Stabil geteilt

Presseinformation der LMU München vom 12.04.2019

LMU-Forscher haben ein neues Protein entdeckt, das bei der korrekten Zellteilung eine entscheidende Rolle spielt.

Die Zellteilung ist ein elementarer Prozess des Lebens, bei dem aus einer Mutterzelle zwei Tochterzellen entstehen. Dabei werden die Chomosomen der Mutterzelle von einem Spindelapparat getrennt, der in tierischen Zellen von zwei Spindelpolen, den Zentrosomen, aufgebaut wird. Fehlerhafte Teilungen haben gravierende Konsequenzen und verursachen schwere Erkrankungen. Wie die Zellteilung auf Ebene der Zentrosomen reguliert wird, steht im Mittelpunkt der Forschung von Dr. Tamara Mikeladze-Dvali vom Biozentrum der LMU. Mit ihrem Team hat die Biologin nun ein Protein identifiziert, das für den korrekten Aufbau des Spindelapparats eine essenzielle Bedeutung hat. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Current Biology.

Ein Zentrosom besteht aus einem Paar zylinderförmiger Zentriolen, die in eine Proteinmatrix eingebettet sind. In der Mutterzelle befindet sich das Zentrosom meist mittig in der Nähe des Zellkerns. Vor der Teilung wird es dupliziert, anschließend werden Spindelfasern gebildet, welche die zwei Zentrosomen in entgegengesetzte Bereiche der Zelle schieben – als Pole der Spindel. Anschließend werden die Chromosomen von den Spindelfasern, die aus den Polen ausstrahlen, auseinandergezogen. Um den dabei wirkenden Zellteilungskräften Widerstand leisten zu können, müssen die Zentrosomen extrem robust sein.

Welche Faktoren dabei eine wichtige Rolle spielen, hat Tamara Mikeladze-Dvali mit ihrem Team anhand von Mutanten des Fadenwurms Caenorhabditis elegans untersucht, in deren DNA nach dem Zufallsprinzip eine Veränderung eingefügt wurde. „Diese Veränderungen können uns zeigen, welche Faktoren eine wichtige Rolle in der Zellteilung spielen“, sagt Mikeladze-Dvali. „Dabei sind wir auf ein bis jetzt unbekanntes Protein gestoßen, das wir als PCMD-1 bezeichnen.“ In weiteren Experimenten markierten die Wissenschaftler dieses Protein in der Zelle und schalteten es mithilfe der Genschere CRISPR/Cas9 gezielt aus. Auf diese Weise konnten sie nachweisen, dass das neue Protein für den korrekten Aufbau des Zentrosoms unentbehrlich ist. Insbesondere ist es wichtig für den Aufbau der aus sogenannten SPD-5-Proteinen bestehenden Proteinmatrix, die die Robustheit und Integrität der Zentrosomen gewährleistet. „Fehlt PCMD-1, hat das verheerende Auswirkungen auf den Aufbau des Spindelapparats und die Zellteilung. Die Zelle kann sich dadurch nicht mehr korrekt teilen“, sagt Mikeladze-Dvali.

Da PCMD-1 eine solch zentrale Funktion hat, haben diese Ergebnisse nach Ansicht der Wissenschaftler große Bedeutung für das generelle Verständnis der Regulierung von Zentrosomen. Fast alle Proteine, die in C. elegans entdeckt wurden, sind auch in höheren Organismen vorhanden. Auch das Matrixprotein SPD-5 hat ein solches Ortholog. Mutationen in diesem Protein sind eine Ursache für genetisch vererbte primäre Mikrozephalie beim Menschen. „Für das Verständnis dieser Entwicklungsstörung ist es wichtig zu wissen, wie das Protein auf der zellulären Ebene reguliert wird“, sagt Mikeladze-Dvali.

