Magnetrecycling lohnt sich

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.07.2022

Magnete sind wertvolle Bauteile. Obwohl in den vergangenen Jahren funktionierende Magnetrecyclingmethoden entwickelt wurden, finden diese in der Praxis bisher keine Anwendung und Magnete werden weiterhin im Stahlschrott eingeschmolzen. Forschende der Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS liefern gute Argumente, wieso sich dies in Zukunft ändern sollte: In ihrem Projekt »FUNMAG« zeigen sie, dass der Einsatz von recycelten Magneten in Bereich der E-Mobilität ohne Leistungseinbußen in der Motorleistung möglich ist und es sich lohnt, eine Wertschöpfungskette für großflächiges Magnetrecycling aufzubauen.

Die Welt setzt auf Elektromobilität. Die Branche wächst kontinuierlich und ist im Zuge der Energiewende auch politisch von großer Bedeutung. So plant beispielsweise die Bundesregierung, dass in Deutschland bis 2030 sieben bis zehn Millionen Elektrofahrzeuge zugelassen sind. Damit ein Elektromotor funktioniert, darf dabei ein Bestandteil auf keinen Fall fehlen: Neodym-Eisen-Bor-Hochleistungspermanentmagnete. Sie sind die leistungsstärksten Magnete, die es derzeit auf dem Markt gibt, machen etwa die Hälfte der Motorkosten aus und enthalten, wie der Name schon verrät, unter anderem Seltene Erden wie Neodym oder Dysprosium. Der wichtigste Lieferant für Seltene Erden ist China. Dort werden über 90 Prozent des weltweiten Bedarfs abgebaut – und das unter kritischen Bedingungen. So werden während der Förderung giftige Beiprodukte freigesetzt, die bei mangelnder Vorsicht zu einer Verunreinigung des Grundwassers führen. Dies schadet Mensch und Natur.

Trotz dieser teuren und problematischen Herstellung landen Magnete am Ende ihrer Nutzungszeit in der Regel auf dem Schrottplatz und werden dort zusammen mit dem Stahlschrott eingeschmolzen. Und das, obwohl es mittlerweile Methoden zum Recycling von Magneten gibt, die erwiesenermaßen funktionieren. Diese Lücke zwischen Theorie und Praxis wollen Wissenschaftlerinnen und Wissenschaftler der Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS in Hanau mit ihrem Projekt »Funktionelles Magnetrecycling für eine nachhaltige E-Mobilität – FUNMAG« schließen. Gefördert von der Hessen Agentur will das Forscherteam nachweisen, dass Elektromotoren mit recycelten Altmagneten dieselbe Leistung erbringen können wie mit ihren ursprünglichen Neumagneten, und es sich daher lohnt, kommerzielles Magnetrecycling im großen Maßstab durchzuführen.

Arbeit mit »bunten Blumensträußen«

Für die damit verbundenen Versuche habe sich das Institut unter anderem ein E-Bike, einen E-Scooter und ein Hoverboard angeschafft, erzählt Konrad Opelt, Leiter des Projekts und studierter Materialwissenschaftler: »Bei allen neuen Fahrzeugen haben wir zunächst ausführlich den Motor charakterisiert, um relevante Kennwerte zu erhalten, mit denen wir dann später die Leistung der Motoren mit den recycelten Magneten vergleichen können.«

Die Elektrofahrzeuge stellen den Rahmen des Projekts dar. Das Kernstück aber ist die Arbeit mit den Altmagneten. Diese konnten über bestehende Kontakte mit Industriepartnern im Tonnenmaßstab beschafft werden und unterscheiden sich in Leistung, Form und Beschaffenheit maßgeblich. »Uns war es enorm wichtig, den realistischen Fall abzubilden«, erklärt Opelt. »Wenn sich ein Schrotthändler dazu entschließt, die Magnete aus seinen deponierten Altmotoren zu separieren, wird das in der Regel ein bunter Blumenstrauß von unterschiedlichsten Magneten sein, deren genaue Eigenschaften niemand kennt. Unser Ziel war es daher zu zeigen, dass der Recyclingprozess auch mit undefiniertem Ausgangsmaterial, dieser Unbekannten im Prozess, umgehen kann. Und das hat vor uns noch niemand gemacht.«

