Neuer Drohnentyp erlaubt weltweit erstes Echtzeit-Tracking von Personen in dichter Bewaldung

Pressemeldung der JKU Linz vom 25.04.2022

AOS ist ein spezielles Bildgebungsverfahren, bei dem bei Drohnen-Luftaufnahmen die Verdeckung (z.B. ein Blätterdach im Wald) in Echtzeit weggerechnet werden kann. Nun wurde das System neuerlich verbessert. Beim AOS werden aus der Luft (z.B. mittels Kamera-Drohne) mehrere Einzelaufnahmen von unterschiedlichen Positionen aufgenommen und rechnerisch so kombiniert, dass verdeckende Bewaldung aus dem Bildmaterial von der Software entfernt wird.

Potenzielle Anwendungen findet AOS z.B. in der Wildbeobachtungen, für Such- und Rettungseinsätze von vermissten Personen in Waldgebieten oder für das Aufspüren von Waldbränden und Glutnestern. Bisher gab es ein Problem: Es war nur für unbewegte Objekte verwendbar. Sowohl vermisste Menschen als auch Wild neigen natürlich dazu, sich zu bewegen. Bisher war es mit keiner Technologie möglich, solche bewegliche Objekte zu erkennen oder gar zu verfolgen – auch mit AOS nicht, da der sequentielle Aufnahmeprozess der Einzelbilder, die zum Wegrechnen des Waldes nötig waren, deutlich mehr Zeit in Anspruch nahm als die Bewegung einer Person, Tiers, oder Fahrzeug. Vor allem sich schnell bewegende Objekte gehen – ähnlich wie bei Langzeitbelichtungen – in den Ergebnisbildern durch Bewegungsunschärfe unter.

Ein neuer Drohnenprototyp, der in Zusammenarbeit der JKU Institute für Computergrafik (Leitung: Prof. Oliver Bimber) und Konstruktiven Leichtbau (Leitung: Prof. Martin Schagerl) entwickelt wurde, stellt nun weltweit die allererste Möglichkeit dar, bewegte Objekte unter dichter Bewaldung zu finden und in Echtzeit zu verfolgen. Auch wenn es seit einigen Jahren internationale Anstrengungen in diese Richtung gibt, galt „through-foilage tracking“ unter realistischen Bedingungen bisher als weitgehend ungelöstes Problem.

Der Clou des neue Drohnenprototyps ist ein fast 10 Meter langer Ausleger aus Carbon, der mit 10 Kameras bestückt ist, die gleichzeitig Bilder aufnehmen. Die rechnerische Kombination dieser Aufnahmen über die große Synthetische Apertur des Auslegers ermöglicht das Wegrechnen der Verdeckung in der Geschwindigkeit der Kameraaufnahmen – also in Echtzeit. In ersten Experimenten erkennt ein Farbanomalie-Detektor Personen und verfolgt diese durch den Wald.

Erste Ergebnisse wurden nun im Science Partner Journal of Remote Sensing veröffentlicht, und zeigen nicht nur, dass „through-foilage tracking“ realistisch möglich ist, sondern auch, dass Anomaliedetektion, die häufig auch bei der automatisierten Bildsuche für Such- und Rettungsaktionen Anwendung findet, durch AOS stark verbessert wird. (Christian Savoy)

Externer Link: www.jku.at

Das Platin-Rätsel

Presseaussendung der TU Wien vom 04.04.2022

An der TU Wien konnte erklärt werden, wie eine chemische Reaktion abläuft, die nach bisheriger Sichtweise bei den beobachteten Temperaturen gar nicht möglich sein sollte.

