Abwehrzellen genetisch effizient verändern

Medienmitteilung der Universität Basel vom 05.04.2018

Eine neue Methode ermöglicht es, Gene in lebenden T-Zellen von Mäusen schnell und effizient zu modifizieren. Als Werkzeug kommen Plasmide zum Einsatz, die sich in der Gentechnik seit Langem bewährt haben. Das berichten Forscher vom Departement Biomedizin der Universität Basel und des Universitätsspitals Basel im «Journal of Immunology».

Mit molekularbiologischen Verfahren wie der als Genschere bekannten Methode Crispr-Cas9 lassen sich Gene in lebenden Zellen gezielt verändern. Nun haben Wissenschaftler das Verfahren so angepasst, dass sie damit die für die Immunabwehr wichtigen T-Zellen von Mäusen effizient genetisch verändern konnten. Diese direkte Manipulation von Immunzellen eröffnet neue Möglichkeiten für die Forschung und könnte die aufwändige Züchtung von gentechnisch veränderten Mäusen reduzieren.

Von der Maus in die Maus

Für ihre Studie entnahmen die Forscher um Prof. Dr. Lukas Jeker von Universität und Universitätsspital Basel T-Zellen von einer Maus und kultivierten sie im Labor. Verpackt in ein Plasmid – ein bewährtes Transportvehikel, um fremde Gene in Zellen einzuschleusen – brachten sie anschliessend per Stromstoss zwei Elemente in die Zellen ein: RNA-Moleküle, die an einen bestimmten Abschnitt der doppelsträngigen DNA andocken, und das Protein Cas9, das die DNA an dieser Stelle schneidet.

Durch die einsetzende, oft fehlerhafte Reparatur wird das betreffende Gen ausgeschaltet; möglich ist auch, einzelne DNA-Bausteine im Erbgut umzuschreiben. Dies ist jedoch deutlich schwieriger und weniger effizient. Zwei Tage nach der Entnahme wurden die Zellen wieder in Mäuse transferiert.

Voll funktionsfähig

Die veränderten T-Zellen überlebten in der Empfängermaus und waren voll funktionsfähig: Sie vermehrten sich, wanderten in Lymphknoten und Milz und verhielten sich während einer Infektion wie erwartet. Damit erfüllten sie die Voraussetzungen, die für einen allfälligen therapeutischen Einsatz genetisch veränderter T-Zellen erforderlich sind.

Mittels eigens entwickelten Tests konnten die Forscher die Effizienz von kleinsten, präzisen Mutationen weiter steigern. Zudem gelang es ihnen, mit der Methode eine Mutation im Foxp3-Gen zu reparieren, die in Mäusen schwere Autoimmunerkrankungen verursacht. Da sich das Verfahren einfacher Mittel bedient, ist seine Verwendung auch für Forschungsgruppen mit limitiertem Budget interessant.

«Unsere Methode erlaubt die gezielte Genchirurgie in T-Zellen und eröffnet neue Perspektiven für die Erforschung des Immunsystems sowie möglicherweise auch für die Entwicklung neuer T-Zell-basierter Therapien», sagt Lukas Jeker, Professor für Experimentelle Transplantationsimmunologie und Nephrologie an der Universität Basel.

T-Zell-Therapien feiern zurzeit grosse Erfolge in der Bekämpfung von Krebs. Es besteht deshalb die Hoffnung, dass die genetische Umprogrammierung von menschlichen T-Zellen in Zukunft für die Behandlung von Krebs aber auch von Autoimmunkrankheiten, schweren Infektionen oder in der Transplantationsmedizin zur Anwendung kommen könnte. Die Forschungsgruppe arbeitet deshalb daran, die Technik zu verfeinern und auf menschliche T-Zellen zu übertragen.

Originalbeitrag:
Mara Kornete, Romina Marone and Lukas T. Jeker
Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells
The Journal of Immunology (2018), doi: 10.4049/jimmunol.1701121

Externer Link: www.unibas.ch

Wie die Zellstruktur das Immungedächtnis orchestriert

Medienmitteilung der Universität Basel vom 08.03.2018

Bei jeder Infektion oder Impfung bilden sich Gedächtniszellen, mit denen sich der Körper an den Erreger erinnert. Diese Erkenntnis ist jahrzehntealt – doch strukturell fassen liess sich das zelluläre Immungedächtnis bisher nicht. Forschende von Universität und Universitätsspital Basel haben nun eine mikroanatomische Region in Gedächtniszellen identifiziert, die ein rasches Funktionieren in den ersten Stunden der Immunantwort ermöglicht, berichten sie in der Fachzeitschrift «Immunity».

