Körpereigener Ersatzmechanismus

Presseinformation der LMU München vom 25.11.2009

Neue Quelle für Bildung von Nervenzellen im Gehirn entdeckt

Der Arbeitsgruppe von Professor Magdalena Götz an der Ludwig-Maximilians-Universität (LMU) München und am Helmholtz Zentrum München ist ein weiterer Schritt zum Verständnis von Regenerationsprozessen im Gehirn gelungen. Die Forscher entdeckten Vorläuferzellen, die nach Verletzungen der Großhirnrinde neue glutamaterge Nervenzellen bilden können. Speziell bei Alzheimer spielt deren Degeneration eine entscheidende Rolle. Aus einer möglichen Steuerung des Bildungs- bzw. Wanderungsmechanismus lassen sich in Zukunft möglicherweise neue therapeutische Optionen ableiten. (Nature Neuroscience, 24. November 2009)

Noch bis vor wenigen Jahren galt die Neurogenese, also der Prozess der Entstehung von Nervenzellen, im Gehirn von Erwachsenen als unmöglich. Abgestorbene Nervenzellen können nicht ersetzt werden, so lautete die Lehrbuchmeinung. Dann entdeckten Forscher Regionen im Vorderhirn, in denen auch beim Menschen Zeit Lebens neue Nervenzellen gebildet werden. Diese so genannten GABAergen Zellen benutzen gamma-Aminobuttersäure (GABA), einen Botenstoff des Zentralnervensystems.

Jetzt haben Wissenschaftler der Arbeitsgruppe um Magdalena Götz, Leiterin des Instituts für Stammzellforschung am Helmholtz Zentrum München und Inhaberin des Lehrstuhls für Physiologische Genomik an der LMU, diese Gehirnregion im Mausmodell genauer unter die Lupe genommen. Sie fanden heraus, dass im Vorderhirn noch andere Nervenzellen regelmäßig gebildet werden: die sogenannten glutamatergen Nervenzellen, die als Überträgerstoff Glutamat benutzen. Den Nachweis konnten die Stammzellforscher mit Hilfe eines speziellen Transkriptionsfaktors erbringen: Tbr2 kommt ausschließlich in Vorläuferzellen der glutamatergen Nervenzellen vor.

Die im erwachsenen Organismus neu gebildeten Nervenzellen liegen im Riechkolben, dem Bereich des Gehirns, der die Geruchswahrnehmung vermittelt. Nervenzellen, die Glutamat als Überträgerstoff vermitteln, sind auch für die Speicherung bzw. den Abruf von Gedächtnisinhalten zuständig. Bei der Alzheimer-Demenz spielen Veränderungen bei der Signalübertragung dieser speziellen Zellen eine entscheidende Rolle.

Götz: „Die Entdeckung ist deshalb so wichtig, weil die Vorläuferzellen die von uns neu gefundenen glutamatergen Nervenzellen zum Beispiel auch nach Gehirnverletzungen für die benachbarte Großhirnrinde bilden können.“ Die Forschergruppe konnte dies am Mausmodell zeigen. Dort wanderten die Zellen in das geschädigte angrenzende Großhirngewebe ein und bildeten dort reife Nervenzellen. Vorläuferzellen könnten demnach degenerierte Nervenzellen ersetzen.

„Spannend ist nun die Frage ob dieser Vorgang auch im Menschen, speziell bei Alzheimerpatienten, abläuft – möglicherweise aber den massiven neuronalen Zelltod nicht mehr unter Kontrolle bekommt“, sagt Magdalena Götz. Ein therapeutischer Ansatz bestünde dann darin, diesen körpereigenen Ersatzmechanismus versuchsweise zu stimulieren. (Helmholtz Zentrum München)

Publikation:
„Adult generation of glutamatergic olfactory bulb interneurons“
Monika S Brill, Jovica Ninkovic, Eleanor Winpenny, Rebecca D Hodge, Ilknur Ozen, Roderick Yang, Alexandra Lepier, Sergio Gascón, Ferenc Erdelyi, Gabor Szabo, Carlos Parras, Francois Guillemot, Michael Frotscher, Benedikt Berninger, Robert F Hevner, Olivier Raineteau & Magdalena Götz
Nature Neuroscience, Bd. 12, Nr. 11, S. 1351-1474
Doi:10.1038/nn.2416

Externer Link: www.uni-muenchen.de

Wie passen Substrate in Enzyme?

