Wasserzeichen lösen Rätsel um Rembrandts Werkstatt

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom  01.03.2016

Mit Infrarotlicht Kunstwerke datieren

Handelt es sich um eine historische Zeichnung? Oder um eine Fälschung aus dem 19. Jahrhundert? Dies ist selbst für Kunstexperten schwer zu beurteilen. Ein neues Infrarot-Verfahren von Fraunhofer-Forschern lässt Wasserzeichen auf Papieren sichtbar werden und ermöglicht somit eine genauere Datierung.

Ist der Rembrandt echt? Oder ist man einem Schwindel aufgesessen und hat anstelle des Meisterwerks eine wertlose Kopie aus dem 19. Jahrhundert erworben? In vielen Fällen lässt sich dies mit Hilfe von Wasserzeichen beantworten. Sie informieren, aus welchem Zeitraum das Papier und damit das Werk stammt. Ab dem 12. bis 13. Jahrhundert hat jede Papiermühle solche Prägungen durch Drahtformen, die auf dem Schöpfsieb befestigt werden, in ihre Papierbögen eingebracht, quasi als Markenzeichen. Über die Jahre nutzten sich die Formen jedoch immer mehr ab, so dass Details der Zeichen nach einiger Zeit nicht mehr zu erkennen waren. Teilweise wurden sie auch vom Betreiber der Papiermühle erneuert oder ersetzt. Die Wasserzeichen lassen daher bis auf wenige Jahre genau auf die Zeit schließen, in der das Papier hergestellt wurde. Die Datenlage dazu ist gut. Um die Wasserzeichen zu erkennen, durchleuchtet man die Zeichnung üblicherweise mit sichtbarem Licht. Da das Papier im Bereich der Prägung mehr Licht durchlässt, sollte man sie gut erkennen können – zumindest theoretisch. In der Praxis klappt das jedoch nur bedingt: Oftmals verdecken Tinte oder Pinselstriche die Zeichen bis zur Unkenntlichkeit.

Infrarot-Licht sieht durch Farben und Tinte hindurch

Forscher des Fraunhofer-Instituts für Holzforschung WKI in Braunschweig haben nun eine Lösung für dieses Dilemma entwickelt, gemeinsam mit ihren Kollegen des Herzog-Anton-Ulrich-Museums und des Instituts für Nachrichtentechnik der Technischen Universität Braunschweig IfN. »Wir durchleuchten die Papiere nicht mit sichtbarem Licht, sondern mit Infrarot-Licht – also mit Wärmestrahlung«, sagt Peter Meinlschmidt, Wissenschaftler am WKI. »Die häufig verwendete Eisengallus-Tinte ist für dieses Licht transparent. Man sieht also nur das Wasserzeichen, ohne die störende Schrift oder Farbe.« Statt Unterschiede im Licht detektieren die Forscher die Abweichungen in der Wärmestrahlung – und das mit hoher Genauigkeit: Die Kameras können selbst Temperaturdifferenzen von 15 Millikelvin auflösen, also Unterschiede von 15 Tausendstel Grad erkennen.

Rund 60 Zeichnungen aus dem Rembrandt-Umfeld konnte das Team auf diese Weise bereits erfolgreich datieren. Das Prinzip: Die Forscher klemmen das Papier in ein Passepartout, welches sie zwischen einer Wärmeplatte, also dem Infrarotstrahler, und einer Infrarotkamera positionieren. Dabei kommt es darauf an, dass die Wärme gleichmäßig abgestrahlt wird und das Papier einen Abstand zum Strahler hat. Denn bei direktem Kontakt würde sich das Papier ungleichmäßig erwärmen.

Schadet die Wärmestrahlung den Kunstwerken? »Die Wärme ist unbedenklich: Die Infrarotlampe erwärmt das Papier weitaus weniger, als es die Finger beim Anfassen des Papiers tun«, erläutert Meinlschmidt. Allerdings gilt es, schnell zu sein: Das Wasserzeichen ist nur wenige Sekunden lang sichtbar. Denn je länger das Blatt in der Wärmestrahlung bleibt, desto stärker wärmen sich durch Tinte dunkel gefärbte Bereiche auf und stören die Temperaturunterschiede, die durch die Prägung hervorgerufen werden.