Das Abwehrsystem des menschlichen Körpers erinnert sich an krankmachende Erreger und kann bei erneutem Kontakt viel schneller reagieren. Impfungen sind ein Paradebeispiel dafür, wie uns das Immungedächtnis vor Infektionskrankheiten schützen kann. In seiner Funktion und seiner Wirkung ist das immunologische Gedächtnis damit gut fassbar – der Mensch bleibt gesund, obwohl er dem Erreger ausgesetzt ist. Doch spezifische zelluläre Strukturen, die das Immungedächtnis ermöglichen, blieben bislang verborgen.

Forschende einer internationalen Gruppe um Prof. Dr. Christoph Hess vom Departement Biomedizin von Universität und Universitätsspital Basel haben nun eine Struktur gefunden, die das rasche Immungedächtnis bestimmter Abwehrzellen (CD8-T-Zellen) ausmacht: Diese wichtigen Gedächtniszellen verfügen über zahlreiche Verbindungen zwischen Mitochondrien – den Kraftwerken der Zelle – und dem sogenannten endoplasmatischen Retikulum, dem Ort der Eiweissproduktion.

Rasche Immunantwort

An diesen Verbindungen wird die rasche Immungedächtnis-Antwort buchstäblich «orchestriert», so die Forschenden. Die Gedächtniszellen konzentrieren hier all jene Signalübertragungs-Moleküle und Enzyme, die für eine schnelle Immunantwort des Körpers nötig sind – und sind damit bereit, wenn der Organismus erneut dem krankmachenden Erreger ausgesetzt ist. So kann der Körper rasch vor dieser Infektion geschützt werden.

«Ein präzises Verständnis der Strukturen, die das Immungedächtnis ausmachen, ist eine wichtige Grundlage dafür, die Immunantworten in Zukunft gezielt zu stärken – etwa bei Impfungen und in der Krebsbekämpfung – oder zu dämpfen, wie etwa bei Autoimmunerkrankungen. Es ist faszinierend, wie auch hier der von Louis Sullivan 1896 geschriebene Grundsatz gilt ‹Form ever follows function›», kommentiert Studienleiter Christoph Hess die Resultate.

Originalbeitrag:
Glenn R. Bantug, Marco Fischer, Jasmin Grählert, Maria L. Balmer, Gunhild Unterstab, Leyla Develioglu, Rebekah Steiner, Lianjun Zhang, Ana S.H. Costa, Patrick M. Gubser, Anne-Valérie Burgener, Ursula Sauder, Jordan Löliger, Réka Belle, Sarah Dimeloe, Jonas Lötscher, Annaïse Jauch, Mike Recher, Gideon Hönger, Michael N. Hall, Pedro Romero, Christian Frezza, and Christoph Hess
Mitochondria–Endoplasmic Reticulum contact sites function as immunometabolic hubs that orchestrate the rapid recall response of memory CD8 T cells
Immunity (2018), doi: 10.1016/j.immuni.2018.02.012

Externer Link: www.unibas.ch

Bei Zuckermangel in der Zelle leben Boten-RNAs länger

Medienmitteilung der Universität Basel vom 08.01.2018

Leidet eine Zelle unter Zuckermangel, speichert sie bestimmte Boten-RNAs, um so ihr Leben zu verlängern. Wie eine Forschungsgruppe am Biozentrum der Universität Basel nun herausfand, entscheidet das Protein Puf5p bei Zuckermangel in der Zelle darüber, ob eine Boten-RNA aufbewahrt oder abgebaut wird. Wie die in eLife veröffentlichte Studie zeigt, schickt das Protein die Boten-RNAs dazu in eine Zellorganelle, wo ihr Schicksal besiegelt wird.

Ist eine Zelle Stress ausgesetzt, sei es durch Mangel an Nährstoffen oder einem Zuviel an Spurenelementen, reagiert die Zelle unmittelbar darauf, um ihr Überleben zu sichern. Die Forschungsgruppe von Prof. Anne Spang am Biozentrum der Universität Basel hat nun untersucht, wie sich unterschiedlichen Stresssituation auf Prozesse in der Zelle auswirken.