Mediendienst der Universität Stuttgart vom November 2009

Design von Biokatalysatoren zur nachhaltigen Synthese

In der industriellen, der so genannten „weißen“, Biotechnologie werden Enzyme bei einer Vielzahl chemischer Reaktionen erfolgreich als Katalysatoren eingesetzt. Denn sie sind in der Lage, ihre Substrate unter milden Bedingungen und mit hoher Reaktionsgeschwindigkeit umzusetzen. Andererseits sind natürliche Enzyme für Anwendungen in der Synthese oft nicht optimal, da ihr Substratspektrum zu eng ist und die gewünschten Substrate nicht ausreichend schnell umgesetzt werden. Die Chemiker und Biologen des Instituts für Technische Biochemie der Universität Stuttgart erforschen deshalb im Rahmen eines vom Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz geförderten Projekts, wie man Enzyme so verändern kann, dass sie für die chemische Synthese von Produkten aus nachhaltigen Rohstoffen geeignet sind.

Die Wissenschaftler setzen bei der Strukturänderung der Substratbindungstasche an, dem Ort im Enzym, an dem das Substrat mit dem Enzym vorübergehend eine engverzahnte Verbindung eingeht. Um die Substratbindungstasche zu optimieren, entwickelten sie die bioinformatische Methode des „molekularen Docking“ weiter. Diese Methode wurde ursprünglich für die Entwicklung von Medikamenten verwendet, bei der ein kleines Molekül, das an ein Zielprotein binden soll, wie ein Schlüssel zu einem Schloss passen muss. Um die Methode auf die Erkennung zwischen Substrat und Enzym zu übertragen, erweiterten die Forscher die Methode zu einem mehrstufigen Verfahren, das berücksichtigt, dass die Substratbindungstaschen von Enzymen nicht starr sind. Zudem darf das Substrat nicht in seinem Ausgangszustand, sondern muss in einem dem Produkt ähnlicheren Übergangszustand in der Bindungstasche platziert werden. Dieser Übergangszustand muss in einer genau definierten Position im Enzym binden, damit das Substrat zum Produkt umgesetzt wird. In einem ersten Schritt docken die Wissenschaftler daher das Substrat in seinem Übergangszustand an das Enzym. Im zweiten Schritt optimieren sie dann die Struktur des Enzym-Substrat-Komplexes, indem sich die Form der Substratbindungstasche der Struktur des Substrats anpasst. Im dritten Schritt wird das Substrat nochmals in die nun optimierte Substratbindungstasche gedockt. Schließlich wird die Wechselwirkungsenergie und die Position des Substrats in der Substratbindungstasche bewertet. Dieses neue, mehrstufige Verfahren zeigte für Enzyme aus der Gruppe der Lipasen und Esterasen eine Trefferquote von 80 Prozent bei der Vorhersage der Aktivität gegenüber mehreren Substraten.

Ein wesentlicher Grund für die schlechte Aktivität eines Enzyms gegenüber einem gewünschten Substrat besteht darin, dass die Form der Bindungstasche nicht zum Substrat passt. Das neue Verfahren identifiziert die störenden Bereiche, die dann durch Enzym-Design verändert werden können. Die Stuttgarter Forscher nutzen dieses Verfahren bereits in Zusammenarbeit mit dem Industriepartner Evonik Industries AG für die Entwicklung von Biokatalysatoren zur Synthese von kosmetischen Inhaltstoffen aus nachwachsenden Rohstoffen. Zudem wird das Verfahren auch im Rahmen des europäischen Verbundprojekts „Nachhaltige mikrobielle und biokatalytische Produktion von neuen funktionellen Materialien“ eingesetzt.