Aus Alt mach Neu

Am Fraunhofer IWKS beschäftigt man sich seit Jahren mit der Herstellung und dem Recycling von Magneten und entsprechende Räumlichkeiten und Geräte ermöglichen die Nachbildung des kompletten Herstellungsprozesses im Technikumsmaßstab. Bei der Herstellung eines neuen Magneten wird das Ausgangsmaterial zunächst bei etwa 1400 Grad geschmolzen und dann abgeschreckt, sodass metallische Flakes entstehen. Diese werden in eine Wasserstoffatmosphäre gegeben und durch das Eindringen des Wasserstoffs zerfällt das Material zu einem Granulat. Dieses wird mit einer Strahlmühle noch weiter zerkleinert und das resultierende metallische »Mehl« kann dann in Pressformen gegeben und gesintert, das heißt zum Magneten »gebacken« werden. Um einen Magneten zu recyceln, reicht es aus, den Altmagneten mit der Wasserstoffatmosphäre in Verbindung zu bringen und die nachfolgenden Prozessschritte zu durchlaufen. »Den umweltbelastenden Abbau der Rohstoffe und das energieintensive Aufschmelzen können wir so einfach überspringen«, fasst Opelt zusammen.

Im Rahmen des Recyclingprozesses können tausende Magnete gleichzeitig verarbeitet werden. »Es lässt sich kaum verhindern, dass die Magnete währenddessen etwas Sauerstoff aufnehmen, was zu leichten Qualitätseinbußen führt. Hier können wir aber gezielt entgegensteuern, indem wir beispielsweise zehn bis 20 Prozent neues Material hinzugeben oder die Mikrostruktur der Magnete noch weiter bearbeiten«, erklärt Opelt. Die Leistung der Recycle-Magnete lässt sich am fertigen Endprodukt oder auch schon im Pulverstadium bestimmen. Letztendlich soll aus diesen Untersuchungen ein Eigenschafts-portfolio abgeleitet werden, das zukünftigen Anwendern Handlungsempfehlungen dazu gibt, wie der Recyclingprozess so modifiziert werden kann, dass je nach Ausgangszusammensetzung die gewünschten Zieleigenschaften für die Magnete erreicht werden.

Der Aufbau einer neuen Wertschöpfungskette

Derzeit sind die Forschenden noch dabei, den Aufbereitungsprozess während des Recyclingvorgangs weiter zu optimieren. Konrad Opelt ist aber zuversichtlich, dass sie die recycelten Magnete schon bald in die E-Motoren einbauen können und freut sich schon darauf, mit dem Hoverboard über den Institutshof zu flitzen.

Ist dieser Schritt geschafft, wäre das der sichtbare Beweis für den Erfolg des Recyclings. »Damit langfristig eine Wertschöpfungskette für Magnetrecycling aufgebaut werden kann, muss sich jeder Akteur auf den anderen verlassen können«, betont Opelt. »Wir demonstrieren mit FUNMAG, dass die Idee auch wirklich funktioniert und tragen so einen entscheidenden Teil zum Aufbau der Wertschöpfungskette bei.«

Das Interesse von Wirtschaft und Politik an dem Ansatz ist groß, denn er verspricht mehr Nachhaltigkeit bei gleichzeitig weniger Ressourcenabhängigkeit. Konrad Opelt hofft, dass dies dazu führt, dass Hersteller zukünftig schon bei der Produktion von Elektromotoren gezielt darauf achten, dass sich die Magnete gut aus- und wieder einbauen lassen. Dasselbe gilt über die E-Mobilität hinaus auch für alle Elektrogeräte unseres täglichen Bedarfs, vom Rasenmäher über den Akkuschrauber bis hin zum Handy. Sie alle enthalten Neodym-Eisen-Bor-Hochleistungspermanentmagnete, die so ebenfalls lohnenswert recycelt werden könnten.