Das Team fand heraus, dass sogenannte P-Bodies, kleine Zellorganellen, dabei eine wichtige Funktion übernehmen: Sie bauen nicht nur – wie bislang angenommen – die Boten-RNAs (mRNAs) ab, die in der jeweiligen Stresssituation für die Zelle unbrauchbar sind. Sie sorgen im Gegenzug ebenfalls dafür, dass Boten-RNAs, die für die jeweilige Stresssituation von Nutzen sind, gespeichert werden. Als mobile Träger von Erbinformationen sind mRNAs in der Zelle Vorlage für die Produktion lebenswichtiger Proteine. Mit Puf5p fand das Forschungsteam zudem genau das Protein, das die Entscheidung über das Schicksal der mRNAs fällt.

Protein entscheidet über das Schicksal von mRNAs

Spang und ihr Team haben am Beispiel der Hefezelle untersucht, welche Prozesse in der Zelle bei Zuckermangel ablaufen und haben diese mit anderen Stresssituationen verglichen. Es zeigte sich, dass die P-Bodies, bei Zuckermangel vermehrt sogenannte mitochondriale mRNAs einlagern. Die Produkte der mRNAs sorgen dafür, dass der Energiestoffwechsel in den Kraftwerken der Zelle, den Mitochondrien, umgestellt wird. «Nur so lässt sich das weitere Überleben der Zelle gewährleisten», sagt Spang. Zeitgleich werden in den P-Bodies alle mRNAs abgebaut, die in dieser Mangelsituation unnötig sind. Bislang ging man davon aus, dass P-Bodies lediglich für den Abbau von mRNAs zuständig sind.

Zudem gelang es den Forschenden, den Entscheidungsträger für diese Selektion zu identifizieren: «Wir konnten zeigen, dass das Protein Puf5p im Vorfeld über das jeweilige Schicksal einer mRNA entscheidet und diese zum Ort des Geschehens, den P-Bodies, transportiert», berichtet Spang.

Bei Stress leben Zellen länger

Zahlreiche wissenschaftliche Untersuchungen der Vergangenheit haben gezeigt, dass sich gewisser Stress, insbesondere Nährstoffmangel, positiv auf die Lebenserwartung einer Zelle und auch auf den Menschen auswirken kann. Die Untersuchung von Spang liefert nun einen weiteren Baustein, um die genauen Prozesse, die den lebensverlängernden Prozessen zugrunde liegen, zu verstehen. «Auch die Speicherung von mRNAs in den P-Bodies bei Zuckermangel scheint für die gesamte Lebensdauer einer Zelle von Vorteil zu sein», so Spang.

Originalbeitrag:
Congwei Wang, Fabian Schmich, Sumana Srivatsa, Julie Weidner, Niko Beerenwinkel and Anne Spang
Context-dependent deposition and regulation of mRNAs in P-bodies
eLife (2018), doi: 10.7554/eLife.29815

Externer Link: www.unibas.ch

Bioinformatiker der Saar-Uni berechnen die Gensequenzen beider Elternteile

Pressemitteilung der Universität des Saarlandes vom 11.01.2018

Bei der Analyse des menschlichen Genoms blieben Forscher bisher eine Antwort schuldig: Sie konnten nicht sagen, wie sich die beiden von Mutter und Vater vererbten Varianten eines Gens unterscheiden. Dabei erhöht diese Information die Wahrscheinlichkeit, bestimmte Krankheiten erfolgreich zu behandeln. Die so genannte dritte Generation von Sequenzierungstechnologien macht dies nun möglich. Eines der wichtigsten Hilfsmittel für dieses komplexe Puzzle: Eine spezielle Software, entwickelt von Wissenschaftlern am Zentrum für Bioinformatik der Universität des Saarlandes. Die renommierte Fachzeitschrift „Nature Communications“ berichtet daher gleich zweimal über ihre Forschung.

Den Menschen machen 46 Chromosomen aus. Sie tragen die Gene und definieren das Erbgut, das sogenannte Genom. Damit sich die Anzahl der Chromosomen nicht von Generation zu Generation verdoppelt, sind lediglich 23 Chromosomen in der männlichen und weiblichen Keimzelle enthalten, die zu einer befruchteten Eizelle und damit neuem Leben verschmelzen. Diesen halben Chromosomensatz bezeichnet man als „haploid“. „Welche Genvarianten ich von meinem Vater oder meiner Mutter erhalte, kann darüber entscheiden, ob ich krank werde und auch, wie ich am besten medizinisch behandelt werden kann“, erklärt Tobias Marschall, Professor für Bioinformatik an der Universität des Saarlandes. Dort leitet er die Gruppe „Algorithms for Computational Genomics“ am Zentrum für Bioinformatik.