Publikation:
Current Biology 2019

Externer Link: www.uni-muenchen.de

Weiteres Puzzlestück im Selbstreinigungsprozess der Zelle entdeckt

Pressemeldung der Universität Wien vom 07.03.2019

Zellen befinden sich in einem ständigen Prozess der Erneuerung und Säuberung, mithilfe dessen sie zellulären Müll entsorgen. Die so genannte Autophagie stellt sicher, dass der gesamte Organismus gesund bleibt. Dabei sind verschiedenste Akteure in der Zelle involviert, was eine perfekte Kommunikation voraussetzt. Ein internationales Team unter der Leitung von Sascha Martens, Gruppenleiter an den Max F. Perutz Laboratories, unter Beteiligung von ForscherInnen des Max-Delbrück-Centrums für Molekulare Medizin und der Universität von Berkeley, beschreiben nun erstmals wie zwei wesentliche Akteure der Autophagie kommunizieren und somit das korrekte Funktionieren der Zellreinigung sicherstellen.

Neben anderen Faktoren spielen vor allem die Proteine p62 und FIP200 eine wichtige Rolle. FIP200 hilft der Zelle das Autophagosom zu bilden, eine Art Müllsack, in dem zellulärer Abfall eingeschlossen wird. Das Protein p62 sammelt und bereitet das nicht benötigte Material vor, sodass sich das Autophagosom um den Abfall bilden kann. Bisher war eine Verbindung der beiden Proteine unbekannt. Die ForscherInnen haben nun entdeckt, wie die zwei Akteure auf molekularer Ebene miteinander kommunizieren. Eine Störung dieser Kommunikation beeinträchtigt auch den weiteren Prozess der Autophagie. Mit Strukturanalysen konnte das Team auch zeigen, dass Teile des Proteins FIP200 wie eine „Kralle“ geformt sind. Ähnlich wie ein Arbeiter einen Müllsack greifen würde, interagiert diese „Kralle“ mit p62 und dem angesammelten Zellmaterial.

Erstautorin Eleonara Turco beschreibt den Forschungsansatz im Detail: „Mit verschiedensten Techniken der Biochemie, Strukturbiologie und Zellbiologie konnten wir die Interaktion zwischen p62 und FIP200 aufzeigen. Wir haben entdeckt, dass p62 nicht nur zellulären Müll erkennt und vorbereitet, sondern durch die Interaktion mit FIP200 die Maschinerie der Autophagie in Gang setzt, die zur Ausbildung des Autophagosoms und damit dem Abbau des Materials führt.“

„Zusammen mit unseren Kollegen konnten wir zeigen, dass die FIP200 ‚Kralle‘ eine Tasche besitzt, die sich mit Teilen von p62 verbindet. Damit ist eine lange gesuchte Verbindung zwischen der Sammlung des Materials und dem Abbau durch Autophagie entdeckt“, fasst Sascha Martens die Bedeutung der Ergebnisse zusammen.

Störungen in der Autophagie beim Menschen führen zu verschiedensten Krankheiten, da sich fehlerhafte Proteine und anderes gefährliches Material in der Zelle ansammeln. Mutationen im Protein p62 verursachen unter anderem neurodegenerative Erkrankungen. Ein besseres Verständnis der Prozesse hinter Autophagie kann daher langfristig auch helfen die Entstehung bestimmter Erkrankungen beim Menschen zu verstehen.

Publikation:
Molecular Cell
FIP200 Claw Domain Binding to p62 Promotes Autophagosome Formation at Ubiquitin Condensates. Eleanora Turco, Marie Witt, Christine Abert, Tobias Bock-Bierbaum, Ming-Yuan Su, Riccardo Trapannone, Martin Sztacho, Alberto Danieli, Xiaoshan Shi, Gabriele Zaffagnini Annamaria Gamper, Martina Schuschnig, Dorotea Fracchiolla, Daniel Bernklau, Julia Romanov, Markus Hartl, James H. Hurley, Oliver Daumke, Sascha Martens.
DOI: 10.1016/j.molcel.2019.01.035

Externer Link: www.univie.ac.at

Umwandlung von Brustkrebszellen in Fettzellen hemmt Metastasenbildung

Medienmitteilung der Universität Basel vom 14.01.2019

Eine neuartige Kombinationstherapie kann bösartige Brustkrebszellen dazu zwingen, sich in Fettzellen umzuwandeln. Damit lässt sich bei Mäusen die Bildung von Metastasen verhindern. Dies berichten Forschende vom Departement Biomedizin der Universität Basel im Fachblatt «Cancer Cell».

