Tübinger Physiker ebnen den Weg zum Bau von Quantenschnittstellen

Pressemitteilung der Universität Tübingen vom 28.10.2014

Wechselwirkung von Licht und Materie wird auf der Ebene einzelner Photonen kontrolliert

Einer Forschergruppe um den Juniordozenten Dr. Sebastian Slama vom Physikalischen Institut der Universität Tübingen ist es erstmals gelungen, die Fluoreszenz von ultrakalten Atomen gezielt in sogenannte Oberflächen-Plasmonen zu lenken. Als Plasmonen bezeichnen Physiker Lichtwellen, die sich auf einer metallischen Oberfläche ausbreiten – ähnlich wie Elektronen in einem Draht fließen. Ziel in der Quantenforschung sind winzige Systeme, in denen etwa die Wechselwirkungen von Licht und Materie auf der Ebene einzelner Lichtquanten, den Photonen, kontrolliert werden können. Aus solchen kontrollierten Systemen ergeben sich viele mögliche Anwendungen, wie zum Beispiel Schalter und Transistoren, die auf einem einzelnen Photon beruhen.

Im Experiment haben die Physiker Rubidiumatome in einer Ultrahochvakuum-Apparatur bis auf eine Temperatur von einem Millionstel Kelvin, dicht über dem absoluten Nullpunkt, abgekühlt und dann gezielt in einen Abstand von wenigen hundert Nanometern – das sind millionstel Millimeter – an eine Goldoberfläche herangebracht. Die Atome schweben hierbei frei im Vakuum und werden nur von magnetischen Feldern gehalten. Unter diesen Bedingungen strahlen die Atome Licht bevorzugt in die Oberflächen-Plasmonen ab, wo die Wissenschaftler dann einzelne abgestrahlte Photonen nachgewiesen haben. „Dieser Prozess läuft sehr effizient ab, wir sprechen auch von einer hohen Kooperativität der Atome“, erklärt Sebastian Slama. In den Experimenten habe sich die Licht-Materie-Kopplung zudem einfacher realisieren lassen als bei alternativen Verfahren mit optischen Resonatoren. Ihre Forschungsergebnisse haben die Wissenschaftler in der Fachzeitschrift Nature Physics veröffentlicht.

„Die neu entwickelte Methode kann künftig genutzt werden, um Quanteninformationen, die im Atom gespeichert wurden, möglichst verlustfrei auszulesen und weiterzuverarbeiten“, sagt der Wissenschaftler. Damit verbindet er die Hoffnung, dass die Konstruktion von Schnittstellen zwischen Quantenspeichern und Quantendatenleitungen – und damit der Bau eines hocheffizienten, völlig neuartigen Computers – in greifbare Nähe gerückt ist.

Originalpublikation:
Christian Stehle, Claus Zimmermann and Sebastian Slama: Cooperative coupling of ultracold atoms and surface plasmons. Nature Physics, Online-Veröffentlichung 26. Oktober 2014, DOI: 10.1038/nphys3129

Externer Link: www.uni-tuebingen.de

Neues Analyseverfahren könnte Brustkrebstherapie revolutionieren

Pressemeldung der Universität Wien vom 21.10.2014

Bindegewebszellen – sogenannte Stromazellen – können das Tumorwachstum entscheidend beeinflussen. Dies ist seit Längerem bekannt. Neu ist ein Auswerteverfahren, das der Bioanalytiker Christopher Gerner und ein interdisziplinäres Team von der Universität Wien und der Medizinischen Universität Wien entwickelt haben. Mit Hilfe der modernen Massenspektrometer der Universität Wien gelang es erstmals, in menschlichen Brustkrebs-Gewebsproben tumorfördernde Zellaktivitäten analytisch nachzuweisen. Aktuell ist dazu eine Publikation im renommierten Fachmagazin „Journal of Proteome Research“ erschienen.

Bekannt ist, dass Bindegewebe oder auch Stroma zu Entstehung und Wachstum von Tumoren beitragen kann. Ungeklärt ist jedoch, ob krankhafte Veränderungen des „Stromas“ die Bildung von Tumoren begünstigen oder ob erst vorhandene Tumorzellen das Stroma zu ihrem Überlebensvorteil funktionell verändern. „Uns gelang es erstmals, für diesen Prozess entscheidende Moleküle als solche zu erkennen und aus klinischen Proben direkt nachzuweisen“, sagt Christopher Gerner, Vorstand des Instituts für Analytische Chemie der Universität Wien, der zusammen mit Georg Pfeiler von der Universitätsklinik für Frauenheilkunde der Medizinischen Universität Wien und einem interdisziplinären Team erfolgreich ein neues Analyseverfahren entwickelt hat.