Externer Link: www.fraunhofer.de

technologiewerte.de – MOOCblick Juli 2022

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

A Hands-on Introduction to Engineering Simulations
Rajesh Bhaskaran (Cornell University)
Start: flexibel / Arbeitsaufwand: 24-36 Stunden

Externer Link: www.edx.org

Muskeln zum Anziehen

Medienmitteilung der ETH Zürich vom 23.06.2022

Forschende der ETH Zürich haben einen tragbaren Exomuskel aus Stoff entwickelt – eine Art zusätzliche Muskelschicht. Diese soll Menschen mit Bewegungseinschränkungen mehr Kraft und Ausdauer im Oberkörper verleihen.

«In den Armen bin ich einfach zunehmend schwach», sagt Michael Hagmann, bei dem 2016 Bethlem-​Myopathie diagnostiziert wurde, eine seltene Muskelerkrankung. Um die fehlende Muskelkraft in den Armen zu kompensieren, macht Hagmann im Alltag Ausweichbewegungen, die wiederum zu einer unguten Haltung und Verspannungen führen. Marie Georgarakis, ehemalige Doktorandin am Sensory-​Motor Systems Lab der ETH Zürich, kennt das Problem. «Mittlerweile gibt es zwar viele gute Therapiegeräte in Kliniken. Diese sind aber oft sehr teuer und gross. Technische Hilfsmittel, die Patient:innen direkt im Alltag unterstützen und mit denen sie auch daheim trainieren können, gib es dagegen weniger. Diese Lücke wollen wir schliessen», sagt Georgarakis.

So viel Kraft wie nötig

Aus dieser Idee ist das Myoshirt entstanden, ein weicher, tragbarer Exomuskel für den Oberkörper. Dieser besteht aus einer Art Weste mit Manschetten für die Oberarme und einem kleinen Kasten, in dem die ganze Technik steckt, die nicht unmittelbar am Körper gebraucht wird. Und so funktioniert es: Ein intelligenter Algorithmus erkennt mithilfe von Sensoren im Stoff, was für eine Bewegung der Träger oder die Trägerin ausführen will und wie viel Kraft dafür benötigt wird. Ein Motor verkürzt daraufhin ein im Stoff parallel zu den Muskeln verlaufendes Kabel – eine Art künstliche Sehne – und unterstützt so die Bewegung. Die Unterstützung ist dabei immer in Einklang mit der vom Nutzer ausgeführten Bewegung und kann auf individuelle Präferenzen abgestimmt werden. Stets hat der Nutzer oder die Nutzerin die Kontrolle und kann das Gerät jederzeit übersteuern.

Mehr Ausdauer dank Exomuskel

Diesen ersten Prototypen haben die Forschenden nun in einer Studie mit 12 Proband:innen – zehn gesunden Personen, einer Person mit einer Muskelschwäche (Michael Hagmann) und einer Person mit einer Rückenmarksverletzung – erstmals getestet. Die Resultate sind vielversprechend: Alle Teilnehmer:innen konnten dank dem Exomuskel ihre Arme und/oder Gegenstände sehr viel länger heben. Die Ausdauerzeit erhöhte sich bei gesunden Teilnehmer:innen um rund einen Drittel, bei dem Teilnehmer mit Muskelschwäche erhöhte sie sich um 60 Prozent und der Proband mit einer Rückenmarksverletzung konnte die ihm aufgetragenen Übungen gar drei Mal so lange durchhalten. Die eigenen Muskeln wurden dabei weniger beansprucht und die überwiegende Mehrheit der Versuchsteilnehmenden empfanden das Gerät zudem als intuitiv in der Nutzung.