Was passiert, wenn eine Katze auf eine Sonnenblume klettert? Die Sonnenblume ist nicht stabil, sie wird sich rasch nach unten verbiegen, und die Katze ist wieder auf dem Boden. Wenn die Katze aber nur einen raschen Zwischenschritt benötigt, um von dort aus einen Vogel zu erwischen, dann kann die Sonnenblume als „metastabiler Zwischenschritt“ den entscheidenden Unterschied machen. Genau diesen Mechanismus kann man beobachten, wenn einzelne Atome eines Katalysators Moleküle einfangen, um sie dann chemisch umzuwandeln.

Schon vor Jahren hatte man festgestellt, dass Platin-Katalysatoren, die man zur Oxidation von Kohlenmonoxid verwendet, bei Temperaturen aktiv sind, bei denen sie nach bisher gängiger Sichtweise eigentlich noch gar keinen Effekt zeigen dürften. Ein Forschungsteam der TU Wien konnte mit Hilfe von Mikroskop-Aufnahmen auf atomarer Skala und aufwändigen Computersimulationen nun zeigen: Das lässt sich erklären, wenn man berücksichtigt, dass sowohl der Katalysator selbst als auch das Material, auf dem er verankert ist, für kurze Zeit metastabile Zustände annehmen. Die Ergebnisse wurden nun im Fachjournal „Science Advances“ publiziert.

Einzelne Atome als Katalysatoren

In der Forschungsgruppe von Prof. Gareth Parkinson am Institut für Angewandte Physik der TU Wien untersucht man die kleinsten Katalysatoren, die überhaupt möglich sind: Einzelne Platin-Atome werden auf einer Eisenoxid-Oberfläche platziert. Sie kommen dann in Kontakt mit Gas, das Kohlenmonoxid enthält und wandeln das giftige Kohlenmonoxid in Kohlendioxid um.

„Dieser Vorgang ist technisch sehr wichtig, was dabei aber auf atomarer Ebene genau geschieht, war bisher nicht klar“, sagt Gareth Parkinson. „In unserer Forschungsgruppe untersuchen wir solche Prozesse auf verschiedene Arten: Einerseits erzeugen wir in einem Rastertunnelmikroskop extrem hochauflösende Bilder, auf denen man die Bewegung einzelner Atome studieren kann. Und andererseits analysieren wir den Vorgang mit Computersimulationen.“

Ob die Platin-Atome als Katalysator aktiv sind, hängt von der Temperatur ab. Im Experiment wird der Katalysator langsam und gleichmäßig erwärmt, bis die kritische Temperatur erreicht ist, und Kohlenmonoxid zu Kohlendioxid umgewandelt wird. Diese Schwelle liegt bei ungefähr 550 Kelvin (rund 277°C). „Das passte aber nicht zu unseren ursprünglichen Computersimulationen“, sagt Matthias Meier, der Erstautor der aktuellen Publikation. „Nach der Dichtefunktionaltheorie, die man normalerweise für solche Berechnungen verwendet, sollte der Prozess erst bei 800 Kelvin stattfinden. Wir wussten also: Irgendetwas Wichtiges hatte man hier bisher übersehen.“

Ein Kurzzeit-Zustand: Nicht stabil, aber wichtig

Mehrere Jahre hindurch sammelte das Team in verschiedenen anderen Forschungsprojekten umfangreiche Erfahrung mit ähnlichen Materialien, dadurch ergab sich Schritt für Schritt ein neues Bild: „Mit der Dichtefunktionaltheorie berechnet man normalerweise jenen Zustand des Systems, der die niedrigste Energie hat“, sagt Matthias Meier. „Das ist auch sinnvoll so, denn das ist der Zustand, den das System am häufigsten annimmt. Doch in unserem Fall gibt es einen zweiten Zustand, der eine zentrale Rolle spielt: Einen sogenannten metastabilen Zustand.“

Sowohl die Platin-Atome als auch die Eisenoxid-Oberfläche können zwischen unterschiedlichen Atomanordnungen hin- und her wechseln. Der Grundzustand, mit der niedrigsten Energie, ist stabil. Wenn das System in den metastabilen Zustand wechselt, kehrt es nach kurzer Zeit unweigerlich wieder in den Grundzustand zurück – wie die Katze, die auf einer instabilen Sonnenblume nach oben gelangen will. Doch bei der katalytischen Umwandlung von Kohlenmonoxid genügt es, dass sich das System für kurze Zeit im metastabilen Zustand befindet: So wie der Katze vielleicht ein kurzer Moment in einem wackeligen Kletterzustand genügen, um mit der Pfote einen Vogel zu erwischen, kann der Katalysator im metastabilen Zustand Kohlenmonoxid umwandeln.