Unerwünschte Promotion von Krebswachstum durch Bindegewebszellen nachgewiesen

Gewebe sind aus unterschiedlichen Zelltypen aufgebaut, welche jeweils spezifische Aufgaben erfüllen. Brustgewebe ist im Wesentlichen aus Epithelzellen und Fibroblasten aufgebaut. Im Falle von Brustkrebs können Epithelzellen zu Krebszellen entarteten, und Fibroblasten (Bindegewebszellen) können – wie oben angesprochen – in kritischer Weise funktionell verändert sein. Eine typische Aktivität von krebsassoziierten Fibroblasten (cancer-associated fibroblasts, CAFs) gleicht dem Bemühen dieser Zellen, eine Wunde heilen zu wollen. Die dabei abgesonderten Wachstums- und Überlebensfaktoren sind bereits in geringsten Konzentrationen hochaktiv und helfen nicht nur der Wundheilung, sondern werden eben im Falle von Krebs für unerwünschtes Krebswachstum missbraucht. Die Bedeutung dieses Prozesses ist erst seit wenigen Jahren voll akzeptiert, jetzt konnte in dieser Studie auch erstmals ein relevantes In vitro Modellsystem vorgestellt werden.

Durch Massenspektrometrie innovatives Auswerteverfahren von Brustgewebszellen

Die analytische Herausforderung war nun, aus Nadelbiopsien und den daraus gewonnenen Gewebshomogenaten, also einem Gemisch verschiedenster Zelltypen und unzähliger Blutbestandteile, möglichst viele krankheitsbeeinflussende Proteine zu identifizieren. Mittels moderner massenspektrometrischer Analysen konnten zunächst in den Gewebsproben von Brustkrebspatientinnen viele tausend Proteine erfolgreich erkannt werden. In der Folge gelang es erstmals, die Aktivitäten der Fibroblasten direkt nachzuweisen – mit dem Ergebnis, dass wie im In-vitro-Modell auch die menschlichen Zellen im Gewebe eine deutliche Wundheilungs-Signatur und somit krebsfördernde Aktivitäten aufzeigen. „Möglich wurden diese Experimente durch die Ausstattung meiner neuen Professur für Bioanalytik“, so Christopher Gerner über die Topgeräte des Massenspektrometriezentrums der Universität Wien.

Neue Ansätze in der Brustkrebstherapie

Diese Erkenntnis ist in mehrfacher Hinsicht von Bedeutung. Aufgrund einer Nadelbiopsie kann nun der Status quo der entnommenen Zellen erhoben werden. „Es kann damit prinzipiell bei jeder einzelnen Patientin festgestellt werden, wie stark bei ihr die Wundheilungsaktivität ausgeprägt ist. Das ist eine entscheidende Voraussetzung, um eine gezielte Einflussnahme planen zu können. Für die klinische Routine ist das aber noch Zukunftsmusik“, so Georg Pfeiler von der Medizinischen Universität Wien. „Wir arbeiten bereits daran, einen derartigen Status auch aus Serumproben erheben zu können“, ergänzt Christopher Gerner vom Institut für Analytische Chemie der Universität Wien.

Darüber hinaus kann nun das etablierte Zellmodell für Krebs-assoziierte Fibroblasten dazu verwendet werden, Medikamente zu testen, die diese unerwünschten Zell-Aktivitäten gezielt hemmen sollen. Eine derartige (Zusatz-)Therapie könnte eine unschätzbare Verbesserung der bisher eingesetzten klinischen Standard-Therapien darstellen.

Derzeit arbeiten mehrere DoktorandInnen an der Universität Wien und der Medizinischen Universität Wien an der Umsetzung dieses Forschungsvorhabens. Es handelt sich dabei um ein typisches Cross-Over-Projekt, an dem chemische AnalytikerInnen, MedizinerInnen und PharmakologInnen mitarbeiten.

