Ein negatives Enzym liefert positive Resultate

Medienmitteilung der Universität Basel vom 23.05.2016

In den letzten zwanzig Jahren hat die Chemie viele wichtige Instrumente und Verfahren für die Biologie hervorgebracht. Heute können wir Proteine herstellen, die in der Natur bisher nicht vorkommen. Es lassen sich Bilder von Ausschnitten lebender Zellen aufnehmen und sogar einzelne Zellen in lebendigen Tieren beobachten. Diese Woche haben zwei Forschungsgruppen der Universitäten Basel und Genf, die beide dem Nationalen Forschungsschwerpunkt Molecular Systems Engineering angehören, im Forschungsmagazin «ACS Central Science» präsentiert, wie man ein nicht-natürliches Protein designt, das völlig neue Fähigkeiten aufweist.

Proteine sind die Arbeitspferde jeder Zelle. Sie bestehen aus Aminosäurebausteinen, die als Kette verbunden sind, welche sich zu funktionalen Maschinen zusammenfalten, um anschliessend alle wesentlichen zellulären Prozesse anzutreiben. Für diese Aufgaben benötigt die Natur zwanzig solcher Aminosäurebausteine zusammen mit ein paar spezialisierten Kofaktoren, die häufig zu der Gruppe der Vitamine zählen. Chemiker haben intelligente Wege gefunden, wie man das natürliche Proteinrepertoire beispielsweise durch das Hinzufügen zusätzlicher nicht-natürlicher Aminosäuren oder Kofaktoren erweitern kann.

Die Forscher um Stefan Matile und Thomas Ward haben jetzt einen neuartigen Kofaktor geschaffen, welcher eine der klassischen Wechselwirkungen in Proteinen umkehrt: die Kationen-π-Bindung, also die Stabilisierung einer positiven Ladung durch Anlagerung an eine elektronenreiche Molekülebene. Die Natur verwendet diese Kationen-π-Bindungen bei der Herstellung von so wichtigen Molekülen wie Steroiden, Hormonen, Vitaminen, Sehpigmenten oder Duftstoffen, um Signale in das Gehirn zu vermitteln, Antigene zu erkennen und Ähnlichem.

Nun haben die Forschungsgruppen von Matile und Ward ihren neuen Kofaktor und das daraus resultierende künstlichen Protein verwendet, um zusammen das erste «Anionen-π-Enzym» der Natur zu bauen. Darin ist die elektronenreiche durch eine elektronenarme Moleküleben ersetzt, wodurch eine negative Ladung während der Reaktion stabilisiert wird. Die Forscher konnten zeigen, dass Proteine mit dieser in der Natur nicht vorkommenden Funktionalität traditionelle organisch-chemische Katalysatoren in einer wichtigen, aber energetisch ungünstigen Reaktion bezüglich ihrer hohen Spezifität und Selektivität übertreffen. Die Forscher sind optimistisch, dass dieser Ansatz in Zukunft in Zellen verwendet werden kann, um bisher unmögliche chemische Transformationen zu ermöglichen.

Die Autoren bedanken sich für die finanzielle Unterstützung durch den Nationalen Forschungsschwerpunkt (NFS) Molecular Systems Engineering und Chemische Biologie, bei der Universität Genf und der Universität Basel sowie dem Europäischen Forschungsrat.

Originalbeitrag:
Yoann Cotelle, Vincent Lebrun, Naomi Sakai, Thomas R. Ward, and Stefan Matile
Anion-π Enzymes
ACS Central Science (2016), doi: 10.1021/acscentsci.6b00097

Externer Link: www.unibas.ch

ERC Proof of Concept Grant: Spintronik soll marktreif werden

Presseaussendung der TU Wien vom 18.05.2016

Kleinere Bauteile, die den Spin der Elektronen nutzen: Das Spintronik-Flipflop, eine Erfindung der TU Wien, wird mit einem ERC Grant gefördert. Nun werden Prototypen gebaut.