Notenpapiere auf Echtheit prüfen

Die Infrarotkameras, die die Forscher bisher verwendet haben, sind teuer – das Gesamtsystem kostet rund 80 000 Euro und ist daher nur für große Bibliotheken wie die Bayerische Staatsbibliothek München oder die Staatsbibliothek zu Berlin erschwinglich. Gegenwärtig arbeiten die Wissenschaftler daher gemeinsam mit der Sächsischen Landesbibliothek SLUB in Dresden daran, den Preis für das System zu senken: auf 20 000 bis 30 000 Euro. Die Forscher setzen auf eine Kamera, deren Auflösung statt 15 Millikelvin nur 50 Millikelvin beträgt. Für sie müssten die Museen nicht 50 000, sondern nur 5 000 Euro bezahlen. »Diese geringere Auflösung wollen wir durch eine deutlich bessere Bildverarbeitung wettmachen – etwa durch Gauss-Filter, die das Rauschen verschwinden lassen oder Differenzbilder, die Ungleichheiten im Papier beseitigen«, erklärt Meinlschmidt. Eine erste Software-Version wird in der Landesbibliothek gerade anhand historischer Notenblätter getestet. In zwei bis drei Jahren soll das System einsatzbereit sein.

Automatischer Abgleich mit der Datenbank

Hat man das Wasserzeichen aufgenommen, gilt es, exakt dieses in einer Datenbank wiederzufinden. Das erledigen bislang Experten in mühseliger und langwieriger Handarbeit. »Bald sollen Suchalgorithmen diese Zuordnung übernehmen«, sagt Meinlschmidt. Daran arbeiten die Forscher zukünftig im Auftrag der Staatsbibliothek in Berlin. In etwa vier Jahren soll die automatische Erkennung angewendet werden können. Eine weitere Frage, der sich die Wissenschaftler widmen: Welche Farben sind bei welchem Wellenlängenbereich des Infrarotlichts transparent? Sprich: Für welche Farben eignet sich welches IR-Licht am besten? Ist dies bekannt, könnte man für jedes Kunstwerk die optimale Wellenlänge wählen – und die Sichtbarkeit der Wasserzeichen somit noch einmal verbessern.

Externer Link: www.fraunhofer.de

Mikroreaktor statt Tierversuch

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.02.2016

Europaweit arbeiten Forscher an Messverfahren, mit denen sich schädliche Nebenwirkungen von Medikamenten ohne Tierversuche bewerten lassen. Viele dieser alternativen Methoden aber bereiten noch Probleme. In einem europäischen Verbundprojekt wurde deshalb ein Mikrobioreaktor entwickelt, in dem sich Leberzellproben sehr gut kultivieren lassen. Anders als im Tierversuch kann man damit erstmals live mitverfolgen, wie eine Substanz auf das Gewebe wirkt.

Die Zahl der Tierversuche in der Forschung soll künftig deutlich verringert werden. So hat die Europäische Union mit der EU-Kosmetikverordnung 2013 unter anderem den Handel von Kosmetika verboten, deren Inhaltsstoffe mit Hilfe von Tierversuchen geprüft wurden. Doch nicht nur in der Kosmetikindustrie, auch in der medizinischen Forschung fällt der Umstieg auf alternative Verfahren schwer. In vielen Fällen fehlt es an Methoden, um die Giftigkeit von Substanzen zu testen. Zahlreiche Forschergruppen arbeiten an neuen aussagekräftigen Verfahren.

Besonders vielversprechend sind unter anderem Testverfahren mit Leberzellkulturen. Die Leber ist das wichtigste Entgiftungsorgan des Körpers. Daher ist es sinnvoll, die Giftigkeit, die Toxizität, von Substanzen an Leberzellen zu untersuchen. Dazu muss sichergestellt werden, dass alle Zellen gleichmäßig mit den Prüfsubstanzen in Berührung kommen. Zum anderen besteht das Problem, dass Leberzellen in Laborgefäßen meist schon nach wenigen Tagen absterben. Langzeitversuche, bei denen ermittelt wird, wie sich eine giftige Substanz langfristig auf einen Organismus auswirkt, sind damit kaum möglich.

