Stabile biologische Beschichtung für Implantate

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.11.2016

Die extrazelluläre Matrix (ECM) regelt alle wichtigen Funktionen von Zellen und ist für Wissenschaftler ein interessantes Biomaterial. Fraunhofer-Forscher haben eine ECM entwickelt, die künstliche reaktive Gruppen enthält und auch außerhalb des Körpers das natürliche Verhalten der Zellen fördert. Sie kann deshalb als stabile Beschichtung auf Implantate aufgebracht oder für Zellkulturgefäße und Wundauflagen verwendet werden.

Biologen, Chemiker und Mediziner müssen wissen, wie biologische Reaktionen im Innern des menschlichen Körpers ablaufen. Zum Beispiel um Implantate einzusetzen, neue Wirkstoffe zu entwickeln oder krankes Gewebe zu ersetzen. Eine wichtige Rolle spielt bei den Untersuchungen die extrazelluläre Matrix (ECM). Sie stellt im menschlichen Gewebe die natürliche Umgebung der Zellen dar und erfüllt wichtige Funktionen. Durch ihre gewebetypische Zusammensetzung ist sie das ideale Material für Anwendungen in der Medizintechnik. »Es ist jedoch sehr kompliziert, die Matrix so zu modifizieren, dass sie für unterschiedliche Aufgabenstellungen angepasst werden kann, sich aber trotzdem wie in natürlicher Umgebung verhält«, sagt Dr. Monika Bach aus der Abteilung Grenzflächentechnologie und Materialwissenschaft des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB.

Biologische Beschichtung für die Medizintechnik

Chemiker und Biologen des Stuttgarter Forschungsinstituts haben gemeinsam eine funktionale ECM entwickelt, die auch außerhalb des Körpers das natürliche Verhalten der Zellen fördert und flexibel an biologische oder materialtechnische Aufgabenstellungen angepasst werden kann. »Im Labor haben wir gezeigt: Das Biomaterial erfüllt trotz der eingebrachten künstlichen reaktiven Gruppen seine Funktionen und unterstützt das natürliche Verhalten der Zellen, die mit ihr in Kontakt stehen«, schildert Prof. Dr. Petra Kluger, Leiterin der Abteilung Zell- und Tissue Engineering, den Forschungsstand.

Derzeit suchen die IGB-Forscherinnen und -Forscher Kooperationspartner, um mit Hilfe der patentierten Technologie konkrete Produkte zu entwickeln: Zum Beispiel um Implantate zu beschichten, damit sie schneller vom Körper angenommen werden. »Grundsätzlich wäre diese Technologie aber auch interessant, um neue Materialien zu entwickeln, die zur Wund- oder Knochenheilung eingesetzt werden könnten«, sagt Bach. Denkbar wäre zudem eine Beschichtung für Zellkulturgefäße im Labor. Sie liefert den jeweiligen Zellen eine ideale Umgebung, sodass diese während der Kultivierung ihr natürliches Wachstumsverhalten zeigen. »Denn Zellen reagieren sehr empfindlich auch auf kleine Veränderungen in ihrer Umgebung«, erklärt Bach.

Chemische Reaktion, die klickt

Um die ECM mit künstlichen chemischen Gruppen auszustatten, nutzen die Wissenschaftlerinnen und Wissenschaftler den natürlichen Stoffwechsel der Zellen und lassen sie die chemische Gruppe selbst einbauen. Dazu werden Zellen, die zuvor aus menschlichen Gewebeproben gewonnen wurden, in einer Zellkulturschale mit Zuckermolekülen gefüttert, die im Vergleich zu herkömmlichen Zuckern an einer Stelle eine reaktive Gruppe tragen. Die Zellen nehmen diesen modifizierten Zucker auf und nutzen ihn als Baustein, um andere Moleküle innerhalb der Zelle und in der ECM aufzubauen. »Diese chemische Gruppe kann anschließend in einer selektiven chemischen Reaktion – Click-Reaktion – mit einem passenden Bindungspartner weiter reagieren. Das muss man sich wie bei einem Druckknopf vorstellen: Eine Hälfte, andere Hälfte – Klick!«, schildert Bach den Vorgang. Auf diese Weise kann eine Implantatoberfläche, die die andere Hälfte des Druckknopfs trägt, stabil mit der clickECM beschichtet – und das Einwachsen des Implantats in das umliegende Gewebe deutlich verbessert werden. Der Vorteil des Zusammenklickens: Die selektive chemische Reaktion hat eine hohe Ausbeute, läuft ohne Nebenreaktionen und unter physiologischen Bedingungen ab, ohne in natürliche Prozesse der Zelle einzugreifen.