Lange wurde die Mikroelektronik immer weiter verbessert, indem man die Bauteile verkleinerte. Doch diese Zeit ist vorbei: Man stößt auf physikalische Grenzen. Für weiteren Fortschritt braucht man alternative Ideen, und eine besonders vielversprechende ist die Spintronik. Sie nutzt nicht nur die elektrische Ladung der Elektronen, sondern auch ihren Eigendrehimpuls, den Spin. Den Elektrotechnikern Prof. Siegfried Selberherr und Thomas Windbacher vom Institut für Mikroelektronik der TU Wien ist es gelungen, ein rein auf Spintronik basierendes Flipflop zu entwickeln – ein unverzichtbares Bauteil in der Elektronik. Nun können mit einem prestigeträchtigen ERC Proof of Concept Grant erste Prototypen hergestellt werden, um die bereits patentierte Idee kommerziell verwertbar zu machen. Bereits im Vorjahr wurde das Projekt vom European Research Council für die Förderung ausgewählt, nun sind alle Voraussetzungen erfüllt, und das Projekt kann starten.

Erst berechnen, dann bauen

Das Team von Siegfried Selberherr forscht seit Jahren mit großem Erfolg im Bereich der Spintronik – das beweisen zahlreiche Patente und ein ERC Advanced Grant, mit dem Selberherr 2010 ausgezeichnet wurde. Entwickelt werden Spintronik-Bauteile nicht im Labor, sondern am Computer: „Man braucht große, aufwändige Computersimulationen, um das Verhalten der Bauteile zu berechnen, zu verstehen und zu verbessern“, erklärt Selberherr. „Ausgehend von den fundamentalen Gesetzen der Quantenphysik untersuchen wir das Verhalten der Bauteile und können sie dadurch optimieren, schon bevor sie überhaupt produziert werden.“

Ein Problem der heutigen Elektronik ist, dass man Energie und Zeit benötigt, um die elektrischen Ladungen an die gewünschten Stellen zu transportieren, und dass man laufend Energie aufwenden muss, damit die Ladungen auch dort bleiben. Bis etwa beim Hochfahren eines Handys alle Ladungen wieder dort sitzen, wo sie vor dem Abschalten waren, vergeht einige Zeit. „Spintronik würde dieses Problem lösen“, sagt Thomas Windbacher. „Bei Energieverbrauch und Geschwindigkeit ist Spintronik überlegen. Das Problem liegt allerdings daran, dass sie die extreme Integrationsdichte der herkömmlichen Elektronik derzeit nicht erreicht.“

Spintronik wird endlich kompakter

Mikroelektronik kann heute extrem kompakt gebaut werden. In der Spintronik werden heute nur Hybridlösungen eingesetzt – kombiniert mit konventioneller Mikroelektronik. Dadurch benötigt man zusätzliche Signalkonverter, die zwischen der ladungsbasierten Elektronik und der spinbasierten Spintronik vermitteln. Das macht zusätzliche Bauelemente notwendig und vergrößert somit den Platzbedarf. Selberherrs Team an der TU Wien hat daher nun Bauteile entwickelt, die ausschließlich im Spintronik-Bereich funktionieren und keine Signalkonversion zwischen diesen beiden Welten mehr brauchen.

Dabei entstand ein rein spintronisches Flipflop – ein ganz grundlegend wichtiges Bauelement. Flipflops können zwischen zwei verschiedenen Zuständen hin und her geschaltet werden, sie sind elementare Ein-Bit-Speicher. „Unser Flipflop macht sich den Spin-Transfer-Drehmoment-Effekt und die magnetische Austauschwechselwirkung für die Operation zu Nutze und ermöglicht dadurch eine extrem kompakte Struktur“, erklärt Siegfried Selberherr. Das neue Flipflop benötigt weniger als ein Zehntel der Grundfläche der bislang bekannten Flipflops. Außerdem kann es zu einem Schieberegister gestapelt werden – einem bedeutsamen logischen Schaltwerk, das sich somit ebenfalls auf extrem geringer Fläche unterbringen lässt.

