Das verborgene Talent der Pilze

Presseaussendung der TU Wien vom 04.10.2021

An der TU Wien wurde eine Methode entwickelt, um die Genome von Pilzen zu interpretieren. Das Ziel: Vorhersagen, welche Gene für die Herstellung wertvoller Substanzen wichtig sind und bei welchen es sich um Lückengene handelt.

Neben uns Menschen existieren mehrere Millionen Pilze-Stämme auf der Erde, wobei die meisten von ihnen in der Lage sind, sogenannte Sekundärmetaboliten herzustellen. Sekundärmetaboliten sind Stoffe, die für das Überleben nicht primär notwendig sind, aber zum Beispiel der chemischen Verteidigung dienen. Manche Sekundärmetaboliten, wie etwa Penicillin, sind auch für den Menschen von großem Nutzen, weshalb Forschende gezielt nach solchen Substanzen suchen. Ein vielversprechender Ansatz dazu ist, innerhalb der Genome von Pilzen nach zuständigen Genen zu suchen und diese zu aktivieren.

Ein Team unter der Leitung von Christian Derntl, TU Wien, entwickelte daher eine bioinformatische Methode, um die dafür notwendigen Gene und sogenannte Gap Genes (dt. Lückengene) auseinanderzuhalten. Dazu werden die genomischen Daten von Pilzen auf einen ähnlichen evolutionären Hintergrund hin untersucht. Die Methode mit dem Namen „FunOrder“ publizierte das Forschungsteam in der Fachzeitschrift PLOS Computational Biology.

Heilmittel durch Stress

Im Labor produzieren Pilze von Natur aus eher selten Sekundärmetaboliten – unter anderem, da sie nicht für lebensnotwendige Prozesse wie Zellwachstum benötigt werden. In ihrem natürlichen Lebensraum dagegen produzieren Pilze Stoffe wie Antibiotika, wenn sie in Stress geraten und sich gegenüber konkurrierenden Organismen verteidigen müssen. Aufgrund der optimalen Wachstumsbedingungen im Labor ist es daher notwendig, die entsprechenden Gene gezielt einzuschalten und den Organismus so zur Synthese des gewünschten Sekundärmetabolits zu bewegen. Das wiederum setzt das Wissen über die dafür kodierenden Gene voraus. „Vor allem bei Pilzen ist das Potenzial groß, neue Sekundärmetaboliten zu finden. Dass diese nicht ohne Weiteres unter Laborbedingungen produziert werden, erschwert jedoch die Suche danach“, schildert Christian Derntl den Weg zu neuen Heilmitteln.

Gezielte Gen-Aktivierung

Gene, die für Sekundärmetaboliten zuständig sind, clustern oft zusammen. Das heißt, sie befinden sich in unmittelbarer Nähe auf der DNA. So gibt es ein Hauptgen, das die chemische Grundstruktur des Sekundärmetaboliten vorgibt und sich aufgrund seiner Größe gut erkennen lässt. Enzyme modifizieren dann dieses chemische Grundgerüst, um so den fertigen Sekundärmetabolit zu erhalten. In den Clustern befinden sich aber auch oft Gap Genes, die nur zufällig in den Gen-Clustern liegen, für die Synthese der Sekundärmetaboliten jedoch nicht notwendig sind. Um nun neue Sekundärmetaboliten zu finden, verfolgt das Team um Christian Derntl einen Bottom-up-Ansatz. „Dazu versuchen wir die Cluster einzuschalten und so neue Substanzen zu finden,“ erklärt Derntl. Logischerweise sollen dafür nur die essentiellen Gene, nicht jedoch die Gap Genes aktiviert werden. Ganz genau dafür wurde die Methode FunOrder entwickelt. „Wir wollen vorhersagen, welche Gene wir im Labor berücksichtigen müssen und welche nicht“ fasst der Erst-Autor der Studie, Gabriel Vignolle, zusammen. Denn bestehende Methoden ermöglichen es zwar, die Cluster zu identifizieren, können aber nicht vorhersagen, welche Gene notwendig sind und welche nicht.

