HIV: Neuer Mechanismus entdeckt

Presseaussendung der Universität Innsbruck vom 13.11.2020

Der Kampf gegen HIV ist auch nach jahrelanger Forschung nicht gewonnen. Ein wichtiger Schritt zur Entwicklung besserer Therapien ist ein gutes Verständnis davon, wie sich das Virus auf molekularer Ebene im Körper vermehrt. Ein Team um Kathrin Breuker hat nun einen Mechanismus entschlüsselt, der für die Vermehrung des Virus zentral ist und ein neues Angriffsziel für eine Therapie bietet.

Millionen von Menschen weltweit sind mit dem Immunschwäche-Virus (HIV) infiziert. Wird dessen Vermehrung nicht mit Hilfe von antiviralen Mitteln eingedämmt, führt eine Infektion nach einiger Zeit zu einer AIDS-Erkrankung. Viele Wissenschaftler forschen immer noch intensiv nach neuen Angriffspunkten des Virus, um effizientere Therapien zu entwickeln. Die Arbeitsgruppe um Kathrin Breuker vom Institut für Organische Chemie hat nun ein weiteres solches Ziel identifiziert. Die Forscherinnen und Forscher konnten einen Mechanismus entschlüsseln, über den das Virus seine Vermehrung in menschlichen Zellen vorantreibt.

Zerstörerischen Zyklus unterbrechen

Um sich zu vermehren und auszubreiten, dringt das HI-Virus in menschliche Zellen ein und baut seine Erbinformation im Zellkern in die DNA ein. Dadurch wird aus der eingebauten Virus-DNA neue Virus-mRNA produziert, die aus dem Zellkern in das Cytosol transportiert und dort in virale Proteine, die der Virus-Replikation dienen, umgeschrieben wird. Um die Virus-mRNA schnell aus dem Zellkern zu lotsen, bringt das Virus ein bestimmtes Protein mit, das rev heißt. Es ist bekannt, dass etwa acht bis zehn solcher rev-Moleküle an die Virus-RNA binden müssen, damit die mRNA schnell den Zellkern verlassen kann. Schon lange beschäftigt die Wissenschaft die Frage, wo genau an der RNA und in welcher Reihenfolge diese rev-Proteine anlagern. Denn hier liegt ein möglicher Angriffspunkt für eine gezielte Therapie, um den zerstörerischen Zyklus der Virusvermehrung zu unterbrechen. Bisher wurde versucht, mit Hilfe von Kernspinresonanz-Spektroskopie, Kristallographie und biochemischen Experimenten das Rätsel zu lösen. Für die strukturgebenden Methoden wurden aber modifizierte Moleküle verwendet, weil die natürlichen Moleküle zu dynamisch sind und in den betroffenen Bereichen nicht kristallisieren. „Mit diesen Methoden wurde vor einigen Jahren auch eine wichtige Bindungsstelle entdeckt“, erzählt Kathrin Breuker. Mit ihrem Team hat sie nun eine neue Methode genutzt, um den Replikationsmechanismus des Virus genauer unter die Lupe zu nehmen.

Neue Bindungsstelle entdeckt

Die Innsbrucker Chemiker*innen haben die natürlichen Moleküle im Labor synthetisch nachgebaut: ein Peptid, das der Bindungsdomäne des rev-Proteins entspricht sowie unterschiedlich lange Segmente der Virus-mRNA. Deren Interaktionen beobachteten sie mit Hilfe der Elektrospray-Massenspektrometrie und Kollisions-aktivierter Dissoziation. „Wir fanden neben RNA mit einem Peptid auch Komplexe mit zwei Peptiden. Bei längeren RNA-Stücken beobachteten wir auch solche mit fünf Peptiden“, erzählt Kathrin Breuker, die mit ihrem Team diese Konstrukte genauer unter die Lupe nahm und eine neue Bindungsstelle entdeckte, die bisher nicht detektiert werden konnte. „Es handelt sich hier um eine transiente Bindungsstelle, die die rev-Proteine einfängt und dann an die bereits bekannten Bindungsstellen weiterreicht und so die Bildung von stabilen RNA-Protein-Komplexen ermöglicht“, erläutert Breuker das überraschende Ergebnis, das nun in der renommierten Fachzeitschrift Nature Communications veröffentlicht wurde. Dieser Fund ist nicht nur in Hinblick auf eine neue Therapie interessant, sondern klärt auch viele Forschungsergebnisse, die bisher nicht oder nur teilweise verstanden wurden.