Tumorzellen sind in der Lage, sich dynamisch an veränderte Bedingungen anzupassen. Dabei hilft ihnen, dass sie einen zellulären Prozess reaktivieren können, der während der embryonalen Entwicklung eine zentrale Rolle spielt. Dieser ermöglicht es den Zellen, ihre molekularen Eigenschaften zu verändern und neue Fähigkeiten zu erlangen.

Durch diesen Prozess können sesshafte Zellen die Eigenschaften anderer Zelltypen annehmen und sich aus ihrem Zellverband lösen. Als mobile Zellen wandern sie anschliessend über den Blutkreislauf in andere Körperregionen, wo sie sich erneut verändern, sich festsetzen und neue Gewebestrukturen bilden.

Wandlungsfähige Krebszellen

Im Embryo ermöglicht diese sogenannte epithelial-mesenchymale Transition (EMT) die Entwicklung von Organen. Tumorzellen hingegen machen sich den Prozess zunutze, um den primären Tumor zu verlassen, sodass sie sich im Körper verteilen und in entfernten Organen Metastasen bilden können.

Die Forschungsgruppe von Prof. Gerhard Christofori am Departement Biomedizin der Universität Basel erforscht die molekularen Abläufe, die das zelluläre Programm EMT regulieren. Ziel ist, neue Ansätze gegen die Entwicklung von Tumoren und die Bildung von Metastasen aufzuzeigen – zum Beispiel bei Brustkrebs, einer der häufigsten und bösartigsten Erkrankungen bei Frauen.

Veränderbarkeit ausnutzen

Bösartige Krebszellen verfügen über eine hohe Wandlungsfähigkeit – man spricht von Plastizität –, während sie das zelluläre Programm EMT durchlaufen. Diese Eigenschaft haben die Forscher nun genutzt, um einen neuartigen therapeutischen Ansatz zu entwickeln.

In Versuchen mit Mäusen ist es ihnen gelungen, durch die Kombination von zwei Wirkstoffen Brustkrebszellen, die sich sehr schnell teilen und Metastasen bilden, in Fettzellen umzuwandeln, die sich nicht mehr teilen können und von normalen Fettzellen kaum zu unterscheiden sind. Dadurch wird die Tumorinvasion in das umliegende Gewebe und in Blutgefässe unterbunden, und es können sich keine Metastasen mehr bilden.

Diese neuartige Umwandlungstherapie basiert auf der Kombination von zwei Medikamenten: Rosiglitazon, das bei vielen Patienten zur Behandlung von Diabetes eingesetzt wird, und Trametinib, welches das Wachstum und die Ausbreitung von Krebszellen hemmt.

«Dieser neuartige Therapieansatz könnte zukünftig genutzt werden, um in Kombination mit konventioneller Chemotherapie das primäre Tumorwachstum und gleichzeitig auch die Bildung von tödlichen Metastasen zu unterdrücken», so Prof. Gerhard Christofori. Die Forschungsergebnisse zeigen weiter, dass bösartige Krebszellen – ähnlich wie Stammzellen – eine hohe Zellplastizität aufweisen, die therapeutisch ausgenutzt werden kann.

Originalbeitrag:
Dana Ishay Ronen, Maren Diepenbruck, Ravi Kiran Reddy Kalathur, Nami Sugiyama, Stefanie Tiede, Robert Ivanek, Glenn Bantug, Marco Francesco Morini, Junrong Wang, Christoph Hess, and Gerhard Christofori
Gain Fat—Lose Metastasis: Converting Invasive Breast Cancer Cells into Adipocytes Inhibits Cancer Metastasis
Cancer Cell (2019), doi: 10.1016/j.ccell.2018.12.002

Externer Link: www.unibas.ch

Durchbruch in der Stammzellforschung: Gehirnstammzellen aus Blut

Medieninformation der Universität Innsbruck vom 20.12.2018

Stammzellforschern der Universität Innsbruck ist es erstmals gelungen, aus menschlichen Blutzellen Gehirnstammzellen zu züchten. Damit ist es nun wesentlich leichter, vom Patienten Stammzellen zu erhalten, mit denen man Erkrankungen des Nervensystems, wie z.B. Alzheimer oder Multiple Sklerose, besser verstehen und künftig heilen kann.