FunOrder bringt mehr als Spaß

Eine zentrale Frage, die sich die Wissenschaftler_innen um Christian Derntl stellten, war, wie sich genetische Daten sinnvoll interpretieren lassen. „Wir leben in einem Zeitalter, in dem sich Genome ganz einfach und kostengünstig sequenzieren lassen“, erklärt Derntl. „Auch im Internet sind unzählige Datensätze vorhanden. Da stehen wir eher vor der Herausforderung, die Daten sinnvoll auszuwerten und zu strukturieren. Die Bioinformatik kann uns dabei helfen.“ So entwickelte das Team das Computerprogramm FunOrder, das als Input verschiedene Gene erhält. Mit Hilfe einer speziell dafür entwickelten Datenbank kann FunOrder Gene mit ähnlichem evolutionären Hintergrund identifizieren. “Wir konnten in Folge zeigen, dass genau diese ko-evoluierten Gene funktionell notwendig sind und sich so von den Gap Genes unterscheiden lassen“, erklärt Gabriel Vignolle.

Dabei eignet sich die Methode nicht nur zur Analyse und Strukturierung vorhandener Daten, auch die Genome neu entdeckter Pilze können so untersucht werden. Der Quellcode für das Programm ist öffentlich zugänglich, die Analysen können also von Wissenschaftler_innen weltweit durchgeführt werden.

Das Projekt ist aus dem Doktoratskolleg „Bioactive – Technologies for Drug Discovery and Production“ heraus entstanden, in dem Vignolle aktiv ist. (Sarah Link)

Originalpublikation:
Gabriel A. Vignolle, Denise Schaffer, Leopold Zehetner, Robert L. Mach, Astrid R. Mach-Aigner, Christian Derntl: FunOrder: A robust and semi-automated method for the identification of essential biosynthetic genes through computational molecular co-evolution, PLOS Computational Biology, 2021.

Externer Link: www.tuwien.at

Alternative zum Fischfang: Zellbasierter Fisch aus dem Bioreaktor

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.08.2021

Schon heute gelten rund 90 Prozent aller Fischbestände als maximal befischt oder überfischt, so die Angaben der Ernährungs- und Landwirtschaftsorganisation der Vereinten Nationen. Doch angesichts der wachsenden Weltbevölkerung sind immer mehr Menschen auf Fisch als Proteinquelle angewiesen. Eine Lösung für das Problem hat die Bluu GmbH – eine Ausgründung des Fraunhofer-Entwicklungszentrums für Marine und Zelluläre Biotechnologie EMB, die als assoziiertes Zentrum der Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE angehört. Das Unternehmen hat sich auf die Produktion von zellbasiertem Fisch spezialisiert. Er wird aus echten Fischzellen hergestellt und im Bioreaktor gezüchtet. Im Gegensatz zu wild gefangenem Fisch geht dies nicht zu Lasten des Tierwohls.

Bluu Biosciences ist das erste Unternehmen Europas, das sich auf die Entwicklung und Herstellung von zellbasiertem Fisch spezialisiert hat. Auch weltweit gibt es aktuell nur eine Handvoll Unternehmen, die in diesem Bereich aktiv sind. Bluu Biosciences schließt damit eine Marktlücke: Fast überall werden heute mehr Fische gefangen, als natürlich nachwachsen können. Das gefährdet die Ernährungsgrundlage von hunderten Millionen von Menschen. Mit Hilfe von moderner Biotechnologie erzeugter, zellbasierter Fisch kann künftig einen entscheidenden Beitrag zur globalen Versorgungssicherheit bei tierischem Protein leisten.