Externer Link: www.fraunhofer.de

Baukasten für Designer-Proteine

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 20.10.2016

Wissenschaftler des KIT entwickeln in einer internationalen Kooperation eine Methode, um hochentwickelte Proteine im Großmaßstab für Pharmazie und Biotechnologie herzustellen

Proteine sind einer der wichtigsten Bestandteile eines jeden lebenden Organismus und für mannigfaltige Aufgaben in Bio-systemen zuständig: Wie Hebel und Zahnräder bei Maschinen steuern, veranlassen und unterstützen sie biologische Aktivitäten und Funktionen innerhalb der Zelle. In der Medizin werden Proteine als Antikörper in der Impfstoffentwicklung benötigt. Eine der größten Herausforderungen der heutigen Zeit ist es, neuartige Impfstoffe gegen Krebserkrankungen zu entwickeln. Wissenschaftler des Karlsruher Instituts für Technologie (KIT) haben zusammen mit internationalen Forschungspartnern eine Methode etabliert, um genetisch gezielt veränderte Proteine in größerem Maßstab herzustellen. Die schnelle Herstellung der Designer-Eiweißbausteine könnte neue Anwendungen in der Biotechnik und Pharmazie ermöglichen. Ihren Ansatz stellen die Forscher in „Nature Methods“ vor. (DOI: 10.1038/nmeth.4032)

„Proteine sind für alle lebenden Organismen wichtige Bausteine“, sagt Stefan Bräse, Professor am Institut für Organische Chemie und Direktor am Institut für Toxikologie und Genetik des KIT. „Zellen, Muskeln, Organe enthalten Proteine. Komplexe Proteinsysteme (de-)codieren die genetische Information der DNA, um wiederum weitere Proteine mit unterschiedlichsten Aufgaben zu erzeugen.“ Für die Anwendung in der Forschung und Medizin kommen häufig bio-technologisch hergestellte Eiweiße zum Einsatz, deren Eigenschaften im Vergleich zur Ursprungsform verändert und auf das neue System angepasst sind: Diese rekombinanten Proteine werden mithilfe von gentechnisch gezielt veränderten DNA-Viren modifiziert. Die neue Struktur trägt die angestrebte Zielfunktion. Lange fand als Expressionsmedium, sprich als Maschinerie, um neuartige Proteine herzustellen, das Darmbakterium Escherichia coli (E.coli) Anwendung. „E.coli ist ein sehr einfacher Organismus“, erklärt Bräse. Andererseits habe E.coli auch einige Nachteile bezüglich der Biosynthese von Designer-Proteinen.

Deshalb haben sich in den letzten Jahren Insektenzellen, sogenannte Sf21-Zellen, als geeignetes Expressionssystem bewährt, zusammen mit dem „MultiBac-System“. Dieses System nutzt einen Transfer-Vektor, also eine Art „Genfähre“, welche die benötigten Informationen zum Aufbau des rekombinant modifizierten Proteins enthält. „Durch eine Kombination des MultiBac-Systems mit seitenspezifischen Gen-Engineering-Methoden, dem ‚MultiBacTAG‘, können wir nahezu beliebige Proteine mit integrierten Zielfunktionalitäten in großen Mengen und mit hoher Qualität herstellen“, sagt Dr. Edward Lemke, Gruppenleiter für Hochauflösende Untersuchungen am Europäischen Molekularbiologischen Labor (EMBL) in Heidelberg. „Das System benötigt dafür nur einige Wochen. Wir haben es direkt für unsere Glykanstrukturen genutzt“, ergänzt Bräse.

