel.

Für Sacha Menz, den geistigen Vater des Arch_Tec_Labs und Vorsteher des Instituts für Technologie in der Architektur, ist das Gebäude die umgesetzte Vision einer zukünftigen Bautechnologie, aber auch für eine neue Art der Zusammenarbeit: «Das Arch_Tec_Lab dient der Forschung im Bauwesen, und diese kann nicht hinter verschlossenen Türen stattfinden. Wir erhoffen uns eine intensivere interdisziplinäre Zusammenarbeit innerhalb des Instituts und Forschungsimpulse über die einzelnen Disziplinen hinaus.»

Abschliessend beantwortet sind viele Fragen, die im Arch_Tec_Lab gestellt werden, noch lange nicht – und wollen es auch bewusst nicht sein. Denn das Arch_Tec_Lab versteht sich als Reallabor, in dem die Forschenden gemeinsam mit ihren Studierenden immer wieder neue Fragestellungen angehen und Lösungen vor Ort erproben. Die gewonnenen Erkenntnisse sollen der Baudindustrie und letztlich der Gesellschaft zugutekommen.

Externer Link: www.ethz.ch