»Wir sehen hier einen stark wachsenden Markt. In Kreislaufwirtschaft hergestellten Produkten gehört die Zukunft«, sagt Dr. Sebastian Rakers, Gründer und Geschäftsführer der Bluu GmbH. Im Mai 2020 startete er mit Simon Fabich das Unternehmen. Ziel ist es, die Produkte im ersten Schritt über Restaurants auf den Markt zu bringen. Später sollen auch Supermärkte beliefert werden. Ende 2023 nennt Rakers als realistischen Termin für die Markteinführung. Zum Portfolio gehören zunächst hybride Produkte wie Fischbällchen, Fischstäbchen und Fischtartar, die sich aus einem Mix aus Zellkomponenten und pflanzlichen Proteinen zusammensetzen. Fischfilet wird erst zu einem späteren Zeitpunkt marktreif sein. Hier bedarf es noch weiterer Forschungsarbeit. Die Herausforderung besteht darin, die porösen Gerüststrukturen derart aufzubauen, dass ausreichend Nährstoffe und Sauerstoff an die Zellen gelangen. »Nur wenn dies gewährleistet ist, können die auf den Gerüststrukturen wachsenden Zellen sich so strukturieren und ausbilden, wie sie es im natürlichen Fischgewebe auch tun würden«, erläutert der Biologe, der auf zwölf Jahre Forschungsarbeit mit Fischzellen am Fraunhofer EMB zurückblicken kann.

Zelllinien aus adulten Stammzellen

Dr. Rakers und sein Team isolieren die Zellen aus einer Biopsie, also aus einem Stück adultem Fischgewebe. Die isolierten Zellen, ähnlich Vorläuferzellen oder adulten Stammzellen, werden im Labor in einer In-vitro-Kultur vermehrt. Da sie nicht altern, können sie sich unendlich häufig teilen. Anschließend werden die Zellen im Bioreaktor mit einem Nährmedium ernährt. Der Reaktor umfasst derzeit maximal fünf Liter. Um ein marktfähiges Produkt zu erhalten, ist jedoch ein größerer Reaktor erforderlich. »So weit sind wir noch nicht, da zunächst die Prozessschritte verfeinert werden müssen, die die Zellen zum Wachsen benötigen. Die Herausforderung für uns ist aktuell noch der Schritt in die industrielle Produktion«.

Frei von Gentechnik, Antibiotika und Umweltgiften

Die Vorteile der zellbasierten Fischproduktion sind vielfältig. »Die Schlachtung von Fischen entfällt und idealerweise ist eine Biopsie nur einmalig erforderlich«, führt der Forscher einen der vielen Pluspunkte auf. 30 Prozent aller Fischbestände sind überfischt, 60 Prozent sind maximal befischt. Die nicht landbasierte Aquakultur wiederum, die vor allem im vorigen Jahrzehnt stark gewachsen ist und mit Massentierhaltung einhergeht, führt zu einer Verschmutzung der Meere und zur Eutrophierung der Gewässer, insbesondere in Bereichen mit wenig Strömung. Weitere Vorteile des kultivierten Fisches sind sein hoher Nährwert sowie die Verfügbarkeit und die damit verbundenen kurzen Lieferketten. Fischprodukte aus Fischzellen sind frei von Gentechnik, Antibiotika und Umweltgiften. Sie können bedarfsgerecht dezentral produziert werden. Anders als Aquakultur kann eine zellbasierte Fabrik weltweit überall aufgebaut werden.

Verzicht auf Fötales Kälberserum

Aktuell konzentrieren sich die Forschenden auf die Optimierung der Medien, um eine kostengünstige Produktion der Fischzellen sicherzustellen und Zellcharakteristika wie Geschmack und Textur zu verfeinern. Dies gelingt, indem man beispielsweise den Anteil an Omega-3-Fettsäuren als wichtigen Geschmacksträger erhöht. Die dafür erforderliche Technologie wurde aus dem Fraunhofer EMB auslizensiert. Darüber hinaus arbeiten die Forscher daran, Fötales Kälberserum (FKS) durch andere, pflanzenbasierte Wachstumsfaktoren zu ersetzen und eine FKS-freie Produktion zu erzielen. »FKS wird aus dem Blut von Kuhfeten gewonnen und ist ein Hauptbestandteil vieler Nährmedien, die zur Aufzucht und Kultivierung von Zellen in der Zellkultur benötigt werden«, erklärt Rakers. »Unser erster Prototyp wird komplett FKS-frei sein.« Bei ihren Forschungsarbeiten kooperert die Bluu GmbH nach wie vor eng mit dem Fraunhofer EMB.