Mit dieser innovativen Methode gelang es den internationalen Forschungspartnern ortsspezifisch unnatürliche Aminosäuren in das Zielprotein einzuführen. Ein neu designtes, orthogonales Enzym, das tRNA/ tRNA-Synthetase-Paar, erkennt die unnatürlichen Aminosäuren und kann sie bequem in die gewünschte Zielstruktur einbauen.

Durch die Kombination des MultiBac-Systems mit dem orthogonalem tRNA/ tRNA-Synthetase-Paar ist es Lemke und Bräse mit ihren Gruppen gelungen, Proteinkomplexe mit Zellkerne in Insektenzellen herzustellen, die unnatürliche Aminosäuren tragen und somit eine Vielzahl von Anwendungen erlauben. Die Technologie zur Erweiterung des genetischen Codes ist für die heutige Medizin und Biotechnologie unverzichtbar. „MultiBacTAG ist nutzerfreundlich und leicht nachvollziehbar. Da die Komponenten der Gencode-Veränderung in die Struktur von MultiBacTAG eingesetzt sind, können Nutzer unsere Erweiterung ohne vorherige Erfahrung oder Kenntnisse verwenden“, sagt Bräse.

In Tests konnten die chemischen Biologen an Insekten- und Säugerzellen die Anwendung für eine Vielfalt von Proteinen und Proteinkomplexen aufzeigen. So konnten sie beispielsweise Herceptin herstellen, ein Protein, das als Antikörper bei Brustkrebserkrankungen verwendet wird. „Wir gehen davon aus, dass MultiBacTAG eine breite Palette von Möglichkeiten für das individuelle Proteindesign in biotechnologischen und pharmazeutischen Anwendungen ermöglicht“, fasst Bräse zusammen. „Es könnte vor allem in der Erforschung von Proteinkomplexen und deren funktionellen Wechselwirkungen sehr nützlich sein.“ (wer)

Publikation:
Nature Methods, 2016.

Externer Link: www.kit.edu

Neue Implantate für die Wundheilung

Pressemitteilung der Hochschule Coburg vom 22.09.2016

Was geschieht während der Heilung eines Knochenbruchs? Prof. Dr. Stefan Kalkhof von der Hochschule Coburg erforscht diesen Prozess. Er hat nun in Kooperation mit der Universität Leipzig und der Technischen Universität Dresden eine Analysemethode für den Wundbereich entwickelt.

Die Zahl der Knochenbrüche mit kompliziertem Heilungsverlauf ist in den letzten Jahren stark gestiegen. Ein Team aus Materialwissenschaftlern, Biologen, Biochemikern, Chemikern, Medizinern, Bioanalytikern und Informatikern erforscht Möglichkeiten, Knochen- und Hautverletzungen besser zu heilen. Prof. Kalkhof arbeitet mit ihnen im Sonderforschungsgebiet 67 „Funktionelle Biomaterialien zur Steuerung von Heilungsprozessen in Knochen- und Hautgewebe – vom Material zur Klinik“ der Universität Leipzig und der Technischen Universität Dresden zusammen. Insgesamt zwanzig Arbeitsgruppen hat das Sonderforschungsgebiet, das von der Deutschen Forschungsgemeinschaft (DFG) gefördert wird. Ziel ist die Entwicklung neuer Implantate, die Entzündungen vorbeugen und die Heilung aktiv unterstützen.

