Forscher ahmen molekulares Gedränge nach

Medienmitteilung der Universität Basel vom 01.03.2017

Enzyme verhalten sich im geräumigen Reagenzglas anders als im molekularen Gedränge einer lebenden Zelle. Chemiker der Universität Basel konnten diese engen Bedingungen nun erstmals in künstlichen Vesikeln naturgetreu simulieren. Die Erkenntnisse helfen der Weiterentwicklung von Nanoreaktoren und künstlichen Organellen, berichten die Forscher in der Fachzeitschrift «Small».

Im Inneren einer Zelle herrscht dichtes Gedränge. Neben hunderttausenden Makromolekülen wie Proteinen tummelt sich eine Unzahl an DNA, RNA und kleineren Molekülen und bilden eine dickflüssige Wasserlösung. Diese Enge nennt man in der Wissenschaft «molecular crowding». Der Effekt kann dazu führen, dass sich einige Eigenschaften eines Moleküls wesentlich verändern.

Das Verhalten eines «freien» Proteins oder Enzyms in einem Reagenzglas lässt sich also nicht unbedingt auf die natürlichen Vorgänge übertragen, da die Viskosität innerhalb einer lebenden Zelle viel höher ist als in einer normalen Wasserlösung. Im Labor konnte bisher allerdings nur die hohe Konzentration an Molekülen nachgeahmt werden, nicht aber gleichzeitig der geschlossene Raum wie beispielsweise in einer Zelle.

Mutter Natur nachahmen

Ein Forscherteam um Prof. Wolfgang Meier von der Universität Basel hat nun ein System entwickelt, welches dem natürlichen Vorbild einen wesentlichen Schritt näherkommt, indem es erstmals den Crowding-Effekt innerhalb eines geschlossenen Vesikels simuliert hat. «Das Milieu innerhalb einer Zelle wirkt sich wesentlich auf die stattfindenden chemischen Reaktionen aus, weshalb wir dieses so naturgetreu wie möglich nachahmen wollen», so Meier.

Um die zelluläre Umgebung nachzubauen, stellten die Forscher vom Departement Chemie nanoskopische Vesikel her, sogenannte Polymersome, und beluden diese mit dem Enzym Meerrettichperoxidase, sowie einer hochviskosen Lösung als Crowding-Komponente. Dadurch liess sich zum ersten Mal die Kinetik von chemischen Reaktionen durch ein bestimmtes Enzym unter Berücksichtigung von «molecular crowding» und in einem abgeschlossenen Raum bestimmen. Es zeigte sich deutlich, dass beide Faktoren die Reaktionsgeschwindigkeit beeinflussen.

Chemische Reaktionsgeschwindigkeit regulieren

«Unser Design berücksichtigt die natürlichen Umgebungsfaktoren, die die Leistung von Enzymen beeinflussen, und bringt uns so wesentlich weiter in der Entwicklung von Nanoreaktoren», sagt Meier. Die Resultate deuten ebenfalls daraufhin, dass sich das Verhalten von Enzymen durch den Einsatz des Crowding-Effekts gezielt regulieren lässt – ein wichtiger Faktor in der Entwicklung künstlicher Organelle für Enzymersatztherapien.

Originalartikel:
Patric Baumann, Mariana Spulber, Ozana Fischer, Anja Car, Wolfgang Meier
Investigation of horseradish peroxidase kinetics in an “organelle like” environment
Small (2017), doi: 10.1002/smll.201603943

Externer Link: www.unibas.ch

technologiewerte.de – MOOCblick März 2017

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Data Mining: Theories and Algorithms for Tackling Big Data
Bo Yuan (Tsinghua University)
Start: 20.03.2017 / Arbeitsaufwand: 56 Stunden