Externer Link: www.fraunhofer.de

Gentherapie lässt Erblindeten partiell wieder sehen

Medienmitteilung der Universität Basel vom 24.05.2021

Ein Blinder hat einen Teil seiner Sehkraft zurückerlangt. Gelungen ist dies durch eine sogenannte optogenetische Gentherapie, die eine erbliche Erkrankung der Fotorezeptoren des Auges behandelt. Ein internationales Forschungsteam hat damit einen wichtigen Schritt geschafft, um erblich bedingte Blindheit zu behandeln.

Dass Menschen erblinden geht oft auf eine erbliche Erkrankung der Fotorezeptoren im Auge zurück. Fotorezeptoren sind lichtsensible Zellen in der Netzhaut, die sogenannte Opsin-Proteine nutzen, um Licht in elektrische Reize umzuwandeln und visuelle Information via Sehnerv vom Auge ans Gehirn zu liefern. Bei vielen Erbkrankheiten der Netzhaut degenerieren die Fotorezeptoren jedoch, die Betroffenen verlieren ihre Sehfähigkeit.

An der Behandlung dieser Art der erblichen Erblindung arbeiten Forschende um Prof. Dr. Botond Roska von der Universität Basel, Gründungsdirektor des Instituts für Molekulare und Klinische Ophthalmologie Basel (IOB), und Prof. Dr. José-Alain Sahel von der Universität Pittsburgh seit über zehn Jahren. Dafür setzen sie sogenannte optogenetische Gentherapien ein.

Lichtempfindliche Proteine

Bei Optogenetik handelt es sich um eine Technik, bei der Zellen genetisch so verändert werden, dass sie lichtempfindliche Proteine produzieren. Nun hat die Behandlung eines Patienten, der durch die Erbkrankheit Retinitis pigmentosa vollständig erblindet war, vielversprechende Ergebnisse erbracht. Davon berichten die Forschenden im Fachmagazin Nature Medicine. «Die Studienergebnisse beweisen, dass eine optogenetische Gentherapie zur partiellen Wiederherstellung von Sehfähigkeit machbar ist», so Roska.

Um die Lichtsensibilität der Netzhaut des Patienten wiederherzustellen, schleusten die Forschenden bestimmte Gene in sogenannte Ganglienzellen der Retina ein, damit sie das lichtempfindliche Protein ChrimsonR herstellten. Dieses spezielle Protein absorbiert bernsteinfarbenes Licht, das für Netzhautzellen sicherer ist als das blaue Licht, das sonst häufig in der Optogenetik verwendet wird. Das Team entwickelte zudem eine spezielle Brille, die mit einer Kamera ausgestattet ist. Die Kamera erfasst die Umgebung und projiziert die Bilder, umgewandelt in bernsteinfarbenen Lichtwellenlängen, auf die Netzhaut.

Etwa fünf Monate, nachdem der Patient die Gentherapie erhielt, begann das Training mit der Brille. So stabilisierte sich die Produktion des lichtempfindlichen Proteins ChrimsonR in den Zellen der Netzhaut. Sieben Monate später berichtete der Patient über Anzeichen einer Sehverbesserung.

Patient kann Objekte lokalisieren

Der Patient konnte Objekte auf einem weissen Tisch vor seinen Augen lokalisieren, berühren und zählen, jedoch nur mithilfe der Spezialbrille. Ohne die Brille gelangen ihm diese Übungen nicht. Bei einem weiteren Test sollte er ein grosses Notizbuch oder eine kleine Schachtel mit Heftklammern wahrnehmen, lokalisieren und berühren. Das gelang ihm beim Notizbuch in 36 von 39 voneinander unabhängigen Untersuchungen (also in 92 Prozent aller Tests). Bei der kleinen Schachtel gelang ihm dies nur in 36 Prozent der Fälle. In einem anderen Test zählte der Patient Gläser auf dem Tisch in 63 Prozent aller Fälle korrekt.