Prof. Kalkhof erforscht in seinem Teilprojekt die molekularen Prozesse, die im Wundbereich ablaufen. Gemeinsam mit Prof. Dr. Martin von Bergen vom Helmholtz-Institut für Umweltforschung und Prof. Dr. Stefan Rammelt vom Universitätsklinikum Dresden analysiert er behandelte Knochenbrüche. Mit einer minimal-invasiven Mikrodialyse entnehmen sie Proteine und Aminosäuren direkt aus der Wundflüssigkeit. Dafür verwenden sie einen kleinen Katheter, deren Kanüle nur die Größe einer kleinen Blutkapillare hat.

Die Proben werden im Zeitverlauf der Heilung, meist in den ersten zwei Tagen, entnommen. Sie zeigen, wie sich die Zusammensetzung von Metaboliten und Proteinen während der Heilung verändert und welche Entzündungsmarker aktiv sind. Prof. Kalkhof und Prof. von Bergen konnten mit ihrem Team 400 Proteine, Aminosäuren und Lipide aus dem Wundbereich isolieren und mittels Massenspektrometrie quantifizieren. Erprobt wurde dies durch Versuche an Ratten und Schweinen im Labor des Universitätsklinikums Dresden.

„Die Erkenntnisse helfen, passende Implantate zu entwickeln, die den Heilungsprozess aktiv fördern“ sagt Prof. Kalkhof. Die Forscher haben nun ein besseres Verständnis der Prozesse, die im Wundbereich ablaufen, und können die Implantate entsprechend optimieren. Im Fokus steht dabei, das Risiko für Entzündungen und Abstoßungsreaktionen zu verringern.

Die Ergebnisse wurden in den internationalen Journalen Biomed Research International und PLOS One publiziert. (Mareike de Raaf)

Externer Link: www.hs-coburg.de

Omega-3-Fettsäuren gegen Gefäßverkalkung

Presseinformation der LMU München vom 22.08.2016

Neue Strategie gegen Atherosklerose: LMU-Forscher setzen darauf, körpereigene heilungsfördernde Prozesse zu aktivieren.

Atherosklerose – umgangssprachlich auch als Gefäßverkalkung bekannt – entsteht, wenn Ablagerungen in den Gefäßinnenwänden zu chronischen Entzündungen führen und die Gefäße verengen. Das kann den Blutfluss behindern oder ganz blockieren und schließlich einen Herzinfarkt oder Schlaganfall auslösen. Bisherige Behandlungsstrategien zielen hauptsächlich darauf ab, die Entzündungsreaktion zu hemmen. LMU-Forscher um Professor Oliver Söhnlein vom Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten der LMU haben nun eine völlig neue therapeutische Strategie entwickelt, die darauf abzielt, körpereigene heilungsfördernde Prozesse zu aktivieren. Wirkstoffe, die unter anderem in Fischöl enthalten sind, spielen dabei eine wichtige Rolle. Sie konnten im Mausmodell Atherosklerose mindern. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Circulation Research.

Forschungsergebnisse der letzten Jahre haben gezeigt, dass nicht nur die Entstehung, sondern auch das Beenden von Entzündungen ein aktiver Prozess der Immunabwehr ist. „Bei Atherosklerose ist dieses ‘Entzündungs-Beendigungs-Programm‘ gestört, sodass die Entzündung chronifiziert“, sagt Oliver Söhnlein. Für den Entzündungsverlauf sind spezielle Signalmoleküle, die aus essenziellen Fettsäuren gebildet werden, sogenannte Lipidmediatoren, entscheidend: Bei akuten Entzündungen sind zunächst entzündungsfördernde Lipidmediatoren aktiv. Zum Stoppen der Reaktion übernehmen entzündungshemmende Lipidmediatoren die Regulation. Damit dieser Prozess funktioniert, müssen beide Arten von Lipidmediatoren in einem ausgewogenen Verhältnis vorhanden sein.