ERC Proof of Concept Grant Facts

Mit den Proof of Concept Grants hat der ERC eine Möglichkeit geschaffen, die kommerzielle Verwertung für die im Rahmen von ERC Grants entstandenen Ideen und Forschungsergebnisse gezielt zu fördern. Das Ziel eines PoC-Grants ist häufig die Erstellung eines Präsentations-Pakets, um Risikokapitalgeber, Unternehmen und / oder „social entrepreneurs“ davon zu überzeugen, in diese Technologie zu investieren und sie durch die frühe Vermarktungsphase zu führen. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Teilchenbeschleuniger für Quasiteilchen

Pressemitteilung der Universität Regensburg vom 12.05.2016

Kollisionsexperimente in Halbleitern erfolgreich

Unser Standardmodell der Elementarteilchen basiert auf Erkenntnissen, die mit Hilfe von Teilchenbeschleunigern und Kollisionsexperimenten gesammelt wurden. Ein Forscherteam der Universitäten in Regensburg, Marburg und Santa Barbara (USA) hat nun einen neuen Beschleuniger für Teilchen in Festkörpern entwickelt. Das revolutionäre Verfahren wird in der neuen Ausgabe der Fachzeitschrift „Nature“ vorgestellt (DOI: 10.1038/nature17958).

Schon kleine Kinder werfen unterschiedliche Dinge auf- und gegeneinander, um so etwas über die Eigenschaften der Gegenstände zu lernen. Teilchenbeschleuniger nutzen diese Herangehensweise zur kontrollierten Untersuchung der kleinsten Bausteine der uns umgebenden Materie. So beschoss der neuseeländische Physiker Ernest Rutherford bereits Anfang des 20. Jahrhunderts Goldfolien mit Alpha-Teilchen. Aufgrund der Streueigenschaften der Alpha-Strahlung schloss er auf die Struktur des Streuzentrums und fand heraus, dass sich die Masse eines Atoms auf einen kleinen Raum – den Atomkern – konzentriert. Etwa 100 Jahre später kollidieren im Rahmen des bislang größten Experiments der modernen Wissenschaft am Kernforschungszentrum CERN hochenergetische Protonen miteinander, was schließlich zur Entdeckung des sagenumwobenen Higgs-Teilchens geführt hat.

Aufgrund der enormen Teilchenanzahl waren bislang allerdings Verfahren und Methoden zur Nutzung solcher Kollisionsexperimente für die Festkörperphysik unbekannt, obwohl unsere modernen Technologien wesentlich davon abhängen, die strukturellen und elektronischen Eigenschaften von Festkörpern zu verstehen. Gleichwohl kann in einem Festkörper die komplexe Wechselwirkung von Billionen über Billionen von Teilchen auf einzelne Objekte reduziert werden, sogenannte Quasiteilchen.

Einem Team von Physikern um Prof. Dr. Rupert Huber (Universität Regensburg) und Prof. Dr. Mackillo Kira (Philipps-Universität Marburg) ist es nun in Kooperation mit Kollegen aus dem kalifornischen Santa Barbara gelungen, solche Quasiteilchen gezielt miteinander zu kollidieren. Dazu mussten die Forscher extrem schnell vorgehen, denn die Quasiteilchen existieren nur für einen winzigen Augenblick, etwa 10 Femtosekunden lang (1 Femtosekunde ist der millionste Teil einer Millardstel Sekunde), ehe sie durch Stöße mit umliegenden Elektronen unkontrolliert gestört werden und zerfallen.

Dieses Problem umgingen die Forscher mit Hilfe der Terahertz-Hochfeldquelle an der Universität Regensburg. Zunächst erzeugten die Forscher Paare von Quasiteilchen, sogenannte Elektron-Lochpaare, im Halbleiter Wolframdiselenid mit Hilfe eines superkurzen Lichtblitzes. Die gegensätzlich geladenen Quasiteilchen ziehen einander elektrostatisch an und bilden einen atomähnlichen Komplex, den man als Exziton bezeichnet. Das starke, schwingende Lichtfeld aus der Terahertz-Hochfeldquelle trennt die beiden Quasiteilchen zunächst voneinander, um sie anschließend mit hoher Geschwindigkeit wieder miteinander zu kollidieren. Der gesamte Beschleunigungsprozess läuft dabei schneller als eine einzige Lichtschwingung ab. Die Kollisionen führen zu ultrakurzen Lichtblitzen, die wiederum – ähnlich wie in Großforschungsanlagen wie dem CERN – Rückschlüsse auf die Struktur der Quasiteilchen zulassen. Diese Beobachtungen wurden durch quantenmechanische Simulationen der Arbeitsgruppe an der Philipps-Universität Marburg unterstützt.