Reaktion der Leberzellen in Echtzeit verfolgen

In dem Projekt »HeMiBio« haben Forscher vom Fraunhofer-Institut für Zelltherapie und Immunologie IZI in Potsdam zusammen mit Partnern von der Hebrew University in Jerusalem einen Mikrobioreaktor entwickelt, in dem Leberzellen über einen Zeitraum von einem Monat gehalten und beobachtet werden können. Die Besonderheit besteht darin, dass die Forscher die Reaktion der Leberzellen auf die toxischen Substanzen unmittelbar und live mitverfolgen können. »Sowohl im Tierversuch als auch in herkömmlichen Laborversuchen führt man bislang in der Regel Endpunkt-Messungen durch«, sagt Dr. Claus Duschl, am IZI Leiter der Abteilung Zelluläre Biotechnologie. »Dabei verabreicht man verschiedene Dosen eines Wirkstoffs und analysiert anschließend das abgestorbene Gewebe oder das tote Tier. Wie der Wirkstoff im Detail auf die Zellen wirkt, kann man damit nicht ermitteln.«

Sensoren messen den Sauerstoffverbrauch

Ganz anders der Mikrobioreaktor: Mithilfe winziger Sensoren wird in Echtzeit ermittelt, wie viel Sauerstoff die Leberzellen gerade verbrauchen. Bei angeregtem Stoffwechsel ist der Verbrauch hoch. Stirbt die Zelle ab, sinkt auch der Sauerstoffverbrauch. Zellbiologen können heute an dessen Verlauf sogar ablesen, welche Stoffwechselprozesse zu einem bestimmten Zeitpunkt in Zellen ablaufen. Das machen sich die HeMiBio-Projektpartner zunutze. Gibt man eine toxische Substanz hinzu, nehmen die Sensoren des Mikroreaktors genau wahr, wie sich der Sauerstoffverbrauch verändert. So lässt sich exakt erkennen, welche Stufen im Stoffwechselprozess der Wirkstoff beeinflusst oder unterbricht. »Im Projekt haben wir mit unseren Kooperationspartnern, Zellbiologen von der Hebrew University in Jerusalem, die Vermutungen überprüft, indem genau jene Substanzen ersetzt wurden, deren Produktion durch den Giftstoff blockiert wird«, erläutert Duschl. »Tatsächlich liefen danach die anschließenden Stoffwechselschritte ungestört weiter.«

Eine Aufgabe der Mitarbeiter von Duschl bestand darin, das von vielen kleinen Kanälen durchzogene Reaktorgefäß zusammen mit den Partnern aus Israel zu designen. Dabei mussten sie darauf achten, dass alle Zellen gut mit Nährmedium versorgt werden, damit sie sich fein verteilen und nicht verklumpen. Diese Feinverteilung aber brachte eine Schwierigkeit mit sich: Je feiner die Zellen verstreut sind, umso schwächer sind die Signale, die der Sensor empfängt. »Wir brauchten also eine Sensortechnologie, mit der man sich den Zellen möglichst stark annähern kann, die aber die Zellen andererseits nicht beeinflusst und so die Ergebnisse verfälscht.« Das IZI-Projektteam kam auf die Idee, kleine Polymerpartikel zu verwenden, die mit Farbstoffen versetzt sind. Diese Farbstoffe geben phosphoreszierendes Licht ab: Bestrahlt man die Farbstoffe mit monochromatischem Licht einer LED, werden einzelne Elektronen angeregt und auf ein höheres Energieniveau gehoben. Innerhalb von Sekundenbruchteilen fallen die Elektronen auf das ursprüngliche Energieniveau zurück. Dabei wird die überschüssige Energie als Phosphoreszenzlicht abgegeben. Die Zeit, die die Elektronen für diese Abregung benötigen, hängt direkt von der Sauerstoffkonzentration in der Umgebung ab. »Der Zeitverlauf der Abregung signalisiert uns also, wie aktiv der Stoffwechsel gerade ist oder wie sich eine toxische Substanz auswirkt.« Das ist nicht zuletzt wichtig, um die Wirkungsweise bestimmter Substanzklassen besser zu verstehen, um einzuschätzen, warum welche Stoffe giftig sind oder auch um Medikamente zu verbessern.

Stoffwechselprozesse nachahmen

Dass der Mikrobioreaktor funktioniert, haben die Kooperationspartner bewiesen. Noch ist aber einiges zu tun. Da in der Leber verschiedene Zelltypen aktiv sind, wollen die Forscher den Reaktor künftig mit verschiedenen Zellen bestücken. »Dadurch können wir die Stoffwechselprozesse noch besser nachahmen«, sagt Duschl. Sogar Gewebe aus verschiedenen Organen könnten einst in einem Reaktor dieser Bauart kombiniert werden. »Bis dahin«, sagt Duschl, »ist es aber noch ein weiter Weg.«

Am Projekt HeMiBio sind auch Forscher vom Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM in Berlin beteiligt. Zusammen mit Kollegen aus Belgien entwickeln sie ein weiteres Reaktorformat mit sehr komplexen fluidischen Strukturen. Erste Testmessungen sind im Gange und zeigen vielversprechende Resultate.