„Wir konnten nun zeigen, dass diese Balance bei Atherosklerose gestört ist“, sagt Söhnlein. Normalerweise sollten Entzündungsreaktionen nach Ablauf der akuten Phase gestoppt werden, indem die Konzentration der entzündungshemmenden Lipidmediatoren ansteigt. Stattdessen war das Gegenteil der Fall: Wie die Wissenschaftler zeigen konnten, nahmen in atherosklerotischem Gewebe die Lipidmediatoren mit fortschreitender Entzündung sogar ab. „Durch die Zugabe der entzündungshemmenden Lipidmediatoren Maresin 1 und Resolvin D2 konnten wir im Mausmodell diese Imbalance korrigieren und Atherosklerose mindern“, sagt Söhnlein. Maresin 1 und Resolvin D2 werden aus essenziellen Omega-3-Fettsäuren gebildet, die unter anderem in Fischöl enthalten sind, dem schon lange eine gesundheitsfördernde Wirkung nachgesagt wird.

Funktional gesehen beeinflussen die Wissenschaftler mit den Lipidmediatoren die Fresszellen des Immunsystems, die Makrophagen: Makrophagen sammeln sich an atherosklerotischen Plaques an und können einerseits zum Fortschreiten der Entzündung beitragen, da sie sich an Blutfetten überfressen und selbst zugrunde gehen können. Andererseits haben sie aber auch eine wichtige Funktion bei der Heilung entzündeten Gewebes, da sie abgestorbene Zellen entfernen und die Vermehrung glatter Muskelzellen anstoßen. „Die Zugabe der Lipidmediatoren fördert diese entzündungsmindernde Wirkung, lenkt die Aktivität der Makrophagen also in eine gewünschte Richtung“, sagt Söhnlein. „Es wäre wünschenswert, in zukünftigen Studien zu untersuchen, ob die im Mausmodell gewonnenen Erkenntnisse auch auf Menschen übertragbar sind.“

Publikation:
Circulation Research 2016

Externer Link: www.uni-muenchen.de

Doppelschlag gegen Bakterien und Viren: Wirkstoff hemmt Aids-Erreger und resistente MRSA-Bakterien zugleich

Pressemitteilung der Universität des Saarlandes vom 11.07.2016

Eine neuartige Substanzklasse wirkt sowohl gegen den AIDS-Erreger HIV als auch gegen antibiotikaresistente MRSA-Bakterien. Diese beiden Krankheitserreger treten häufig gemeinsam auf. Künftig – so die Hoffnung der Entdecker – könnten sie mit einem einzigen Medikament bekämpft werden. Wissenschaftler des Helmholtz-Instituts für Pharmazeutische Forschung Saarland (HIPS) haben sogenannte duale Wirkstoffe entwickelt, die das Wachstum beider Erreger hemmen. Ihre Erkenntnisse darüber beschreiben sie in der Fachzeitschrift Journal of Medicinal Chemistry. Das HIPS ist der Saarbrücker Standort des Helmholtz-Zentrums für Infektionsforschung (HZI) mit Hauptsitz in Braunschweig. Es wurde im Jahr 2009 gemeinsam vom HZI und der Universität des Saarlands gegründet.

Das Humane Immundefizienz-Virus HIV gehört zu den gefährlichsten und verbreitetsten Krankheitserregern weltweit. 37 Millionen Menschen tragen HIV in sich; im Jahr 2014 starben 1,2 Millionen daran. Mittlerweile lassen sich die Vermehrung des Erregers und das Fortschreiten der Krankheit zwar durch eine Kombinationstherapie aufhalten, doch zunehmend entwickeln die Viren Resistenzen und sprechen nicht mehr auf die eingesetzten Medikamente an.

Ähnlich hartnäckig zeigen sich die berüchtigten MRSA-Bakterien, methicillinresistente Staphylococcus aureus-Stämme, gegen die mittlerweile viele gängige Antibiotika unwirksam sind. Gerade HIV-Patienten, deren Immunsystem durch ihre Krankheit geschwächt ist, werden vielfach noch zusätzlich von MRSA-Keimen befallen. Solche sogenannten Koinfektionen sind äußerst problematisch und schwierig zu behandeln. „Sowohl bei den Viren als auch bei den MRSA-Bakterien sind Resistenzen gegen die gängigen Therapien verbreitet – das macht es besonders kompliziert, die Koinfektion in den Griff zu bekommen“, erklärt der Prof. Rolf Hartmann, Leiter der Abteilung Wirkstoffdesign und Optimierung am Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS). „Zudem muss man genau auf die Wechselwirkungen zwischen den verabreichten Medikamenten achten.“