Während weiterer Versuche sollte der Patient Knöpfe drücken, um anzugeben, ob sich ein Glas auf dem Tisch vor ihm befand oder nicht. Dabei trug er eine Kopfhaube mit Elektroden, die ein nicht-invasives Elektro-Enzephalogramm (EEG) seiner Gehirnaktivität aufzeichneten. Die Auswertung der EEG-Messungen zeigte, dass sich die Aktivität im visuellen Kortex seines Gehirns entsprechend änderte, je nachdem, ob das Glas vorhanden war oder nicht. Damit konnten die Forschenden bestätigen, dass die Gehirnaktivität tatsächlich mit einem visuellen Objekt in Verbindung stand und die Netzhaut nicht mehr blind war.

Sehnerv muss noch intakt sein

Für diese Art der Behandlung von Blindheit kommen allerdings nur Patientinnen und Patienten infrage, deren Sehnerv noch intakt ist und die aufgrund verschiedener Arten neurodegenerativer Fotorezeptor-Erkrankungen das Augenlicht verloren haben, wie José-Alain Sahel betont. «Es wird aber noch einige Zeit dauern, bis diese Therapie den Patienten angeboten werden kann.»

Zum internationalen Forschungsteam gehörten Mitglieder des IOB, des Institut de la Vision und Hôpital National des Quinze-Vingts in Paris, der Universität Pittsburgh, von StreetLab und GenSight Biologics.

Originalpublikation:
José-Alain Sahel et al.
Partial recovery of visual function in a blind patient after optogenetic therapy
Nature Medicine (2021)

Externer Link: www.unibas.ch

Neues Antibiotikum: Täuschungsmanöver im Kleinstformat

Medienmitteilung der Universität Basel vom 15.04.2021

Antibiotika entfalten ihre Wirkung üblicherweise, indem sie in Bakterien eindringen. Das neu entdeckte Darobactin ist dafür jedoch viel zu gross. Trotzdem tötet es viele antibiotikaresistente Keime ab. Forschende am Biozentrum der Universität Basel haben nun den erstaunlichen Mechanismus dahinter enträtselt und so den Weg für die Entwicklung gänzlich neuartiger Medikamente geebnet.

Immer mehr bakterielle Krankheitserreger sind gegen Antibiotika resistent. Dabei haben die gefährlichsten Keime eines gemeinsam: Sie verfügen über eine doppelte Membran, die schwer zu durchdringen ist. Und selbst wenn antibiotische Wirkstoffe diese Hülle knacken, werden sie von den Bakterien meist gleich wieder hinausgepumpt. Doch dem kürzlich entdeckten Darobactin gelingt es, diese Schutzvorkehrungen zu umgehen und fast alle Problemkeime zu töten. Den Wirkmechanismus dahinter konnten Forschende nun in einem vom Schweizerischen Nationalfonds (SNF) finanzierten Projekt des Nationalen Forschungsprogramms «Antimikrobielle Resistenz» (NFP 72) aufklären.

Wie ein abgebrochener Schlüssel

In einer jetzt in «Nature» veröffentlichten Studie beschreiben sie, wie ein Täuschungsmanöver den Erfolg von Darobactin ermöglicht: Es imitiert mit seiner Form eine besondere dreidimensionale Struktur, die sonst nur diejenigen Proteine besitzen, welche von Bakterien als Bausteine für ihre äussere Membran selbst produziert werden. Die besagte Struktur ist der Schlüssel, um die Proteine an bestimmten Orten von innen her in die äussere Hülle einzupassen. Darobactin ist eine Kopie dieses Schlüssels. Doch es nutzt dies nicht, um in die Bakterien einzudringen, sondern blockiert lediglich das Schlüsselloch von aussen. So, als würde man eine Tür abschliessen und dann den Schlüssel abbrechen. Die Folge: Den Bakterien ist der Transportweg für ihre Hüllenbausteine versperrt und sie sterben.