Zwei Platin-Atome, die sich auf der Eisenoxid-Oberfläche gemeinsam genau an der richtigen Stelle anlagern, halten je ein Kohlenmonoxid-Molekül fest. Das Eisenoxid kann im metastabilen Zustand genau an dieser Stelle seine atomare Struktur ändern, es gibt ein Sauerstoffatom frei, das sich mit einem der Kohlenmonoxid-Moleküle zu Kohlendioxid verbindet, das dann augenblicklich davonfliegt – der Katalyseprozess ist somit abgeschlossen. „Wenn wir diese bisher nicht berücksichtigen Kurzzeit-Zustände in unsere Computersimulation mit einbauen, dann kommen wir genau auf das Ergebnis, das auch im Experiment gemessen wurde“, sagt Matthias Meier.

„Unser Forschungsergebnis zeigt, dass man in der Oberflächenphysik oft viel Erfahrung braucht“, sagt Gareth Parkinson. „Hätten wir nicht im Lauf der Jahre ganz unterschiedliche chemische Prozesse studiert, hätten wir dieses Rätsel wohl nie gelöst.“ In letzter Zeit wird auch künstliche Intelligenz mit großem Erfolg für die Analyse quantenchemischer Prozesse verwendet – doch in diesem Fall hätte das wohl keinen Erfolg gebracht, ist Parkinson überzeugt. Um auf kreative Lösungen außerhalb des bisher für möglich gehaltenen zu kommen, braucht man wohl doch den Menschen. (Florian Aigner)

Originalpublikation:
Meier et al., CO oxidation by Pt2/Fe3O4: metastable dimer and support configurations facilitate lattice oxygen extraction. Sci. Adv. 8, eabn4580 (2022).

Externer Link: www.tuwien.at

Wasseraufbereitung: Licht hilft beim Abbau von Hormonen

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 13.04.2022

Forschende des KIT setzen mit Titandioxid beschichtete Polymermembranen zur photokatalytischen Reinigung ein – Nature Nanotechnology veröffentlicht Ergebnisse

Bei Mikroverunreinigungen im Wasser handelt es sich häufig um Hormone, die sich in der Umwelt ansammeln und sich negativ auf Menschen und Tiere auswirken können. Forschende am Karlsruher Institut für Technologie (KIT) und am Leibniz-Institut für Oberflächenmodifizierung (IOM) in Leipzig haben ein Verfahren zum photokatalytischen Abbau dieser Verunreinigungen im Durchfluss durch Polymermembranen entwickelt und in der Zeitschrift Nature Nanotechnology vorgestellt. Durch Bestrahlung mit Licht, das eine chemische Reaktion auslöst, werden Steroidhormone auf den mit Titandioxid beschichteten Membranen zersetzt.