Ein Team aus Forschern der Universität Innsbruck um Prof. Frank Edenhofer vom Institut für Molekularbiologie und des Deutschen Krebsforschungszentrums in Heidelberg hat menschliche Blutzellen durch Expression von vier Transkriptionsfaktoren in neurale Stammzellen reprogrammiert. Die reprogrammierten Stammzellen können sich unbegrenzt vermehren und in Zellen sowohl des zentralen als auch des peripheren Nervensystems ausreifen. „Außerdem haben wir mittels der Genschere CRISPR/Cas9 ein Modell für eine menschliche Schmerzerkrankung geschaffen, das die Entwicklung von Schmerzmedikamenten erleichtern wird“, erklärt Frank Edenhofer.

Schon bisher mit Hautzellen

Den Innsbrucker Forschern war vor kurzem schon die Umwandlung von Hautzellen in Gehirnstammzellen gelungen – die nun veröffentlichte Verwendung von Blutzellen wird die biomedizinische Anwendung wesentlich erleichtern. Blutzellen können im Gegensatz zu Hautzellen sehr einfach vom Patienten gewonnen werden, die Blutentnahme ist im Gegensatz zur Hautbiopsie zudem klinische Routine. Stammzellen können praktisch jede andere Zelle des Körpers bilden – und sind damit Hoffnungsträger für eine ganze Reihe von Therapien für bislang nicht heilbare Krankheiten. „Aus Stammzellen gezüchtete Zellen können mitunter fehlerhafte oder kranke Zellen ersetzen und so zur Heilung von Krankheiten beitragen“, sagt Prof. Frank Edenhofer.

Die Wissenschaftler verwendeten in der aktuell publizierten Forschung moderne Einzelzell-Sequenziermethoden, um die Stammzellen zu identifizieren. Die in der renommierten Zeitschrift „Cell Stem Cell“ veröffentlichte Entdeckung wird tiefe Einblicke in die Entwicklung des menschlichen Nervensystems erlauben und eine Quelle für neurale Stammzellen liefern – die dann in der regenerativen Medizin eingesetzt werden können, wie Frank Edenhofer erläutert: „Neurodegenerative Krankheiten wie Parkinson und Alzheimer oder auch chronisch-entzündliche Erkrankungen des Nervensystems wie Multiple Sklerose sind heute mit gängigen Mitteln nicht heilbar, die Medizin kann sie höchstens lindern. Mit einer Behandlung mit im Labor erzeugten Stammzellen direkt am Gehirn kann ein Fortschreiten von Parkinson bei betroffenen Patienten möglicherweise aufgehalten werden, daran forschen wir intensiv.“ Frank Edenhofer ist auch Präsident der Österreichischen Gesellschaft für Stammzellforschung; die Gesellschaft verfolgt das Ziel, die wichtigsten Akteure der Stammzellforschung in Österreich zu vernetzen.

Publikation:
Marc Christian Thier, Oliver Hommerding, Jasper Panten, Roberta Pinna, Diego García-González, Thomas Berger, Philipp Wörsdörfer, Yassen Assenov, Roberta Scognamiglio, Adriana Przybylla, Paul Kaschutnig, Lisa Becker, Michael D. Milsom, Anna Jauch, Jochen Utikal, Carl Herrmann, Hannah Monyer, Frank Edenhofer, Andreas Trumpp: Identification of Embryonic Neural Plate Border Stem Cells and their generation by direct reprogramming from human blood, Cell Stem Cell 20.12.2018

Externer Link: www.uibk.ac.at

Parasit tarnt sich durch Umstrukturierung

Presseinformation der LMU München vom 17.10.2018

Trypanosomen, die Auslöser der Afrikanischen Schlafkrankheit, tricksen die Immunabwehr ihres Wirts aus, indem sie ihre Oberfläche immer wieder verändern. Forscher haben nun das komplette Genom des Parasiten sequenziert und wichtige Aspekte seiner molekularen Strategie aufgeklärt.