Mit üblichen Methoden kaum erkennbar

Verwandte Mechanismen sind in der Mikrobiologie bereits bekannt und werden durch andere Medikamente verwendet. Die dabei anvisierten Bindestrukturen, oder eben Schlüssellöcher, sind in der Regel recht gross – zumindest für mikrobiologische Verhältnisse. Im Gegensatz dazu ist das von Darobactin genutzte Ziel sehr klein und mit üblichen Methoden gar nicht erkennbar. Dies, obwohl Darobactin grösser ist als die meisten Wirkstoffe und nicht einmal durch die Eintrittspforten der Bakterien passen würde.

«Das hat uns am Anfang vor Rätsel gestellt», sagen Sebastian Hiller und Timm Maier vom Biozentrum der Universität Basel, die zwei Hauptautoren der nun vorgelegten Studie. Zwar hätten sie und ihre Teams sofort erkannt, dass Darobactin nicht im Inneren der Erreger wirkt, sondern auf deren Oberfläche. Dort nämlich stört es die Funktion des Proteins BamA, das beim Aufbau der doppelten Schutzmembran eine zentrale Rolle einnimmt. «Doch wie genau Darobactin mit BamA interagiert, war völlig unklar», so Hiller. Erst durch die Kombination von mehreren Methoden kamen die Forschenden dem Vorgang schliesslich auf die Spur.

Perfekte Schwachstelle erwischt

Dabei erkannten sie, dass Darobactin eine wahre Achillesferse der Erreger angreift: Es bindet direkt an die wichtigsten, sogenannten «Rückgrat»-Atome von BamA. Weil diese Atome das Protein zusammenhalten und seine Form vorgeben, können sie kaum verändert werden – doch genau dies wäre für Bakterien der einfachste Weg, um auch Darobactin in absehbarer Zeit abzuwehren. Tatsächlich behielt Darobactin jedoch seine Wirksamkeit gegen alle Erreger, für die Hiller und sein Team Labortests durchführten, mit denen man Resistenzen künstlich erzeugen kann. Wiederum im übertragenen Sinn gesagt: Es gelang den Erregern nicht, das «geknackte» Schloss auszuwechseln.

Gezielte Entwicklung von Medikamenten

Für eine mögliche Anwendung in der Medizin seien diese Erkenntnisse ein entscheidender Schritt, sagt Infektionsbiologe Dirk Bumann, der ebenfalls an der Universität Basel forscht. Als Co-Direktor des Nationalen Forschungsschwerpunkts AntiResist verfolgt er das aktuelle Geschehen in der Antibiotikaforschung eng. «Die Aufschlüsselung des Wirkmechanismus von Darobactin ist ein grosser Erfolg», sagt er, «denn das ermöglicht es, Darobactin gezielt zu verbessern und zu einem wirksamen Medikament zu entwickeln». Die langehegte Hoffnung auf eine neue Generation Antibiotika, die gegen viele der heutigen Problemkeime eingesetzt werden kann, erhält damit starken Auftrieb.

Originalpublikation:
Hundeep Kaur et al.
The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase
Nature (2021)

Externer Link: www.unibas.ch

Mit zwei Virusarten gegen Tumore

Medienmitteilung der Universität Basel vom 03.03.2021

Eine internationale Forschungsgruppe unter Leitung der Universität Basel hat eine vielversprechende Strategie für therapeutische Krebsimpfungen entwickelt. Mit zwei unterschiedlichen Viren als Vehikel verabreichten sie im Tierversuch krebskranken Mäusen spezifische Tumorbestandteile und regten damit ihr Immunsystem an, den Tumor anzugreifen. Der Ansatz wird nun in klinischen Studien getestet.

Das Immunsystem als Verbündeten im Kampf gegen Krebs einzusetzen, ist Basis einer ganzen Palette von modernen Krebstherapien. Ein Ansatz ist dabei die sogenannte therapeutische Krebsimpfung: Nach der Diagnose ermitteln Fachleute, welche Bestandteile des Tumors als Erkennungsmerkmal für das Immunsystem dienen könnten. Anschliessend verabreichen sie der Patientin oder dem Patienten genau diese Bestandteile durch eine Impfung, um eine möglichst starke Immunreaktion gegen den Tumor auszulösen.