Externer Link: www.uni-stuttgart.de

Anstandsdame vermittelt Kontakt

Presseinformation der Max-Planck-Gesellschaft vom 20.11.2009

Max-Planck-Wissenschaftler verstehen nun besser, welche Prozesse die korrekte Faltung von Proteinen begünstigen und damit ihre Effizienz erhöhen

Um funktionstüchtig zu sein, müssen Proteine, welche aus Aminosäureketten bestehen, in eine bestimmte Struktur gefaltet werden. Bei diesem Prozess helfen Chaperone, die kurzzeitig an Proteine binden, und so eine falsche dreidimensionale Form verhindern. Spezielle Enzyme (Isomerasen), wirken darüber hinaus lokal auf die Struktur der Aminosäureketten. Das Zusammenspiel dieser Funktionen haben Wissenschaftler der Universität Bayreuth und Max-Planck-Wissenschaftler in Halle aufgeklärt. Die Chaperon-Untereinheit der untersuchten Faltungshelfer ist notwendig, um die sehr spezifische Isomeraseaktivität auf verschiedenartige Proteine anzuwenden. Die Kombination beider Funktionen in einem Enzym führt zu hocheffizienten Faltungshelfern. (PNAS, Early Edition, 17. November 2009)

Proteine gehören zu den wichtigsten Bausteinen des Lebens. Die Aminosäuresequenz für jedes Protein ist im Erbgut der Zelle festgeschrieben. Diese Sequenz von perlschnurartig aneinandergereihten Bestandteilen muss, um ihre biologische Funktion erfüllen zu können, zunächst in eine definierte dreidimensionale Struktur gebracht werden. Diese Faltungsprozesse sind komplex und bis heute nicht im Detail verstanden. Wird ein Protein nicht korrekt gefaltet, kann dies zu zahlreichen Krankheiten führen, wie zum Beispiel der Alzheimer-Krankheit.

Die Bindung zwischen zwei Aminosäuren kann in zwei verschiedenen Zuständen vorliegen, als trans- beziehungsweise cis-Form. Während die trans-Form eine eher gestreckte Fortführung der Peptidkette erlaubt, führt die cis-Form einen Knick in die Peptidkette ein. Das Drehen an dieser Bindung ist abhängig von speziellen Enzymen, den Isomerasen. Der Vorgang ist besonders wichtig bei der Aminosäure Prolin, da diese in entfalteten Eiweißen überwiegend in der trans-Form vorliegt, im gefalteten Zustand jedoch oft in der cis-Form. Bei der Faltung muss somit in vielen Fällen eine Umwandlung zwischen beiden Formen stattfinden. Dieser Prozess ist, wenn die nötigen Enzyme fehlen, sehr langsam. Statt im Bruchteil einer Sekunde, nehmen die Proteine ihre funktionelle dreidimensionale Struktur erst in Minuten bis Stunden ein.

Eine weitere Klasse von Faltungshelfern, die Chaperone, verhindern, dass die Proteine falsch gefaltet werden. Ein falsch gefaltetes Protein geht dem Organismus als funktionelle Einheit verloren, da es seine biologische Funktion nicht ausüben kann und somit eine sinnlose Investition darstellt. Chaperone eskortieren die Proteine – als Anstandsdamen in der Zelle – förmlich zum korrekt gefalteten Zustand.

Einige Faltungshelfer vereinigen nun die Eigenschaften von Prolylisomerasen und Chaperonen. Diese Enzyme sind modular aus verschiedenen Untereinheiten aufgebaut. Unklar war bisher der Grund für das häufige gemeinsame Auftreten dieser beiden Funktionen. Schon lange hingegen war bekannt, dass die Effizienz der Beschleunigung des cis/trans-Übergangs durch einen häufig vorkommenden Typ der Prolylisomerasen (FKBPs) stark von der chemischen Struktur der Aminosäure abhängt, welche in der Peptidkette dem Prolin unmittelbar vorangeht. Insbesondere wird die cis/trans-Umwandlung an Aminosäuren, die sich bevorzugt auf der Proteinoberfläche befinden, sehr schlecht katalysiert. Dies sollte für eine effiziente Funktion in der Proteinfaltung kontraproduktiv sein.