Finanziell unterstützt wurden die Forschungen vom österreichischen Wissenschaftsfonds FWF und der Forschungsförderungsgesellschaft FFG.

Originalpublikation:
Native mass spectrometry reveals the initial binding events of HIV-1 rev to RRE stem II RNA. Eva-Maria Schneeberger, Matthias Halper, Michael Palasser, Sarah Viola Heel, Jovana Vušurović, Raphael Plangger, Michael Juen, Christoph Kreutz & Kathrin Breuker. Nature Communications 2020, doi: 10.1038/s41467-020-19144-7

Externer Link: www.uibk.ac.at

App revolutioniert Wäschewaschen im Studierendenwohnheim

Pressemitteilung der OTH Regensburg vom 09.11.2020

Absolventen der OTH Regensburg kooperieren mit dem Studentenwerk Niederbayern/Oberpfalz und entwickeln ein System zur Waschraumbelegung. Die App wurde bereits erfolgreich im Dr.-Gessler-Wohnheim in Regensburg getestet.

In der Wohnanlage Dr.-Gessler-Straße leben rund 600 Studierende. Im Waschkeller stehen ihnen acht Maschinen zum Wäschewaschen zur Verfügung – zu Stoßzeiten sind diese häufig allesamt belegt, außerhalb dieser kann es vorkommen, dass sie überhaupt nicht genutzt werden. Dieses Problem haben Daniel Florea und Pascal Bily, beide Absolventen des Masterstudiengangs Informatik an der Ostbayerischen Technischen Hochschule Regensburg (OTH Regensburg), erkannt und eine Lösung in Form einer App entwickelt.

In ihrem Abschlusssemester vergangenen Sommer belegten die beiden Kommilitonen das Modul „Projektstudium 2“ bei Prof. Dr. Alexander Metzner. Daniel Florea und Pascal Bily wohnten zu dieser Zeit im Dr.-Gessler-Wohnheim bzw. im Vitusheim. Wenn es ums Wäschewaschen ging, machten beide dieselbe Beobachtung: „Wir stellten fest, dass man immer wieder in der Waschküche ankommt und alle Waschmaschinen belegt sind. Zu anderen Zeiten waren wiederum alle Maschinen frei“, sagt Daniel Florea. Sie tauschten sich über das Problem aus und überlegten sich, eine Lösung innerhalb des Seminars „Projektstudium“ zu erarbeiten. Ihr Ansatz: Mittels eines kontaktlosen 3-Achsen-Kompass-Sensors wollten sie an den einzelnen Maschinen den Strom messen, was Aufschluss darüber gibt, ob diese gerade in Betrieb sind oder nicht. Das Ergebnis sollte in einer Cloud abgebildet werden und über eine Seite auf Endgeräten wie Smartphones abrufbar sein.

Ein System mit Messmodulen für alle Waschmaschinen bauten die beiden Informatiker dann zum Probelauf im Dr.-Gessler-Wohnheim ein. „Der Testlauf lief aus unserer Sicht sehr gut“, sagt Pascal Bily. Das Feedback der Nutzer sei durchweg positiv gewesen und das System sei bislang ohne Ausfälle durchgelaufen. Zurzeit befinden sich die beiden App-Macher in Gesprächen mit dem Studentenwerk Niederbayern/Oberpfalz über die Installation des Systems in weiteren Wohnheimen. Geschäftsführerin Gerlinde Frammelsberger zeigte sich begeistert: „Wir wollen die beiden jungen Absolventen unterstützen und prüfen derzeit, ob eine Ausweitung des Systems auf weitere unserer Wohnanlagen möglich wäre.“

Die Informatik-Absolventen sind inzwischen übrigens keine Heimbewohner mehr: Sie haben beide eine Anstellung als Software Development Engineer bei der Vector Informatik GmbH in Stuttgart bzw. Karlsruhe angetreten, wo sie sich mit Ethernet- bzw. Softwareanwendungen für die Automobilindustrie beschäftigen.