Die einzelligen Parasiten namens Trypanosoma lösen beim Menschen die Afrikanische Schlafkrankheit aus, die tödlich enden kann. Professor Nicolai Siegel, Leiter der Arbeitsgruppe Molekulare Parasitologie an der LMU, erforscht an ihrem Beispiel den ständigen Wettkampf, in dem Parasiten und ihre Wirte stehen: Das Immunsystem des Wirts bekämpft den Parasiten, der wiederum Strategien gegen diese Abwehr entwickelt. Trypanosomen verändern ständig ihre Oberfläche, um vom Immunsystem des Wirts nicht erkannt zu werden. Wissenschaftler der Arbeitsgruppe haben nun in Kooperation mit Kollegen der Universität Würzburg, von ZB MED – Informationszentrum Lebenswissenschaften, der TH Köln, des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) in Würzburg (ein Institut des Helmholtz-Zentrums für Infektionsforschung) sowie Forschern in den USA, Großbritannien und Israel die genetischen Mechanismen dieser Abwehr untersucht. Das Team konnte nachweisen, dass bestimmte DNA-Verpackungsproteine die Struktur der Erbsubstanz des Parasiten beeinflussen. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Nature.

Trypanosomen kommen in verschiedenen Wirbeltieren vor und werden meist von Insekten übertragen. In Säugetieren leben sie vor allem im Blut ihres Wirts. Die von den Wissenschaftlern untersuchte Art Trypanosoma brucei löst nicht nur die Afrikanische Schlafkrankheit aus, sondern ist auch der Erreger der Tierseuche Nagana bei Rindern.

Das Genom des Parasiten kodiert für etwa 2000 unterschiedliche Varianten seines Oberflächen-Proteins, wobei nur eine Variante gleichzeitig pro Zelle produziert wird. Da die Immunantwort des Wirts sich immer gegen eine konkrete Variante des Oberflächenproteins richtet, entkommt der Parasit der Immunantwort, indem er das Gen für ein bestimmtes Protein ab- und stattdessen ein anderes anschaltet. Da es einige Zeit dauert, bis die Immunzellen des Wirts das neue Oberflächenprotein als fremd erkennen, erreichen Trypanosomen auf diese Weise eine dauerhafte Infektion.

„Wir interessieren uns vor allem dafür, wie diese genetische Variabilität reguliert wird“, sagt Siegel, dessen Labor zur Tierärztlichen Fakultät gehört und im Biomedizinischen Centrum der LMU angesiedelt ist. Das Erbgut liegt im Zellkern als eng verpackter DNA-Protein-Komplex vor, der als Chromatin bezeichnet wird. Um zu untersuchen, wann welches Gen aktiviert wird, haben die Wissenschaftler erstmals das komplette Genom von T. brucei sequenziert und die dreidimensionale Anordnung der DNA aufgeklärt. Mithilfe von Einzelzellanalysen des Parasiten konnten sie zeigen, dass der Wechsel zwischen verschiedenen Oberflächenproteinen verstärkt wird, wenn zwei bestimmte Varianten von DNA-Verpackungsproteinen entfernt werden. Diese Varianten befinden sich im Chromatin an denselben Stellen, an denen auch die Gene sitzen, die für die Oberflächenproteine kodieren. Durch die Entfernung dieser Varianten verändert sich zum einen die dreidimensionale Struktur der DNA, und zum anderen lockert sich an den entsprechenden Stellen die ansonsten dicht gepackte DNA, sodass neue Gene zugänglich werden. Beide Effekte gemeinsam ermöglichen neue Interaktionen innerhalb der DNA, sodass andere Gene aktiviert werden. „Entscheidend ist dabei, dass wir beide Proteinvarianten entfernt haben“, betont Siegel, „fehlt nur eine, ändert sich zwar die dreidimensionale Struktur der DNA, aber es kommt nicht zu einem Switch der Oberflächenproteine.“

Ein besseres Verständnis dieser Abwehrmechanismen ist auch für die Erforschung anderer Krankheiten wichtig, denn zahlreiche Pathogene haben ähnliche Strategien entwickelt, etwa die Malaria-Erreger, Candida-Pilze und viele Bakterien.

Publikation:
Nature 2018

Externer Link: www.uni-muenchen.de