Externer Link: www.edx.org

Der Mann aus dem Eis: Forscher beweisen die Stabilität von genetischen Markern

Pressemitteilung der Universität des Saarlandes vom 16.02.2017

Biomarker sind biologische Merkmale, die Ärzten oder Forschern Hinweise auf den Gesundheitszustand oder Erkrankungen eines Patienten geben können. Große Hoffnungen setzen Wissenschaftler auf einen neuen Typ von Biomarkern, sogenannte microRNAs. Diese kurzen Ribonukleinsäure-Moleküle zeichnen sich durch eine sehr hohe Stabilität aus. Forscher der Universität des Saarlandes, der Universität Luxemburg und des Forschungszentrums EURAC Research in Bozen haben nun festgestellt, dass solche microRNAs noch nach 5300 Jahren stabil sein können. Sie wiesen die Moleküle in der berühmten Gletschermumie „Ötzi“ nach.

Die im Jahr 1991 in den Ötztaler Alpen in Südtirol gefundene Gletschermumie ist nicht nur unter Namen wie „Der Mann aus dem Eis“ und „Ötzi“ bekannt, es existieren auch eine Reihe wissenschaftlich gesicherte Fakten: Durch bildgebende Verfahren weiß man von seinen Abnutzungserscheinungen an der Lendenwirbelsäule und einer tödlichen Pfeilwunde an der linken Schulter. Analysen seines Erbgutes (DNA) zeigten, dass Ötzi keinen Milchzucker verdauen konnte, braune Augen und die Blutgruppe 0 hatte. Nun liegt auch eine Studie über die microRNAs des Ötzi vor. MicroRNAs sind sehr kleine Stücke der Ribonukleinsäure (RNA) und spielen eine zentrale Rolle bei der Regulierung von Genen.

Obwohl diese Moleküle im Gewebe sehr stabil sind, war bis zu der aktuellen Studie unklar, ob sie auch über Zeiträume von mehreren tausend Jahren in menschlichen Geweben nachgewiesen werden können. Daher nahmen sich die Professoren Andreas Keller und Eckart Meese von der Universität des Saarlandes, Stephanie Kreis von der Universität Luxemburg sowie Professor Albert Zink und Frank Maixner von EURAC Research in Bozen der Herausforderung an. Sie analysierten nicht nur Gewebeproben des Mannes aus dem Eis, sondern auch die einer Mumie eines im Ersten Weltkrieg gefallenen Soldaten.

„Unsere Untersuchung liefert den Beweis, dass wir microRNA sogar noch nach mehreren tausend Jahren analysieren können“, erklärt Andreas Keller, Professor für Klinische Bioinformatik an der Universität des Saarlandes, der die die Studie koordinierte. Dabei untersuchten die Wissenschaftler Proben aus der Haut, dem Magen und dem Mageninhalt des Ötzi. „Es war eine Herausforderung, dieses genetische Material in nennenswerten Mengen und ausreichender Qualität aus den mumifizierten Gewebeproben zu extrahieren und es mit neusten, sehr exakten Methoden zu messen und zu quantifizieren”, berichtet Stephanie Kreis, die an der Universität Luxemburg die microRNAs isoliert hat. So habe man einige Moleküle gefunden, die vorwiegend in diesem alten Gewebe vorhanden sind. Umgekehrt konnten einige der Biomarker, bekannt aus der heutigen Zeit, bei Ötzi nicht nachgewiesen werden.

Laut Professor Zink von EURAC Research sind die microRNAs die nächste wichtige Molekülklasse, die bei Ötzi umfassend untersucht wurde. Professor Meese, Leiter des Instituts für Humangenetik an der Universität des Saarlandes, betont, dass die Stabilität dieser Biomarker auch für die heutigen Menschen wichtig sei. „Sie ist entscheidend für die Anwendung in der Klinik“, erklärt Meese. „Es ist offensichtlich, dass das Potenzial von microRNA viel größer ist, als wir bisher gedacht haben. Wir wissen noch nicht genug darüber, wie diese Moleküle spezifische Gene, ganze Genfamilien oder auch biochemische Reaktionswege beeinflussen. Wenn wir das noch mehr erforschen, können microRNAs eventuell zu neuen Stars in der Therapie werden. Bis dahin ist jedoch noch sehr viel zu tun“, lautet das Fazit von Professor Keller.