Externer Link: www.oth-regensburg.de

Rapid Prototyping: Baumaschinen im Software-Test

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.11.2020

Die Entwicklung neuer Produktgenerationen bei Nutzfahrzeugen oder Baumaschinen ist aufwendig. Mit »Hardware-in-the-Loop« bieten Forschende der Fraunhofer-Gesellschaft eine Möglichkeit, Maschinen in einer Software-Simulation nachzubilden und virtuell zu testen. Die Herstellung neuer Maschinen wird dadurch schneller und preisgünstiger. Mit der Technik lassen sich auch Störfälle und kritische Grenzsituationen ohne Gefahr für Mensch oder Maschine testen.

Baumaschinen gehören zum Straßenbild einer jeden Stadt. Sie heben Erde für U-Bahn-Schächte aus, planieren Straßen und hieven tonnenschwere Lasten in schwindelerregende Höhen. Um diese Aufgaben zu bewältigen, müssen sie nicht nur robust und leistungsstark sein, sondern auch extrem zuverlässig, präzise und sicher. Ein Turmdrehkran ist in der Lage, mitten in der dicht besiedelten Stadt einen tonnenschweren Werkzeugcontainer hunderte Meter hoch zu hieven, um diesen zentimetergenau auf der Plattform eines Hochhauses abzulegen. Dementsprechend aufwendig und teuer ist die Entwicklung solcher Maschinen und das Testen der Prototypen.

Unterstützung bietet das Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern mit einem Teststand der besonderen Art. Er basiert auf einem HiL-Simulator (Hardware-in-the-Loop). Damit lassen sich im Prinzip jede beliebige Maschine und deren Steuerung gekoppelt mit einer Software-Simulation virtuell testen. In der Autoindustrie ist HiL bei der Entwicklung neuer Modelle bereits Standard. Bei Nutzfahrzeugen aber noch nicht. Die Fraunhofer-Forschenden hatten allerdings schon vor Jahren erkannt, dass die Nutzfahrzeugbranche durch immer kürzere Innovationszyklen, die zunehmend modulare Bauweise und die Digitalisierung der Steuerungstechnik einen ganz ähnlichen Bedarf hat und das Testkonzept entsprechend übertragen. »Mit unserem HiL-Simulator sind wir in der Lage, Baumaschinen aller Art zu testen, beispielsweise unterschiedliche Kran-Typen oder auch Betonpumpen. So helfen wir bei der Optimierung der Prototypen«, erklärt Projektleiter Dr. Christian Salzig. Eine reale Testumgebung ist nicht mehr nötig.

Digitaler Zwilling der Baumaschine im Simulator

Im ersten Schritt wird die zu testende Maschine als Software-Modell nachgebaut, in die alle technischen Spezifikationen einfließen. Dazu gehören die Abmessungen, die Leistungsdaten der Motoren, die Stärke der Stützstrukturen, die Gewichtsverteilung, die Winkel beim Bewegen der Ausleger, deren Länge und vieles mehr. Gleichzeitig sind die physikalischen Gesetze der Mechanik, Hydraulik und Elektronik wie Kräfte, Drücke oder Steuersignale als mathematische Gleichungen in die Software implementiert. Auf diese Weise entsteht ein Digitaler Zwilling.

Im nächsten Schritt wird der Simulator mit dem digitalen Zwilling an die elektronischen Steuereinheiten angeschlossen, die die Baumaschine im Betrieb kontrollieren und steuern. Eine Fachkraft bedient die zahlreichen Regler und Joysticks, die wiederum mit den Steuereinheiten verbunden sind. Auf einem Display stellt eine animierte 3D-Grafik alle Bewegungen der Maschine dar.

Der HiL-Simulator-Test zeigt zunächst, wie präzise Steuereinheit und Maschine zusammenwirken, und wie feinfühlig Bedienelemente wie Joysticks agieren. Moderne Baumaschinen sind mit einer Vielzahl von Sensoren ausgestattet. Sie registrieren Werte wie Drehmoment und Beschleunigung der Ausleger, Druck, Gewicht, das an Seilzügen zieht, oder die Neigung des Bodens unter der Maschine. Auch hier zeigt die Simulation, ob die Kommunikation zwischen Maschine und Steuereinheit auf Basis der Sensordaten präzise und verzögerungsfrei funktioniert. Technische Störungen lassen sich ebenfalls simulieren – etwa, was passiert, wenn an einer Gelenkstelle ein Kabel bricht oder die Hydraulik des Hebeelements Druck verliert.