Mit Betroffenen testen und verbessern

Der Weg bis zum marktreifen Produkt ist aber dennoch ein langer: «In einem nächsten Schritt möchten wir unseren Prototyp ausserhalb des Labors in der natürlichen Umgebung der zukünftigen Träger:innen testen und das Gerät mithilfe dieser Ergebnisse weiter verbessern», sagt Michele Xiloyannis, der ebenfalls am Sensory-​Motors Systems Lab der ETH Zürich tätig ist und am Myoshirt forscht. Damit das Gerät dereinst unsichtbar und bequem unter der Kleidung getragen werden kann, muss es noch kleiner und leichter werden – heute wiegt die Antrieb-​ und Steuerungsbox noch vier Kilogramm. Um ein maximal reduziertes Produkt zu erhalten, wollen sich die Forschenden weiterhin auf eine Kernfunktion konzentrieren – das Unterstützen der Schulter beim Anheben der Arme. Zudem arbeiten sie eng mit dem ETH-​Spin-off MyoSwiss AG zusammen, das ein weiches Exoskelett – eine Art Roboteranzug zur Unterstützung der Beine – herstellt und vertreibt. «Dass die Forschenden ihre Ideen zusammen mit den potenziellen Nutzenden und iterativ weiterentwickeln, gefällt mir besonders», sagt Michael Hagmann, der bereits verschiedene technische Hilfsmittel der ETH vom Prototyp bis zum fertigen Produkt getestet und so entwickeln geholfen hat. Denn für ihn ist klar: Er möchte auch in Zukunft weiter aktiv bleiben und da kommt technische Unterstützung wie gerufen.

Publikation:
Georgarakis M, Xiloyannis M, Wolf P, Riener R. A textile exomuscle that assists the shoulder during functional movements for everyday life. Nature Machine Intelligence. 22.06.2022.

Externer Link: www.ethz.ch

Dünnschicht-Photovoltaik: Effizient und vielseitig im Doppelpack

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 14.06.2022

Forschende am KIT entwickeln Perowskit/CIS-Tandem-Solarzellen mit einem Wirkungsgrad von fast 25 Prozent – Materialkombination ermöglicht mobile Anwendungen

Solarzellen übereinander zu stapeln, steigert den Wirkungsgrad. Forschende am Karlsruher Institut für Technologie (KIT) haben gemeinsam mit Partnern im EU-Projekt PERCISTAND nun Perowskit/CIS-Tandem-Solarzellen mit einem Wirkungsgrad von fast 25 Prozent hergestellt – dem bis jetzt höchsten für diese Technologie. Zudem sorgt die Materialkombination für Leichtigkeit und Vielseitigkeit, sodass der Einsatz dieser Tandem-Solarzellen auch an Fahrzeugen, tragbaren Geräten sowie falt- oder rollbaren Vorrichtungen vorstellbar ist. Die Forschenden stellen ihre Arbeit in der Zeitschrift ACS Energy Letters vor.

Perowskit-Solarzellen haben in nur zehn Jahren eine steile Entwicklung durchlaufen. Vom Wirkungsgrad her lassen sie sich bereits mit den seit langem etablierten Silizium-Solarzellen vergleichen. Bei Perowskiten handelt es sich um innovative Materialien mit einer speziellen Kristallstruktur. Forschende arbeiten weltweit derzeit daran, die Perowskit-Photovoltaik reif für die praktische Anwendung zu machen. Für die Endverbrauchenden sind Solarzellen desto attraktiver, je mehr Strom pro Flächeneinheit sie erzeugen.

Der Wirkungsgrad lässt sich durch das Stapeln von zwei oder mehr Solarzellen erhöhen. Wenn dabei jede Solarzelle besonders effizient einen anderen Teil des Sonnenlichtspektrums absorbiert, lassen sich inhärente Verluste reduzieren und der Wirkungsgrad steigt. Dieser gibt an, wie viel vom einfallenden Licht in Strom umgewandelt wird. Perowskit-Solarzellen eignen sich dank ihrer Vielseitigkeit hervorragend als Bestandteil solcher Tandems. So haben Tandem-Solarzellen aus Perowskiten und Silizium einen Rekordwirkungsgrad von über 29 Prozent erreicht – deutlich höher als der von Einzelzellen aus Perowskiten (25,7 Prozent) und Silizium (26,7 Prozent).