Hier könnten die Ureidothiophen-Carbonsäuren Abhilfe schaffen. Hinter diesem komplizierten Namen verbirgt sich eine Klasse von Molekülen, die Chemiker und Biowissenschaftler am HIPS jetzt um einige neue Varianten erweitert haben. Darunter finden sich neuartige Wirkstoffe, die die Vermehrung sowohl von HIV als auch von MRSA effektiv blockieren. Das Interessanteste daran: „Bisher bekannte resistente Stämme – sowohl bei den Viren als auch bei den Bakterien – sind empfindlich gegen unsere dualen Wirkstoffe“, erklärt Walid Elgaher vom HIPS. „Eine schädliche Wirkung auf menschliche Zellen konnten wir bislang nicht feststellen.“

Viren und Bakterien sind zwar biochemisch sehr unterschiedlich, dennoch lässt sich der Effekt, dass ihr Wachstum durch einen einzigen Wirkstoff gehemmt werden kann, schlüssig erklären. Sowohl die HI-Viren als auch die Bakterien benutzen für Wachstum und Vermehrung bestimmte spezialisierte Enzyme, um ihre Erbinformation „umzucodieren“ und gewissermaßen von einer Schreibweise in eine andere zu übertragen. Die entsprechenden Enzyme – Eiweißmoleküle mit katalytischer Wirkung – sind sich in Funktion und Aufbau ähnlich.

Bei den Bakterien übersetzt das Enzym RNA-Polymerase die Erbinformation von Desoxyribonucleinsäure (DNA) in Ribonucleinsäure (RNA), die dann wiederum den Bauplan für die wichtigsten Bestandteile ihrer Zelle enthält. Der AIDS-Erreger HIV benötigt für seinen Lebenszyklus das Enzym Reverse Transkriptase, das den umgekehrten Prozess auslösen und RNA in DNA umwandeln kann.

Dass die RNA-Polymerase bestimmter Bakterien und die Reverse Transkriptase des AIDS-Erregers ähnliche chemische Bindungsstellen aufweisen – und damit möglicherweise auch gemeinsam blockiert und lahmgelegt werden könnten – war Wissenschaftlern bereits vor einigen Jahren aufgefallen. Am HIPS in Saarbrücken nutzte man diese Erkenntnis: „Wir haben mehrere Substanzen entwickelt, die die RNA-Polymerase von Bakterien wie den MRSA hemmen können“, erklärt der Forscher Dr. Jörg Haupenthal. „Diese haben wir dann weiter optimiert, sodass sie auch an die sehr ähnlichen Bindungsstellen der HI-Viren andocken und sie dadurch blockieren.“

Die Wissenschaftler hoffen, dass sich ihre Entdeckung künftig einmal für die klinische Anwendung nutzen lässt. „Dazu muss allerdings sorgfältig geklärt werden, ob die Substanzen auch in der Zelle und letztlich im menschlichen Patienten wirksam sind und ob sie nicht doch unerwünschte Nebenwirkungen haben“, erklärt Rolf Hartmann. „Das erfordert umfangreiche Studien und Entwicklungsarbeiten.“

Originalpublikation:
Walid A. M. Elgaher, Kamal Kant Sharma, Jörg Haupenthal, Francesco Saladini, Manuel Pires, Eleonore Real, Yves Mély, and Rolf W. Hartmann: Discovery and Structure-Based Optimization of 2 Ureidothiophene-3-Carboxylic Acids as Dual Bacterial RNA Polymerase and Viral Reverse Transcriptase Inhibitors. J. Med. Chem. DOI: 10.1021/acs.jmedchem.6b00730

Externer Link: www.uni-saarland.de