Faltungshelfer im Duett

Die neuen Untersuchungen zeigen nun, dass Faltungshelfer Proteinketten mit unterschiedlichsten Aminosäuren vor dem Prolin praktisch gleich gut umsetzen, wenn neben einer Prolylisomerase eine zusätzliche Chaperon-Untereinheit vorliegt. „Einigen Enzymen muss ihr Substrat anscheinend mundgerecht gereicht werden“, erklärt Tobias Aumüller von der Max-Planck-Forschungsstelle für Enzymologie der Proteinfaltung dieses Ergebnis. Die Wissenschaftler beschreiben einen Mechanismus, wie diese Enzyme ihre beiden Untereinheiten einsetzen, um optimal als Faltungsenzyme arbeiten zu können. Zunächst fängt die Chaperon-Untereinheit die ungefalteten Ketten ein und gibt diese an die Prolylisomerase-Untereinheit weiter. Diese Weitergabe erleichtert der Prolylisomerase-Untereinheit ihre Arbeit. Der Schritt, der nun bestimmt, wie schnell das Enzym arbeitet, ist vermutlich der Transfer zwischen beiden Funktionszentren, der aber zügig vonstatten geht.

Zu ihrem Ergebnis kamen die Wissenschaftler, indem sie verschiedene Enzyme verglichen: Solche, die nur die Prolylisomerase-Untereinheiten besitzen, und solche, bei denen sie an die katalytische Untereinheit eine Chaperon-Untereinheit gesetzt hatten. Um die Vorliebe der beiden Enzymvarianten für unterschiedliche Substrate zu beschreiben, bildeten sie Ketten von Aminosäuren, die jeweils vor dem Prolin eine der anderen 20 Aminosäuren aufweisen. In Halle wurde eine solche Bibliothek aus Peptiden, also kurzen Sequenzen, erstellt, in Bayreuth eine aus Modellproteinen. Aus der Verbindung der Ergebnisse konnten sie dann ihre Erkenntnisse ziehen.

In Abwesenheit einer Chaperon-Untereinheit war die Isomeraseaktivität sowohl gegenüber kurzen Peptiden als auch gegenüber faltenden Proteinketten sehr stark von der Sequenzumgebung des Prolins abhängig. In ihrer Gegenwart war die Aktivität in der Proteinfaltung enorm erhöht und praktisch unabhängig von der chemischen Natur der Aminosäure vor dem Prolin. Die gute Bindung ungefalteter Proteinketten an die Chaperondomäne sorgt also dafür, dass ihre Faltung gut und sequenzunabhängig durch Faltungsenzyme bescheunigt wird. [HW / BA]

Originalveröffentlichung:
Roman P. Jakob, Gabriel Zoldak, Tobias Aumüller, and Franz X. Schmid
Chaperone domains convert prolyl isomerasesinto generic catalysts of protein folding
PNAS, Early Edition, 17. November 2009

Externer Link: www.mpg.de

Schlank-Gen reguliert Körperfett

Pressemitteilung der Universität Bonn vom 02.11.2009

Gendefekt bewirkt in Fruchtfliegen, dass sie kein Fett speichern können – Parallelen zum Menschen?

Wissenschaftler der Universität Bonn haben ein bislang unbekanntes Fruchtfliegen-Gen entdeckt, das dort den Fettstoffwechsel steuert. Larven, bei denen die Erbanlage defekt ist, verlieren ihr komplettes Speicherfett. Die Forscher haben das Gen daher auf den Namen „schlank“ getauft. Säugetiere verfügen über eine Gruppe von Erbanlagen, die „schlank“ strukturell sehr ähneln. Möglicherweise erfüllen sie eine ähnliche Funktion im Energiestoffwechsel. Die Forscher hoffen daher auf neue Präparate, mit denen sich Fettleibigkeit bekämpfen lässt. Ihre Studie ist in der Zeitschrift „The EMBO Journal“ erschienen (doi: 10.1038/emboj.2009.305).