Als Vehikel, welche die charakteristischen Tumormoleküle in den Körper einbringen sollen, dienen unschädlich gemachte Viren. Allerdings scheiterten bisher viele Versuche für eine solche Krebstherapie an einer zu wenig effizienten Immunantwort. Eine Hürde besteht darin, dass der Tumor aus körpereigenen Zellen besteht und das Immunsystem Sicherheitsvorkehrungen trifft, um diese nicht anzugreifen. Zudem richten sich die Immunzellen oft mehr gegen das – körperfremde – Virusvehikel als gegen seine – körpereigene – Fracht. Somit blieb bei fast allen bisher entwickelten Krebstherapien dieser Art der erhoffte Schlag gegen den Tumor aus. Denn das richtige Vehikel ist ebenso bedeutend für die Wirksamkeit wie die Wahl des richtigen Tumorbestandteils als Angriffspunkt.

Arenaviren als Vehikel

Die Forschungsgruppe um Prof. Dr. Daniel Pinschewer von der Universität Basel hat bereits in früheren Studien entdeckt, dass sich Viren aus der Familie der Arenaviren als Vehikel gut eignen, um eine starke Immunantwort auszulösen. Nun berichten sie im Fachblatt «Cell Reports Medicine», dass die Kombination aus zwei verschiedenen Arenaviren im Tierversuch vielversprechende Resultate lieferte.

Die Forschenden setzten dabei auf zwei sehr weit entfernt verwandte Arenaviren namens Pichinde Virus und Lymphozytäres Choriomeningitis Virus, die sie mit molekularbiologischen Verfahren für die Verwendung als Impfvektor anpassten. Verabreichten sie den gewählten Tumorbestandteil zunächst mit dem einen Virus und zu einem späteren Zeitpunkt mit dem anderen, verschob sich das Ziel der Immunantwort vermehrt vom Vehikel auf die Fracht. «Indem wir nacheinander zwei verschiedene Viren verwenden, fokussieren wir die ausgelöste Immunantwort auf das, worauf es ankommt, nämlich das Tumormolekül», erklärt Pinschewer.

Tumor eliminiert oder verlangsamt

Bei Versuchen mit Mäusen konnten die Forschenden eine starke Aktivierung der sogenannten T-Killerzellen messen, die die entarteten Krebszellen eliminierten. Bei etwa 20 bis 40 Prozent der Tiere – je nach Art ihrer Krebserkrankung – verschwand der Tumor, während sich bei weiteren das Tumorwachstum zumindest temporär verlangsamte.

«Über die Wirksamkeit dieser neuen Therapieform beim Menschen können wir zwar im Moment noch nichts sagen», gibt Pinschewer zu bedenken. Laufende Studien mit einer Krebstherapie, die auf nur einem einzelnen Arenavirus basiert, wiesen aber bereits erste vielversprechende Ergebnisse aus. Effekte auf Tumore im Tierversuch liessen sich nicht eins zu eins auf die entsprechenden Krebserkrankungen beim Menschen übertragen. «Da die Therapie mit zwei verschiedenen Viren bei Mäusen aber besser wirkt als die Therapie mit nur einem Virus, stimmen mich unsere Forschungsresultate optimistisch», fügt Pinschewer hinzu.

Das Biotech-Unternehmen Hookipa Pharma, zu dessen Gründern auch Pinschewer gehört, untersucht die Wirksamkeit dieses neuartigen Ansatzes zur Krebstherapie am Menschen nun in klinischen Studien. «Im Moment wird getestet, was unser Ansatz bewirken kann», so der Forscher. «Bewährt er sich, wären auch Kombinationen mit bestehenden Therapien denkbar, sodass die miteinander verzahnten Wirkmechanismen Tumore noch besser ausmerzen können.»

Originalpublikation:
Weldy V. Bonilla et al.
Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 T cell attack
Cell Reports Medicine (2021), doi: 10.1016/j.xcrm.2021.100209

Externer Link: www.unibas.ch