Externer Link: www.fraunhofer.de

Werkzeuge für den Trinkwasserschutz

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 04.01.2016

An die Qualität des Trinkwassers stellen wir hohe Anforderungen: Würden Krankheitserreger und Giftstoffe ins Leitungsnetz gelangen, könnten sie rasch viele Menschen infizieren und schädigen. Daher muss dieses Risiko gering gehalten werden. Experten haben Technologien für ein umfassendes Monitoring, Frühwarn- und Notfallmanagement-System entwickelt.

Trinkwasser ist für jeden Menschen unverzichtbar. Stadtwerke und Wasserbetriebe müssen die Versorgungsnetze vor Verunreinigungen, aber auch vor möglichen Manipulationen schützen. Täglich entnehmen sie Proben und untersuchen die Qualität des Trinkwassers. Doch die Analyse im Labor ist zeitaufwendig. Für die fortlaufende Überwachung sind Methoden und Tools erforderlich, die vorbeugen, Kontaminationen schnell erkennen und auch unerwartete toxische Substanzen erfassen. Schon wenige Tropfen können verheerende Folgen haben: Giftstoffe, die ins Trinkwasser gelangen, erreichen innerhalb weniger Stunden Millionen Verbraucher. »Um die Bevölkerung zu schützen, muss man die Gefahrenstoffe möglichst schnell entdecken und wissen, wie sie sich ausbreiten«, erklärt Dr. Thomas Bernard, Spezialist für Strömungsmodelle am Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB in Karlsruhe. Im deutsch-französischen Projekt »SMaRT-OnlineWDN« (Online Security Management and Reliability Toolkit for Water Distribution Networks) haben der Wissenschaftler und sein Team gemeinsam mit Partnern aus Industrie und Forschung Werkzeuge entwickelt, die Wasserversorger in die Lage versetzen, rasch zu reagieren und im Notfall Gegenmaßnahmen zum Schutz der Bevölkerung einzuleiten. Das Vorhaben wurde vom Bundesministerium für Bildung und Forschung BMBF und der französischen L‘Agence Nationale de la Recherche ANR gefördert. Koordinator waren die Berliner Wasserbetriebe.

Online-Simulation berechnet Weg des Wassers

Ein mathematisches Modell zur Simulation der Hydraulik des Trinkwasserversorgungsnetzes und der Ausbreitung von Qualitätsparametern im Rohrleitungssystem übernimmt gleich mehrere Aufgaben: Auf Basis zahlreicher Simulationen lässt sich ermitteln, wo Sensoren optimalerweise platziert werden, um Verschmutzungen frühzeitig zu erkennen. Darüber hinaus hilft das Online-Simulationsmodell bei einem Alarm, die die Quelle der Verunreinigung einzugrenzen. Hierfür entwickelten die Forscher einen Algorithmus, der die Quelle der Kontamination lokalisiert und ermittelt, wohin sich die Verunreinigung in den nächsten Stunden ausbreiten wird. Doch den Weg des Wassers und somit den Weg der toxischen Stoffe zu berechnen und vorherzusagen, war auch für den Fraunhofer-Experten Bernard eine diffizile Aufgabe: In einem Trinkwassernetz ist die Strömung nicht überall gleich: »Sie ändert sich abhängig vom Druck in den Leitungen, dem Durchmesser und der Geometrie der Rohre sowie der Zahl der Verbraucher. Dort, wo sich das Leitungssystem verzweigt, bilden sich häufig Turbulenzen und chaotische Strömungen.«

Tests im Technologiezentrum Wasser TZW in Dresden, wo ein komplexes Leitungsnetz aus Plexiglas aufgebaut ist, halfen Bernard und seinen französischen Partnern, ein lernfähiges Detektionsmodul zu etablieren. Im Dresdner Zentrum registrieren Sensoren die Bewegung des Wassers. Mit Hilfe der Messwerte konnte der Physiker seine Computersimulationen optimieren. Das Ziel: die Bewegung des Wassers im Leitungssystem ganzer Städte zu berechnen – in Echtzeit. »Nur wenn solche Simulationen präzise und schnell genug sind, helfen sie den Versorgungsunternehmen, im Notfall die richtigen Entscheidungen zu treffen«, so der Leiter der Gruppe.