Wenn Forscher die Funktion eines Gens aufklären, dürfen sie die Erbanlage benennen. Bei der Fruchtfliege Drosophila gilt dabei eine paradoxe Konvention: Die Namen weisen stets darauf hin, wie die Fliege im Falle eines Defekts des entsprechenden Gens aussieht. So auch im Falle des schlank-Gens: Ist es intakt, kann die Fliegenlarve Speicherfett aufbauen – sie wird dick. „Larven mit einer schlank-Mutation bleiben dagegen dünn“, erklärt Professor Dr. Michael Hoch von der Universität Bonn. „Im Extremfall führt der Defekt sogar zum Tod.“

Der Entwicklungsbiologe hat zusammen mit Privatdozent Dr. Reinhard Bauer und weiteren Mitarbeitern untersucht, was „schlank“ genau macht. Ihrer Studie zufolge enthält das Gen die Bauanleitung einer so genannten Ceramid-Synthase. Ceramide dienen als Rohstoff für die hauchdünnen Membranen, die sämtliche Zellen im Körper umschließen. Schlank wirkt zudem regulierend: Es fördert die Fettsynthese und hemmt gleichzeitig die Fettmobilisierung aus dem Fettspeicher.

Mäuse-Gen rettet Fliegenlarven

Das ist möglicherweise nicht nur in der Fruchtfliege so. Auch der Mensch produziert Ceramid-Synthasen – allerdings nicht wie Drosophila nur eine, sondern gleich sechs verschiedene. Er verfügt dazu über eine Gruppe von Erbanlagen, die so genannten Lass-Gene. Ceramid-Synthasen sind für Tiere extrem wichtig. Mutationen in den entsprechenden Genen führen zu schwerwiegenden Stoffwechsel-Defekten und zu Fehlfunktionen von Organsystemen. Deshalb sehen unsere Lass-Gene dem schlank-Gen der Fruchtfliege erstaunlich ähnlich.

Die Ähnlichkeit geht so weit, dass Lass-Gene aus der Maus in Fliegen-Mutanten das defekte schlank-Gen zum Teil kompensieren können. „Wir haben ein Mäuse-Lass-Gen in mutante Drosophila-Larven eingeführt“, sagt Hoch. „Normalerweise starben die Larven direkt nach dem Schlüpfen. Dank des Lass-Gens bauten sie wieder Körperfett auf und überlebten bis ins nächste Entwicklungsstadium.“

Die Lass-Gene der Säugetiere wurden bislang noch nicht mit der Regulation des Fettstoffwechsels in Verbindung gebracht. „Aufgrund der großen Parallelen zu schlank halten wir eine solche Funktion aber für sehr wahrscheinlich“, vermutet Professor Hoch. „Wenn dem so ist, wären sie ein viel versprechender Ansatzpunkt für neue Medikamente gegen Fettleibigkeit.“ (Frank Luerweg)

Externer Link: www.uni-bonn.de

Zitternde Hände und ein molekularer Handschlag

Presseinformation der LMU München vom 23.10.2009

Neue Proteinstruktur beteiligt an erblicher Neurodegeneration

Das erst vor kurzem beschriebene Fragile X Tremor/Ataxie Syndrom (FXTAS) ist eine der häufigsten erblichen neurodegenerativen Krankheiten. Man geht davon aus, dass die Krankheit durch einen Mangel an dem Protein Pur-alpha ausgelöst wird, welches für die normale Nervenfunktion unerlässlich ist. Nun ist es Strukturbiologen um Dr. Dierk Niessing vom Helmholtz Zentrum München und dem Genzentrum der Ludwigs-Maximilians-Universtität (LMU) München gelungen, die Röntgenkristallstruktur von Pur-alpha zu entschlüsseln und somit Einblicke in die molekulare Funktionsweise dieses Proteins zu gewinnen. Daraus ergeben sich erste Ansatzpunkte zur Entwicklung einer Therapie. (PNAS Early Edition, 21. Oktober 2009)

Bei den meist männlichen FXTAS-Patienten treten die Symptome etwa ab dem 55. Lebensjahr auf. Dabei führt das sich fortschreitend verstärkende Nervenleiden zu einem Zittern der Hände (Tremor) und zu Gleichgewichtsstörung sowie Fallneigung beim Gehen (Ataxie). Häufig wird auch eine Beeinträchtigung der kognitiven Fähigkeiten und Demenz beobachtet.