Kombination von Perowskiten mit CIS – Mobilität und Flexibilität

Zusätzliche Vorteile verspricht die Kombination von Perowskiten mit anderen Materialien, wie Kupfer-Indium-Diselenid (CIS) oder Kupfer-Indium-Gallium-Diselenid (CIGS). Dadurch werden flexible und leichte Tandem-Solarzellen möglich, die sich nicht nur an Gebäuden, sondern auch an Fahrzeugen und tragbaren Geräten anbringen lassen. Solche Solarzellen könnten sogar zur Aufbewahrung gefaltet oder gerollt und bei Bedarf ausgefahren werden, beispielsweise auf Jalousien oder Markisen, die vor Sonne schützen und gleichzeitig Strom erzeugen.

Einem internationalen Team aus Forschenden unter Leitung von Dr. Marco A. Ruiz-Preciado und Tenure-Track-Professor Ulrich W. Paetzold vom Lichttechnischen Institut (LTI) und Institut für Mikrostrukturtechnik (IMT) des KIT ist es nun gelungen, Perowskit/CIS-Tandem-Solarzellen mit einem Spitzenwirkungsgrad von 24,9 Prozent (23,5 Prozent zertifiziert) herzustellen. „Dies ist der höchste gemeldete Wirkungsgrad für diese Technologie und der erste hohe Wirkungsgrad überhaupt, der mit einer fast galliumfreien Kupfer-Indium-Diselenid-Solarzelle in einem Tandem erreicht wurde“, erklärt Ruiz-Preciado. Die Verringerung der Galliummenge führt zu einer schmalen Bandlücke von etwa einem Elektronenvolt eV, was dem Idealwert von 0,96 eV für die untere Solarzelle in einem Tandem sehr nahekommt.

CIS-Solarzellen mit schmaler Bandlücke – Perowskit-Solarzellen mit wenig Brom

Bei der Bandlücke handelt es sich um eine Materialeigenschaft, die denjenigen Teil des Sonnenspektrums bestimmt, den eine Solarzelle absorbieren kann, um Strom zu erzeugen. In einer monolithischen Tandem-Solarzelle müssen die Bandlücken so beschaffen sein, dass die beiden Zellen ähnliche Ströme erzeugen können, um einen maximalen Wirkungsgrad zu erzielen. Ändert sich die Bandlücke der unteren Zelle, muss die Bandlücke der oberen Zelle daran angepasst werden; umgekehrt ebenso.

Um die Bandlücke für eine effiziente Tandem-Integration einzustellen, werden üblicherweise Perowskite mit hohem Bromgehalt verwendet. Dies führt jedoch häufig zu Spannungsverlusten und Phaseninstabilität. Da die Forschenden am KIT und ihre Partner für ihre Tandems unten CIS-Solarzellen mit schmaler Bandlücke einsetzen, können sie die oberen Solarzellen aus Perowskiten mit niedrigem Bromgehalt herstellen, sodass sie effizienter und stabiler sind.

„Unsere Studie demonstriert das Leistungspotenzial von Perowskit/CIS-Tandem-Solarzellen und definiert die Basis für zukünftige Entwicklungen, die den Wirkungsgrad weiter verbessern können“, so Paetzold. „Erreicht haben wir diesen Meilenstein dank der hervorragenden Zusammenarbeit im EU-Projekt PERCISTAND und besonders dank der engen Kooperation mit der Netherlands Organisation for Applied Scientific Research.“ Wichtige Vorarbeiten gelangen zudem im nationalen Projekt CAPITANO, gefördert vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK). (or)

Originalpublikation:
Marco A. Ruiz-Preciado, Fabrizio Gota, Paul Fassl, Ihteaz M. Hossain, Roja Singh, Felix Laufer, Fabian Schackmar, Thomas Feeney, Ahmed Farag, Isabel Allegro, Hang Hu, Saba Gharibzadeh, Bahram Abdollahi Nejand, Veronique S. Gevaerts, Marcel Simor, Pieter J. Bolt, and Ulrich W. Paetzold: Monolithic Two-Terminal Perovskite/CIS Tandem Solar Cells with Efficiency Approaching 25%. ACS Energy Letters, 2022. DOI: 10.1021/acsenergylett.2c00707

Externer Link: www.kit.edu