Analysieren zu können, welche Genvarianten von welchem Elternteil vererbt wurden und damit den sogenannten Haplotyp zu bestimmen, ist der neue Quantensprung bei der Sequenzierung des menschlichen Genoms. Zwei Entwicklungen sind hierfür entscheidend: Zum einen liefern die sogenannten Sequenziertechnologien der dritten Generation, etabliert von Unternehmen wie Oxford Nanopore, 10x Genomics und Pacific Biosciences, eine andere Art von Gendaten. „Durch sie bekommen wir nun viel längere Gen-Schnipsel und können damit nun endlich das praktizieren, was wir in der Theorie schon lange studiert haben“, so Marschall. An der zweiten Voraussetzung ist er aktiv beteiligt. Er entwickelt die Rechenverfahren, die diese Gendatenberge beherrschbar machen. Ein Teil davon ist auch in die Software eingeflossen, die Marschall mit seinen Kollegen entwickelt und auf den Namen „WhatsHap“ getauft hat.

„Stellen sie sich ein äußerst schwieriges Puzzle vor. Mit ‚WhatsHap‘ lösen wir gleich zwei davon und zwar gleichzeitig“, umschreibt Marschall das Vorgehen der Software. Der Bioinformatiker ist überzeugt, dass mit Hilfe solcher Programme in absehbarer Zeit die Bestimmung des Haplotyps ebenso zu einer Routineuntersuchung in Krankenhäusern wird, wie es die Bestimmung der Blutgruppe bereits heute ist. Die beiden Aufsätze in der Fachzeitschrift „Nature Communications“ sind für ihn dafür der erste Meilenstein.

Die Relevanz dieser Arbeiten bekräftigte auch die Deutsche Forschungsgemeinschaft (DFG), indem sie vergangene Woche die finanzielle Förderung von gleich zwei Projekten bekannt gab, die mit „WhatsHap“ zusammenhängen. Im ersten Projekt wird Professor Marschall gemeinsam mit Professor Gunnar Klau von der Heinrich-Heine-Universität in Düsseldorf an noch leistungsfähigeren Rechenverfahren zur Haplotypisierung arbeiten. Im zweiten Projekt fördert die DFG im Rahmen der Initiative „Nachhaltigkeit von Forschungssoftware“ die dauerhafte Pflege der WhatsHap-Software und ebnet so den Weg in den klinischen Alltag. Insgesamt stehen für diese Projekte 800.000 Euro zur Verfügung, von denen 550.000 Euro an die Saar-Uni fließen, um dort neue Stellen für Forscher und Entwickler zu schaffen.

Externer Link: www.uni-saarland.de

3D-gedruckte Minifabriken

Medienmitteilung der ETH Zürich vom 01.12.2017

ETH-Forscher entwickelten für den 3D-Druck eine biokompatible Tinte mit lebenden Bakterien. Damit lassen sich biologische Materialien herstellen, die Giftstoffe abbauen oder hochreine Zellulose für biomedizinische Anwendungen produzieren können.

Es gibt bald nichts mehr, das nicht im 3D-Druck hergestellt werden kann. Bei den Materialien, die dafür verwendet werden, handelte es sich aber bisher um «tote Materie» wie Kunststoffe oder Metalle.

Nun stellt eine Gruppe von ETH-Forschern um Professor André Studart, Leiter des Labors für Komplexe Materialien, eine neue 3D-Druckplattform vor, die mit lebender Materie arbeitet. Die Forscher entwickelten eine Tinte, die Bakterien enthält. Damit lassen sich biochemische Minifabriken mit unterschiedlichen Funktionalitäten drucken, je nachdem, welche Bakterienarten die Forscher in der Tinte einsetzen.

Eigenschaften von Bakterien nutzen

In ihrer Arbeit verwendeten Studarts Mitarbeiter Patrick Rühs und Manuel Schaffner die Bakterienarten Pseudomonas putida und Acetobacter xylinum. Die erste Art kann das giftige Phenol, das die chemische Industrie im grossen Stil produziert, abbauen. Die zweite Art sondert hochreine Nano-Zellulose ab. Die bakterielle Zellulose wirkt schmerzlindernd, hält feucht und ist stabil. Sie könnte daher bei Brandverletzungen verwendet werden.