Überall wo Menschen leben, gelangen Hormone, wie sie in Arzneimitteln zur Empfängnisverhütung und in der Landwirtschaft eingesetzt werden, in das Abwasser. Steroidhormone wie Sexualhormone und Corticosteroide können sich in der Umwelt ansammeln und sich negativ auf Menschen und Tiere auswirken, indem sie die Verhaltensentwicklung und die Fortpflanzungsfähigkeit beeinträchtigen. Sexualhormone können beispielsweise dazu führen, dass männliche Fische weibliche Geschlechtsmerkmale entwickeln. Umso wichtiger ist es, neben anderen Mikroverunreinigungen auch Hormone aus dem Abwasser zu entfernen, bevor diese in den natürlichen Wasserkreislauf zurückgelangen, aus dem wiederum das Trinkwasser kommt. „Die Menschen mit sauberem Trinkwasser zu versorgen, gehört weltweit zu den wichtigsten Herausforderungen der Gegenwart“, sagt Professorin Andrea Iris Schäfer, Leiterin des Institute for Advanced Membrane Technology (IAMT) des KIT. „Spurenschadstoffe sind eine enorme Bedrohung für unsere Zukunft, da sie unsere Fruchtbarkeit und Gehirnfunktion beeinträchtigen.“

Inspiration aus der Solarzellentechnologie

Schäfer befasst sich seit Jahren mit der Wasseraufbereitung über Nanofiltration. Dazu setzt sie Polymermembranen mit nanometerkleinen Poren ein. Allerdings arbeitet die Nanofiltration mit hohem Druck und benötigt daher viel Energie. Außerdem kann es passieren, dass sich Mikroverunreinigungen in den polymeren Membranmaterialien ansammeln und allmählich in das gefilterte Wasser übergehen. Selbst wenn die Entfernung der Verunreinigungen vollständig gelingt, entsteht dabei ein Strom mit konzentrierten Schadstoffen, der weiterbehandelt werden muss.

Inspiriert von der Solarzellentechnologie, mit der sich der ebenfalls am KIT tätige Professor Bryce S. Richards befasst, kam Schäfer auf die Idee, Polymermembranen mit Titandioxid zu beschichten und photokatalytische Membranen zu entwickeln: Photokatalytisch aktive Titandioxid-Nanopartikel werden auf Mikrofiltrationsmembranen aufgebracht, deren Poren etwas größer sind als bei der Nanofiltration. Durch Bestrahlung mit Licht, das eine chemische Reaktion auslöst, werden Steroidhormone auf den Membranen zersetzt. Nun hat Schäfer ihre Idee mit ihrem Team am IAMT des KIT und mit Kolleginnen am Leibniz-Institut für Oberflächenmodifizierung (IOM) in Leipzig verwirklicht und die neue Technologie in der Zeitschrift Nature Nanotechnology vorgestellt.

Katalysator für Wasser

„Wir haben sozusagen einen Katalysator für Wasser entwickelt“, resümiert Schäfer. Mit den photokatalytischen Polymermembranen gelang es, Steroidhormone im kontinuierlichen Durchfluss so weit zu entfernen, dass die analytische Nachweisgrenze von vier Nanogramm pro Liter erreicht wurde – die Werte kamen sogar ziemlich nah an ein Nanogramm pro Liter heran, was der neuen Trinkwasserrichtlinie der WHO entspricht. Die Forschenden arbeiten daran, ihre Technologie weiterzuentwickeln, um den Zeitbedarf und den Energieverbrauch zu senken sowie die Verwendung von natürlichem Licht zu ermöglichen. Vor allem aber zielt die weitere Forschung darauf ab, auch andere Schadstoffe mithilfe der Photokatalyse abzubauen, beispielsweise Industriechemikalien wie per- und polyfluorierte Alkylsubstanzen (PFAS) oder Pestizide wie Glyphosat. Eine weitere Herausforderung besteht darin, die Technologie in größerem Maßstab zu verwirklichen. (or)

Originalpublikation:
Shabnam Lotfi, Kristina Fischer, Agnes Schulze and Andrea I. Schäfer: Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process. Nature Nanotechnology, 2022. DOI: 10.1038/s41565-022-01074-8

Externer Link: www.kit.edu

Geklebte Verbundbauteile aus Holz und Beton für den Brückenbau

Pressemitteilung der Universität Kassel vom 13.04.2022

Verbundbaueile aus Holz und Beton kombinieren die Vorteile beider Werkstoffe: Leichtigkeit, Biegsamkeit und Nachhaltigkeit von Holz mit Druckfestigkeit und Tragfähigkeit von Beton. Sie großflächig und durchgängig aneinanderzufügen ist in der Praxis jedoch eine Herausforderung. Jetzt haben Forschende des Fachgebiets Bauwerkserhaltung und Holzbau der Uni Kassel die Herstellung von Holz-Beton-Tragwerken für den Brückenbau mithilfe von Klebstoffen vereinfacht und in Belastungstests erprobt.