Alarm nur im Notfall

Eine lernfähige Software berücksichtigt aktuelle Messwerte wie die Trübung, die Temperatur, den Druck, den Chlor- und Sauerstoffgehalt, den pH-Wert und die bakterielle Belastung des Wassers. Werden kritische Werte erreicht, schlägt das System nicht sofort Alarm, sondern sucht zuerst nach möglichen Ursachen: Wurde gerade eine andere Wasserquelle angezapft? Eine Pumpe geöffnet oder heruntergefahren? »Mehr als 90 Prozent aller Anomalien gehen auf veränderte Betriebszustände zurück und sind kein Grund zur Beunruhigung«, erläutert Bernard.

Das neue System ist in Straßburg bereits im Einsatz und überwacht in Echtzeit die Wasserqualität im Netz. Die Datenbasis liefern hydraulische und Wasserqualitätssensoren im Leitungsnetz, die erfassten Daten werden an ein Leitsystem gesendet. Im Notfall lassen sich Gegenmaßnahmen ableiten, wie das Ausspülen von kontaminiertem Wasser oder das Absperren von Teilen des Versorgungsnetzes.

Kontrolle durch Monitoring-Plattform

Künftige Modelle sollen noch mehr können: Im deutsch-französichen Projekt »ResiWater« arbeiten die Forscher vom IOSB an einer besseren IT-Sicherheit von Trinkwassersystemen und an einem verbesserten Alarmgenerierungs-Modul. Künftig soll es neben den Straßburger auch die Pariser Trinkwasserleitungen kontrollieren. Den Fokus legen die Projektpartner darüber hinaus auf eine Monitoring-Plattform, die die unzähligen Sensordaten übersichtlich darstellt, visualisiert, speichert und automatisierte Reports generiert, sodass beispielsweise Schwankungen der Wasserqualität regelmäßig zusammengefasst werden.

Auch die Weiterentwicklung von Sensoren treiben die Partner im Projekt ResiWater voran. Hier bringt etwa das Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB sein Know-how ein: Die Stuttgarter Forscher arbeiten seit vielen Jahren an einem Biosensor AquaBioTox aus lebenden Zellen, die fluoreszieren. Bei Kontakt mit toxischen Stoffen verringern die Bakterien die Intensität der Fluoreszenz. Im Projekt ResiWater soll der AquaBioTox-Prototyp vollautomatisiert werden.

Externer Link: www.fraunhofer.de

Stammzellen auf Algen schneller züchten

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.12.2015

Alginat nennt man das Stützskelett der Algen. Fraunhofer-Wissenschaftler nutzen die gelartige Masse chilenischer Pflanzen als Nährboden für Stammzellen: Porengröße und Elastizität des Alginats können flexibel eingestellt werden. Es transportiert Wirkstoffe und hat bessere optische Eigenschaften als Material aus Kunststoff.

Die Pharmaindustrie benötigt für Medikamententests der Zukunft pluripotente Stammzellen in großen Mengen. Diese Stammzellen haben das Potenzial, sich in beliebige Körperzellen umzuwandeln – zum Beispiel in Zellen der inneren Organe. In Biobanken entstehen gerade viele tausende Stammzelllinien unterschiedlichster Patienten. Mediziner erhalten dort perfekte Modelle der genetischen Krankheiten dieser Patienten. An den Stammzellen können Ärzte und Pharmaunternehmen neue Medikamente besser und schneller als bisher testen.

Wissenschaftler des Fraunhofer-Instituts für Biomedizinische Technik IBMT in Sulzbach haben Algen aus Chile als besonders effiziente Nährquelle für die Vermehrung pluripotenter Stammzellen identifiziert. In den vergangenen Jahren haben sie einen kontrollierten und dokumentierten Herstellungsprozess für Alginat, das Stützgerüst der Algen, entwickelt. Der Prozess reicht von der Ernte der Algen an chilenischen Küsten und im chilenischen Meer über den Import der zum Granulat aufbereiteten und getrockneten Algen bis zur Produktion des Alginats und zur Verwendung in der Kultur pluripotenter Stammzellen am Institut im Saarland. Aktuell validieren britische Pharmafirmen den Prozess in ihren Laboren. »Im nächsten Jahr sind erste konkrete Versuche mit Partnern aus dem europäischen Verband der Pharmaunternehmen, EFPIA, geplant. Ziel ist es zu zeigen, dass wir mit dem Prozess stabil pluripotente Stammzellen produzieren können. Am Institut konnten wir das bereits für viele einzelne Stammzelllinien nachweisen«, sagt Prof. Dr. Heiko Zimmermann, Institutsleiter am IBMT. Den Herstellungsprozess sowie die Technologieplattform haben die Fraunhofer-Wissenschaftler aus Sulzbach und deren Kollegen in Chile und Großbritannien gemeinsam entwickelt.