Sicherheit und Grenzsituationen

Entscheidend beim Betrieb von Nutzfahrzeugen und Baumaschinen ist die Sicherheit. »Die Hersteller wollen wissen, was ihre Maschine in Grenzbereichen leistet und ab wann es kritisch wird«, sagt Christian Salzig. Der Simulator testet beispielsweise, was passiert, wenn eine Last anfängt zu pendeln oder Flüssigkeiten in einem Transportbehälter hin und her schwappen. Auch ein instabiler oder geneigter Untergrund, auf dem die Baumaschine steht, gehört zum Test-Parcours. Teleskopbühnen müssen beispielsweise in beengten Verhältnissen ihre Abstützungen platzieren. Mit den Hardware-in-the-Loop-Tests sehen die Produktentwickler, ab welchem Neigungswinkel der Digitale Zwilling instabil wird oder sogar umkippt. In einer realen Umgebung mit echten Maschinen wären solche Tests teuer und riskant. Der HiL-Simulator erledigt dies völlig gefahrlos für den Menschen und es werden auch keine teuren Prototypen beschädigt oder gar zerstört.

Rapid Prototyping für Baumaschinen

Mit dem Teststand am Fraunhofer ITWM können die Hersteller die Praxistauglichkeit und Leistung ihrer Maschine schon in einem frühen Stadium der Entwicklung prüfen, nachbessern und optimieren. Alle Funktions- und Belastungstests können bereits in der Konzeptphase erfolgen und nicht erst, wenn der erste Prototyp fertig ist. Das Verfahren ist auch als Rapid Prototyping bekannt. Nutzfahrzeug-Hersteller sind somit in der Lage, neue Produktgenerationen schneller und zu geringeren Entwicklungskosten auf den Markt zu bringen.

Fraunhofer-Experte Salzig weist noch auf einen weiteren Vorteil hin: »Die Hersteller wollen natürlich bei jeder neuen Produktgeneration Material einsparen, den Energieverbrauch senken, neue Funktionen integrieren und die Maschinen kleiner und mobiler machen.« Genau solche Verbesserungen macht Hardware-in-the-Loop möglich. In der Simulation finden die Expertinnen und Experten heraus, ob eine bestimmte gewünschte Eigenschaft oder Tragfähigkeit auch mit weniger Materialaufwand zu realisieren wäre oder ob dieselbe Leistung und Funktionalität nicht auch mit einer kleineren Maschine erreichbar wäre. Ein besonders kompakter Mobilkran könnte dann beispielsweise an Standorten operieren, die für das Vorgängermodell zu eng sind. Er würde trotzdem die gleichen Lasten heben und dieselbe Höhe erreichen.

Bei der komplexen Testprozedur halten die Expertinnen und Experten des Fraunhofer ITWM Kontakt zu den Herstellern. »Es ist nicht so, dass wir einen Auftrag bekommen, dann alleine testen und nach ein paar Monaten einen Testbericht schreiben. Wir arbeiten vielmehr während der gesamten Testreihe eng zusammen und diskutieren gemeinsam die nächsten Schritte«, bestätigt Christian Salzig.

Aktuell plant das Institut schon die nächste Erweiterung: die Integration der 5G-Funktechnik. Diese wird in den nächsten Jahren eine immer größere Rolle bei der drahtlosen Steuerung von Maschinen und Geräten in der Industrie spielen. Derzeit arbeitet das Fraunhofer ITWM an einer Schnittstelle, die den HiL-Simulator mit 5G-Sende- und Empfangsmodulen verbindet.

Externer Link: www.fraunhofer.de

technologiewerte.de – MOOCblick November 2020

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Software Engineering Essentials
Bernd Bruegge (TU München) et al.
Start: 15.11.2020 / Arbeitsaufwand: 50-70 Stunden

Externer Link: www.edx.org