Die neue Druckplattform der ETH-Forscher bietet zahlreiche Kombinationsmöglichkeiten. So können die Wissenschaftler in einem Durchlauf bis zu vier verschiedene Tinten mit unterschiedlichen Bakterienarten in unterschiedlichen Konzentrationen verwenden, um damit Objekte mit mehreren Funktionen herzustellen.

Die Tinte besteht aus einem biokompatiblen und strukturgebenden Hydrogel. Dieses beinhaltet Hyaluronsäure, langkettige Zuckermoleküle sowie Kieselsäure. Das Nährmedium der Bakterien wird der Tinte beigemischt, sodass die Bakterien alles haben, um zu leben. In dieses Hydrogel können die Forscher die Bakterien mit den gewünschten Eigenschaften beimengen und schliesslich beliebige dreidimensionale Strukturen drucken.

Viskos wie Zahnpasta

Bei der Entwicklung des bakterienhaltigen Hydrogels waren dessen Fliesseigenschaften eine besondere Herausforderung. So muss die Tinte ausreichend fliessen können, damit sie sich durch die Druckdüse pressen lässt. Je fester die Tinte, desto schlechter können sich die Bakterien in ihr bewegen und desto weniger produktiv sind sie. Gleichzeitig müssen die ausgedruckten Formen stabil genug sein, damit sie das Gewicht von weiteren Lagen tragen. «Die Tinte muss so viskos wie Zahnpasta sein und die Konsistenz von Nivea-Handcrème haben», fasst Schaffner das Erfolgsrezept zusammen.

Ihr neues Druckmaterial nannten die Wissenschaftler «Flink», was für «functional living ink» steht. Soeben haben sie diese Technik in der Fachzeitschrift Science Advances vorgestellt.

Enormes Potenzial

Die Lebensdauer der gedruckten Minifabriken haben die Materialwissenschaftler noch nicht untersucht. «Da Bakterien kaum Ansprüche haben, gehen wir davon aus, dass sie sehr lange in gedruckten Strukturen überleben können», schätzt Rühs.

Die Forschung steht erst am Anfang. «Das Potenzial, mit bakterienhaltigen Hydrogels zu drucken, ist enorm, weil die Vielfalt an nützlichen Bakterien sehr gross ist», sagt Rühs. Dass bislang kaum jemand bei additiven Verfahren mit Bakterien gearbeitet hat, führt er auf den schlechten Ruf der Mikroorganismen zurück. «Die meisten Menschen bringen Bakterien nur mit Krankheiten in Verbindung. Dabei könnten wir ohne sie gar nicht leben», betont er. Die Forscher halten ihre neue Tinte zudem für komplett unbedenklich. Die verwendeten Bakterien sind allesamt harmlos und nützlich.

Giftstoffsensor und Ölpestfilter

Neben medizinischen und biotechnologischen Anwendungen können sich die Forscher viele weitere nützliche Anwendungen vorstellen. So lassen sich mit solchen Objekten beispielsweise Abbauprozesse oder die Entstehung von Biofilmen untersuchen. Eine praktische Anwendung wäre ein 3D-gedruckter Sensor mit Bakterien, welcher Giftstoffe im Trinkwasser anzeigen würde. Denkbar sind auch bakterienhaltige Filter, die bei Ölkatastrophen zum Einsatz kommen. Herausforderungen sind derzeit die lange Druckzeit und die schwierige Skalierbarkeit. Um Zellulose für biomedizinische Anwendungen zu erzeugen, braucht Acetobacter derzeit mehrere Tage. Die Wissenschaftler sind jedoch überzeugt, dass sie die Prozesse noch optimieren und beschleunigen können.

Die Entwicklung spezieller Materialien für den 3D-Druck ist eine Spezialität der Forschungsgruppe von ETH-Professor André Studart. So haben er und sein Team auch eine druckfähige hochporöse Tinte aus Keramik entwickelt, mit der sich sehr leichte knochenartige Strukturen für die Energiegewinnung drucken lassen.

Publikation:
Schaffner M, Ruehs PA, Coulter F, Kilcher S, Studart AR. 3D Printing of Bacteria into Functional Complex Materials. Science Advances, published online 1st Dec 2017, DOI: 10.1126/sciadv.aao6804

Externer Link: www.ethz.ch