Publikation:
„Journal of Proteome Research“ (Special Issue: Proteomics of Human Diseases: Pathogenesis, Diagnosis, Prognosis, and Treatment):
Proteome Profiling of Breast Cancer Biopsies Reveals a Wound Healing Signature of Cancer-Associated Fibroblasts. Michael Groessl, Astrid Slany, Andrea Bileck, Kerstin Gloessmann, Dominique Kreutz, Walter Jaeger, Georg Pfeiler, Christopher Gerner. September 2014. DOI: 10.1021/pr500727h

Externer Link: www.univie.ac.at

Student entwickelt leisen Vakuum-Greifer mit Muskel aus intelligentem Draht

Presseinformation der Universität des Saarlandes vom 22.10.2014

Leise, leicht und energieeffizient: Das sind einige der Vorteile des neuartigen Vakuum-Sauggreif-Systems, das der Mechatronik-Student Julian Kunze in der Forschergruppe von Stefan Seelecke entwickelt hat. Ein Spezialgebiet von Seeleckes Teams sind haarfeine Formgedächtnis-Drähte, die wie Muskeln anspannen und entspannen. Auf diese Weise werden auf den Punkt genaue Bewegungsabläufe möglich, wodurch etwa technische Bauteile präzise bewegt werden können. Bei Julian Kunzes Sauggreifer zieht der Draht an einer Membran und löst so ein Vakuum aus, wenn diese flach auf einem Gegenstand liegt. Die Vakuumtechnik-Firma Schmalz GmbH zeichnete den Studenten hierfür mit ihrem Innovationspreis aus.

Sie stapeln Kartons, laden zig Dosen gleichzeitig auf Paletten, befördern große Bleche oder transportieren Glasscheiben: Vakuum-Greifer sind heute vielerorts im Einsatz. Die gängigen Systeme arbeiten pneumatisch. Sie sind meist komplex, oft schwer und machen bisweilen recht viel Lärm. Das neuartige System, das der Student Julian Kunze am Lehrstuhl von Professor Stefan Seelecke entwickelt hat, ist schlicht, leicht, leise, effizient und sogar reinraumtauglich. Das Geheimnis beruht auf einem Draht, der eine ganz besondere Eigenschaft hat: Wie ein Muskel zieht er sich deutlich zusammen, wenn Strom durch ihn fließt. Sobald der Strom ausgeschaltet wird, wird er wieder so lang wie vorher. Formgedächtnis nennen das die Wissenschaftler.

„Diese Drähte mit Formgedächtnis bestehen aus Nickel-Titan“, erklärt Stefan Seelecke. „Formgedächtnis bedeutet, dass das Material seine ursprüngliche Form wieder annimmt, nachdem es verformt wurde; es erinnert sich sozusagen an seine alte Form. Diese Eigenschaft der Nickel-Titan-Legierung beruht auf so genannten Phasenumwandlungen: Wird der Draht warm, zum Beispiel wenn Strom hindurchfließt, wandelt sich seine Gitterstruktur so um, dass er kürzer wird. Kühlt er ab, wird er wieder länger“, erläutert er. Sein Forscherteam am Lehrstuhl für Unkonventionelle Aktorik an der Saar-Uni und am Zentrum für Mechatronik und Automatisierungstechnik „Zema“ nutzt diese Eigenschaft für verschiedenste Anwendungen: vom Inhalationsgerät, dessen Mundstück Wirkstoffteilchen gezielt an ihren Wirkort in der Lunge „schießt“, über neuartige Kühlsysteme bis hin zu Bauteilen, die sich geräuschlos und präzise heben und senken.

„Beim Vakuum-Greifer ist eine Membran direkt mit einem Formgedächtnisdraht verbunden, der gezielt angesteuert werden kann. So ist es möglich, nur mit elektrischem Strom ein tragfähiges Vakuum zu erzeugen“, erklärt Julian Kunze, studentischer Mitarbeiter in Seeleckes Team. „Dadurch, dass das System ganz ohne Druckluft, Gebläse, Pumpen oder sonstige größere Bestandteile auskommt, ist es platzsparend, leicht und auch der CO2-Ausstoß wird verringert“, sagt der 23-Jährige. Den Prototypen hat er selbst am Computer entworfen und am 3D-Drucker des Lehrstuhls ausgedruckt – komplett samt Rahmen und Membran. „Dadurch konnte ich den gesamten Prozess von der Idee über die Entwicklung bis zum fertigen Prototyp durchlaufen“, sagt er. Der Student arbeitet nun in Seeleckes Team daran, das System weiterzuentwickeln und weiter zu optimieren. „Die Tragfähigkeit dieses Vakuum-Greifers ist skalierbar – der Prototyp kann bereits ein Gewicht von einigen Kilos heben und sicher festhalten, aber das kann natürlich noch gesteigert werden“, sagt Professor Seelecke.