Die Experimente und Berechnungen der Forscher aus Regensburg, Marburg und Santa Barbara belegen, dass grundlegende Beschleunigerkonzepte aus der Teilchenphysik ebenso für Verfahren in der Festkörperphysik genutzt werden können. Die Experimente bieten neuartige Einblicke in die Eigenschaften von Quasiteilchen und könnten wesentlich zur Lösung einiger der größten Rätsel der modernen Physik wie etwa den Mechanismus der Hochtemperatursupraleitung beitragen. (Alexander Schlaak)

Titel der Original-Publikation:
F. Langer, M. Hohenleutner, C. P. Schmid, C. Poellmann, P. Nagler, T. Korn, C. Schüller, M. S. Sherwin, U. Huttner, J. T. Steiner, S. W. Koch, M. Kira, and R. Huber, Lightwave-driven quasiparticle collisions on a subcycle timescale, Nature 533, 225-229 (2016)

Externer Link: www.uni-regensburg.de

Das Passwort der anderen Art: Schädelknochen liefert digitalen Zugangscode

Pressemitteilung der Universität des Saarlandes vom 11.05.2016

Auf Laptops und Smartphones speichern und organisieren Menschen inzwischen ihr gesamtes Leben – geschützt durch ein Passwort oder eine Geheimnummer. Diese sind jedoch oft nicht sicher, da Nutzer sie falsch wählen oder schlecht aufbewahren. Mit so genannten biometrischen Merkmalen wie Fingerabdruck, Stimme oder Iris kann man sich heute schon einfacher und sicherer ausweisen. Informatiker der Universität des Saarlandes und der Universität Stuttgart setzen nun auf ein bisher ungenutztes biometrisches Merkmal, das bei Brillencomputern wie Google Glass angewendet werden kann: Der Schädelknochen des Anwenders liefert den digitalen Zugangscode. Das Verfahren könnte auch Smartphones absichern.

„Brillencomputer wie Google Glass finden insbesondere in Unternehmen und Universitäten ihren Einsatz: Sie helfen bei Physik-Experimenten, in Chemie-Laboren, zeichnen medizinische Untersuchungen auf und unterstützen Kinderärzte während Operationen“, sagt Andreas Bulling vom Exzellenzcluster für „Multimodal Computing and Interaction“ an der Universität des Saarlandes. Dort leitet der 35 Jahre alte Informatiker die Gruppe „Perceptual User Interfaces“ und forscht außerdem am benachbarten Max-Planck-Institut für Informatik. „Die Nutzer haben bei diesen Anwendungen nicht die Hände frei, um umständlich ein Passwort einzugeben. Außerdem teilen sich oft mehrere Personen ein Gerät und speichern darauf sensible Daten ab“, erklärt Bulling. Nicht nur die Daten, auch die Brillencomputer selbst lassen sich leicht stehlen. Dies bestätigt eine Studie des Branchenverbandes Bitkom aus dem vergangenen Jahr. 28 Prozent der 1074 befragten Sicherheitsexperten aus Unternehmen geben an, dass in den vergangenen zwei Jahren Geräte auf diese Art und Weise samt den darauf gespeicherten Daten verschwunden sind.