Holz-Beton-Verbundkonstruktionen werden im Hoch- und Brückenbau als ressourcenschonendes Baumaterial eingesetzt. Die gängigen Herstellungsverfahren nutzen metallische Verbindungen wie Schrauben oder Bolzen, wodurch in jedem Fall der Einsatz von Ortbeton erforderlich ist. Darauf verzichten Forschende des Fachgebiets Bauwerkserhaltung und Holzbau der Uni Kassel. Sie konnten stattdessen beweisen, dass es mit hochgefüllten Epoxidharzklebstoffen oder sogenanntem Polymermörtel möglich ist, großflächig verklebte Bauteile von mehreren Metern Länge herzustellen, die zudem für den Einsatz als Schwerlast-Brücken geeignet sind. „Die Klebetechnik bietet gegenüber herkömmlichen Verbindungsmittelmethoden viele Vorteile hinsichtlich der Tragfähigkeit und der Biegesteifigkeit. Besonders vorteilhaft ist an dieser Konstruktionsart zudem der Einsatz vorgefertigter Stahlbetonfertigteile zu nennen. Diese sind einfach handzuhaben, müssen auf der Baustelle nicht aushärten und sind in der Gesamtbetrachtung damit oftmals günstiger als herkömmliche Baumethoden“, beschreibt Jens Frohnmüller, wissenschaftlicher Mitarbeiter des Fachgebiets.

Bei den Versuchen zeigte sich auch, dass der neuartige Polymermörtel aufgrund seiner Zähigkeit beim Auftragen auf die Holzbalken besser zu handhaben ist als gängige Epoxidharzklebstoffe und auch Unebenheiten an den Oberflächen der Werkstoffe besser überbrücken kann. Zudem wird der Klebstoff nicht flächig, sondern in Streifen aufgetragen. So kann die Klebefläche an die auftretende Beanspruchung angepasst werden.

In Belastungstest hielten die Verbundbalken mit einer Spannweite von 8m einer Last von bis zu 446 Kilonewton stand. „Umgerechnet sind das etwa 45 Tonnen, also kann eine Brücke aus diesem geklebtem Holz-Beton-Verbund einen voll beladenen Schwerlasttransporter aushalten – oder etwa 30 VW-Golfs gleichzeitig“, erklärt Jens Fronmüller. Der Klebeverbund blieb bis zum endgültigen Versagen des Trägers immer vollständig erhalten. Für das endgültige Versagen war entweder ein Zugversagen des Holzes oder ein Druckversagen des Betons verantwortlich.

Darüber hinaus konnten die Forschenden zwei Berechnungsmodelle validieren. Mit diesen lassen sich alle wichtigen Eigenschaften der Verbundträger, insbesondere die konkrete Tragfähigkeit und das Verformungsverhalten vorhersagen. „Die Ergebnisse der Modelle stimmen mit den Ergebnissen aus den Versuchen sehr gut überein. Sie sind ein zuverlässiges Werkzeug, dass wir Ingenieuren an die Hand geben können, die mit dieser Methode arbeiten wollen. Die so verklebten Bauteile eignen sich gut für den Brückenbau zum Beispiel im Forst, wo sie oft schwere Lasten der Fahrzeuge aushalten müssen“, resümiert Prof. Werner Seim, Leiter des Fachgebiets.

Externer Link: www.uni-kassel.de