Externer Link: www.uni-saarland.de

Glasforschung: Neue Technologie zum Umformen von GOBs zu Glaswafern

Presseinformation der TH Deggendorf vom 16.02.2017

TAZ Spiegelau und Ullrich GmbH präsentieren Forschungserfolge

Im Rahmen des Abschlusstreffens zum Forschungsprojekt „Glaswafer aus Gobs“, kurz „GlaGOB“, trafen sich kürzlich Vertreter der Ullrich GmbH aus Zwiesel, Zwiesel Kristallglas und der Technischen Hochschule Deggendorf (THD) am TechnologieAnwenderZentrum (TAZ) in Spiegelau. Ziel des Projekts war es eine neue Technologie zum Umformen von sog. GOBs zu Glaswafern zu entwickeln.

Unter einem GOB versteht man Halbzeuge bzw. Präzisionshalbzeuge aus Glas. Aus der Schmelze werden dazu „Glastropfen“ im heißen Zustand mit einem gewünschten Volumen abgetrennt und definiert geformt. Unter Glaswafern versteht man dünne, runde Scheiben, die zunehmend Anwendung in der Elektronikindustrie, z.B. als Trägermaterial für widerstandsfähige Sensoren, und in der Biotechnologie als Substratträger finden. Bisher führt die aufwändige Herstellungstechnologie der am Markt verfügbaren Glaswafer zu hohen Beschaffungskosten, was deren Verbreitung entgegensteht. Ebenso sind Glaswafer aktuell nur aus einer sehr begrenzten Anzahl von Glassorten wie Quarzglas oder Borosilikatglas erhältlich.

Am TAZ Spiegelau erkannte man gemeinsam mit der Ullrich GmbH diese Marktlücke und beantragte eine Förderung bei der Bayerischen Forschungsstiftung. Das Projekt hatte eine Laufzeit von einem Jahr. Mit der entwickelten Technologie wurden auf einer Präzisionsblankpresse GOBs aus Tritan®-Glas von einer Ausgangsdicke von 15 mm in einem isothermen Pressprozess in einem einzigen Schritt zu einem 4“-Wafer mit einer Dicke von 1 mm gepresst. Dieser Prozess ist eine Warmumformung von Glas und wird bei Temperaturen von ca. 800 °C durchgeführt. Werkzeug und Glas werden dabei zusammen erhitzt und durch eine genau kontrollierte Presskraft plastisch verformt. Die so hergestellten Glaswafer wurden messtechnisch auf ihre Qualität und Güte untersucht und mit marktüblichen Glaswafern verglichen. Die für die Waferherstellung prozessoptimierte Technologie des Präzisionsblankpressens birgt ein erhebliches Potenzial in sich. Zum einen entfallen gegenüber bisherigen Verfahren mehrere aufwändige mechanische Herstellungsschritte. Zum anderen eröffnet sich dadurch der Weg für die bedarfsgerechte Herstellung von Glaswafern aus kundenspezifischen Glassorten.

Die Forschung und Prozessentwicklung wurden in eine studentische Arbeit integriert. Maximilian Hasenberger, Master-Student an der THD im Fach „Applied Research“ hat mit seinem motivierten Einsatz und kreativen Herangehensweise einen großen Teil der Ergebnisse des Projekts beigetragen.

Mit diesen vielversprechenden Ergebnissen im Gepäck werden nach dem erfolgreichen Projektabschluss bei der Ullrich GmbH nun die nächsten Schritte für eine mögliche neue Anwendung vorbereitet. (CM)

Externer Link: www.th-deg.de