Das Vakuum-Technologie-Unternehmen Schmalz hat Julian Kunze für seine Entwicklung Anfang Oktober mit dem erstmals verliehenen Schmalz Innovationspreis ausgezeichnet, der mit einer Siegprämie von 4.000 Euro und einem vierwöchigen Unternehmens-Praktikum bei Schmalz verbunden ist.

Externer Link: www.uni-saarland.de

Gewinnen durch Verlust

Presseaussendung der TU Wien vom 20.10.2014

Ein scheinbar widersinniges Verhalten von Lasern, das an der TU Wien vorhergesagt worden war, konnte nun in einem neuen Experiment bestätigt werden, wie das Fachjournal „Science“ berichtet.

Was zunächst wie eine mathematische Kuriosität aussah ist nun zur neuen Laser-Technologie geworden. Vor zwei Jahren wurde von Physikern der TU Wien ein paradoxer Laser-Effekt vorhergesagt: In bestimmten Situationen kann man einen Laser einschalten, indem man ihm nicht mehr Energie zuführt, sondern ihm stattdessen Energie entnimmt. Erste experimentelle Anzeichen für diesen Effekt wurden vor kurzem an der TU gefunden; nun konnte der paradoxe Laser-Effekt in Zusammenarbeit mit Teams von der Washington University in St. Louis, USA und von RIKEN, Japan auf ein weiteres Laser-System übertragen und dort präzise vermessen werden. Die Ergebnisse wurden im Fachjournal „Science“ veröffentlicht.

Einschalten durch Ausschalten

Matthias Liertzer und Prof. Stefan Rotter stießen zunächst in Computersimulationen auf den Effekt: „Wenn man zwei kleine, gleichartig gebaute Laser in engen Kontakt zueinander bringt, dann können sich diese auf eine Weise beeinflussen, die auf den ersten Blick jeder Erwartung widerspricht“, erklärt Stefan Rotter. „Normalerweise leuchtet ein Laser, wenn man ihm mehr Energie zuführt. Doch bei geeigneter Laser-Kopplung kann eine Energiezufuhr die beiden Laser abschalten und ein Energieverlust kann die Laser zum Leuchten bringen.“

In einem Laser werden Lichtteilchen vervielfältigt, es kommt zu einer Kettenreaktion die letztendlich kräftige Strahlung erzeugt. Normalerweise ist dabei jeder Lichtverlust höchst unerwünscht. Wenn zu viel Licht verlorengeht, etwa durch eine schlecht verspiegelte Außenwand des Lasers, dann kann die Lichtproduktions-Kettenreaktion nicht aufrecht erhalten werden und der Laser erlischt.

Paradoxes Verhalten am „Entartungspunkt“

„Die Eigenschaften der Laser kann man durch mathematische Gleichungssysteme sehr gut beschreiben und verstehen“, erklärt Matthias Liertzer. „Wenn man sich diese Gleichungen genau ansieht, mit denen auch die Kopplung zwischen zwei Lasern beschrieben wird, dann stellt man fest, dass hier sogenannte Entartungspunkte auftreten. Befindet sich der Zustand, der den Laser mathematisch charakterisiert, in der Umgebung eines solchen Entartungspunktes, dann zeigt sich paradoxes Verhalten.“

Im Experiment, das von Bo Peng und Dr. Sahin Kaya Ozdemir mit der Gruppe von Prof. Lan Yang in St. Louis, USA durchgeführt wurde, stellte man zwei winzige kreisförmige Laser her, die man in unmittelbarer Nähe zueinander platzierte. Zusätzlich wurde eine feine Spitze aus Chrom in das System eingebracht, die Licht stark absorbiert. Durch genaues Justieren der Spitze kann der Lichtverlust fein dosiert werden. „Die Experimente bestätigten unsere Vorhersagen: Wenn sich das System in der Nähe des Entartungspunktes befindet, führt die Absorption der Spitze dazu, dass sich der Laser einschaltet und zu leuchten beginnt“, sagt Stefan Rotter.

Die Besonderheiten solcher Entartungspunkte zu verstehen wird für ganz unterschiedliche technologische Anwendungen wichtig sein, glaubt Rotter: „Das kann für hochsensible Detektoren nützlich sein, oder für jedes andere System das aus gekoppelten Oszillatoren besteht, wie zum Beispiel in der Opto-Mechanik. Jedenfalls gibt es noch viele interessante Effekte, die man im Zusammenhang mit diesen Entartungspunkten studieren kann“, meint Stefan Rotter. (Florian Aigner)

Publikation:
Science 2014

Externer Link: www.tuwien.ac.at