Um im Falle eines Diebstahls den Zugang zu Google Glass zu schützen und den rechtmäßigen Nutzer zu erkennen, haben Andreas Bulling und Youssef Oualil von der Universität des Saarlandes zusammen mit Stefan Schneegass von der Universität Stuttgart eine neue Methode entwickelt. Dabei nutzten die Forscher auf geschickte Art und Weise die Sensoren, über die der Brillencomputer ohnehin verfügt. Neben dem Miniatur-Mikrofon ist dies der sogenannte Bone Conduction Speaker, der unsichtbar in das Gestell in der Nähe des rechten Ohrbügels eingelassen ist. Mit Hilfe der „Knochenleitung“, auch Knochenschall genannt, überträgt er Töne auf die gleiche Art und Weise zum Ohr, wie es spezielle Hörgeräte tun. Dazu leitet er Schallschwingungen über den das Ohr umgebenden Schädelknochen direkt an das Innenohr.

„Da der Schädelknochen individuell unterschiedlich ist, wird dabei das Tonsignal auf eine für jeden Menschen charakteristische Art und Weise verändert. Das aus dem Schädelknochen austretende Tonsignal nutzen wir dann als biometrisches Merkmal“, erläutert Bulling. Dazu lassen die Forscher den Knochenschall-Lautsprecher ein Signal abspielen, das ein breites Frequenzspektrum abdeckt. Das durch den Schädelknochen veränderte Audiosignal nehmen sie dann mit dem in der Brille integrierten Mikrofon auf. „Aus dieser Aufnahme extrahieren wir mit zwei speziellen Rechenverfahren die Identifikationsmerkmale und setzen diese zu einer Art digitalem Fingerabdruck zusammen. Dieser ist charakteristisch für jede Person und wird dann abgespeichert“, sagt Bulling. Setzt von nun an jemand den Brillencomputer auf, startet der Vorgang automatisch. Das Signal schallt durch den Schädel, das Mikrofon nimmt es auf. Passt der aktuelle Audio-Fingerabdruck zu dem abgespeicherten, bekommt die Person Zugriff auf die Brille.

„Es reicht, wenn das Signal eine Sekunde lang abgespielt wird. Damit sind wir gut eine halbe Sekunde schneller als klassische, nicht-biometrische Verfahren, die auf mobilen Endgeräten den rechtmäßigen Nutzer erkennen“, sagt Bulling. „Der entscheidende Vorteil des Verfahrens ist jedoch“, so Bulling weiter, „dass die Erkennung des Nutzers in Zukunft auch implizit stattfinden könnte, beispielsweise mittels der Töne, die das Gerät ohnehin als Feedback für den Nutzer abspielt.“ Zusammen mit seinen Kollegen hat er das auf den Namen „SkullConduct“ getaufte Verfahren an zehn Personen getestet. Diese wurden dabei mit einer Genauigkeit von 97 Prozent erkannt.  „Allerdings haben wir diese ersten Tests noch in einem Raum ohne Hintergrundgeräusche durchgeführt“, erklärt Bulling. Details zum System berichten die Forscher auf der gerade stattfindenden Konferenz „Human Factors in Computing Systems (CHI)“ in Kalifornien und beschreiben diese in der dort angenommenen Forschungsarbeit „SkullConduct: Biometric User Identification on Eyewear Computers Using Bone Conduction Through the Skull“.

Als nächstes will der Saarbrücker Informatiker gemeinsam mit seinen Kollegen untersuchen, ob ihre Methode auch im Alltag funktioniert. Sie wollen auch den Frequenzbereich von Ultraschall untersuchen, der den Vorteil hätte, dass der Anwender das Signal nicht hören würde. Die Forscher können sich ihr Verfahren grundsätzlich auch am Smartphone vorstellen. „Wenn das Smartphone über einen entsprechend platzierten Knochenschalllautsprecher und ein Mikrofon verfügt und der Anwender es mit Knochenkontakt an seinen Schädel drückt, könnte es möglicherweise sogar mit dem normalen Klingelton des Smartphones funktionieren“, sagt Bulling.

Externer Link: www.uni-saarland.de

technologiewerte.de – MOOCblick Mai 2016

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Electronic Materials and Devices
Caroline Ross (MIT)
Start: 25.05.2016 / Arbeitsaufwand: 40-60 Stunden

Externer Link: www.edx.org