Ursache des FXTAS ist eine Mutation im FMRP-Gen. Diese tritt ungefähr bei einem von 800 Männern auf. Dabei zeigen sich abnorm verlängerte Wiederholungen der Basensequenz CGG: Gesunde Menschen haben 5 bis 54 dieser Wiederholungen, FXTAS-Träger haben 55 bis 200. Bei einer weiteren Verlängerung mit über 200 Wiederholungen tritt schließlich das Fragile X -Syndrom (FXS) auf, welches nach dem Down-Syndrom die zweithäufigste Ursache erblicher geistiger Behinderung ist. FXTAS wird durch einen Mangel an dem Protein Pur-alpha ausgelöst: das Protein bindet an die CGG-Sequenzen der Boten-RNA (mRNA). Weil durch die abnorme Zahl der Wiederholungen viel mehr Pur-alpha gebunden wird. steht es nicht mehr für seine normale zelluläre Funktion zur Verfügung.

Wie die Forscher in der Online „Early Edition“ der Fachzeitschrift „Proceedings of the National Academy of Sciences USA“ (PNAS) jetzt berichten, besteht das Pur-alpha aus drei sich wiederholenden Einheiten, den PUR-Repeats. „Die Kristallstruktur von Pur-alpha ermöglicht ein tieferes Verständnis der Funktionsweise des Proteins und könnte zur Entwicklung einer Therapie gegen FXTAS beitragen“, sagt Dierk Niessing, der eine gemeinsam vom Helmholtz Zentrum München, der Helmholtz-Gemeinschaft und dem Genzentrum der LMU geförderte Nachwuchsgruppe leitet. „Derzeit ist nur eine Linderung der Symptome, aber keine Behandlung der Ursachen möglich.“

„Ein PUR-Repeat sieht wie eine Hand aus  – das aus vier Strängen bestehende Beta-Faltblatt entspricht den vier Fingern und die Alpha-Helix ähnelt einem Daumen“, erklärt Almut Graebsch aus der Arbeitsgruppe Niessing. Zwei PUR-Repeats binden dabei auf eine ganz bestimmte, einem molekularen Händedruck gleichende Weise aneinander und formen so eine funktionelle Einheit. Die Forscher ergänzten ihre Röntgenstrukturanalyse mit einer weiteren Technik, dem sogenannten Small Angle X-Ray Scattering, und fanden heraus, dass Pur-alpha Dimere bildet, also immer zwei Protein-Moleküle aneinander binden. Deren Entstehung verläuft wahrscheinlich über einen sehr ähnlichen molekularen Händedruck wie die Bindung der PUR-Repeats aneinander.

Im Tierversuch konnte gezeigt werden, dass die FXTAS-Symptome verschwinden, wenn zusätzliches Pur-alpha zugegeben wird. „Vielleicht ist FXTAS heilbar, wenn man die Bindung von Pur-alpha an die Wiederholungen der Wiederholungen der Basensequenz CGG der mRNA verhindern kann“, sagt Niessing. Erste Hinweise, welche Aminosäuren von Pur-alpha an der Bindung beteiligt sind, konnte die Arbeitsgruppe bereits durch Mutationsstudien finden. Im nächsten Schritt  wollen die Forscher im Detail aufklären, wie Pur-alpha an die RNA bindet. Mit diesem Wissen könnten die krank machenden Interaktionen verhindert werden. (HHZM)

Publikation:
„X-ray structure of Pur-alpha reveals a Whirly-like fold and an unusual nucleic-acid binding surface“;
Almut Graebsch, Stephane Roche, and Dierk Niessing;
PNAS online, 21. Oktober 2009
DOI:10.1073/pnas.0907990106

Externer Link: www.uni-muenchen.de