Alginat zweier chilenischer Algensorten besonders geeignet

Ausgangsmaterial sind zwei Algensorten, die an den Küsten Chiles wachsen: Lessonia trabeculata und Lessonia nigrescens. Das Stützskelett der Algen besteht aus Alginat, das sich besonders gut für die Stammzellkultivierung eignet: Es besteht aus einem stark wasserhaltigen Gel, ist aber zähflüssiger als Honig. Es ist, wenn man es mit Kalzium oder Barium vernetzt, zugleich stabil und flexibel – ähnlich wie Wackelpudding – und dabei durchlässig für Nährstoffe und wichtige Faktoren. »Zellen fühlen sich wie im Körper in elastischen dreidimensionalen Umgebungen besonders wohl. Genau diese Umgebung kann mit Alginat perfekt simuliert werden«, erklärt Prof. Zimmermann. Insbesondere für die regelmäßig kontrahierenden Herzmuskelzellen ist das eine ideale Umgebung. Die Wissenschaftler stellen die Elastizität durch die Mischung der Algenarten flexibel ein und produzieren das Alginat in Form von Kügelchen beliebiger Größe. »Denn unterschiedliche Zellen benötigen unterschiedliche Kulturbedingungen«, erklärt Prof. Zimmermann. »Gleichzeitig bringen wir Wirkstoffe in das Alginat ein und setzen sie kontrolliert frei.« Zum Beispiel Stoffe, die pluripotente Stammzellen in bestimmte Körperzellen umwandeln. »Zukünftig wird das Alginat nicht nur als passiver Nährboden fungieren, sondern auch aktiv das Wachstum der Stammzellen beeinflussen«, sagt Prof. Zimmermann. Ein weiterer Vorteil: Die elastische Biomasse hat keine Eigenfluoreszenz. Das ist für optische Analyseverfahren wichtig. »Die Stammzellen wachsen besser auf unserem Alginat, insbesondere auch in automatisierten Bioreaktoren. Sie lassen sich besser ausdifferenzieren – in gewünschte Körperzellen umwandeln – als auf Kunststoffuntergrund, der heute standardmäßig eingesetzt wird«, fasst Prof. Zimmermann zusammen.

Das Ernten der Algen wird streng kontrolliert: Es gibt spezielle Lizenzen für die chilenischen Fischer; sie ernten nur diejenigen Algen, die sich für die Herstellung des Alginats eignen und nur so viel, dass eine nachhaltige Bewirtschaftung der chilenischen Küste ermöglicht wird. In einem vom IBMT und von Fraunhofer Chile betriebenen Labor an der Universität Coquimbo werden die Algen einzeln geschält, zerkleinert und vollständig getrocknet. Das geschieht innerhalb von 24 Stunden, so dass das Material nicht verunreinigt wird. Das Algengranulat wird dann nach Deutschland importiert: Im Reinraum am IBMT lösen die Wissenschaftler das Alginat heraus. Es liegt dann in flüssiger Form vor und kann mit Hilfe eines starken Luftstrahls zu Kügelchen geformt werden. »In einem Bariumbad werden die Kügelchen stabiler gemacht, denn Barium verbleibt besser in der Algenmasse. Die Kunst ist es, das Material stabil, aber nicht zu hart zu machen«, sagt Prof. Zimmermann.

Die Forscher geben das mit Proteinen beschichtete Alginat in einen Bioreaktor. Dieser stellt die optimale Temperatur und CO2-Umgebung bereit und rührt Nährstoffe sowie Zellen kontinuierlich um. Jedes einzelne, etwa 200 Mikrometer große Alginatkügelchen übernimmt dabei die Rolle einer Petrischale. Die Stammzellen bewachsen das Alginat in drei bis sieben Tagen in den Behältern und vermehren sich dabei. »Die Alginatmengen in den Reaktoren lassen sich leicht erhöhen. Die Folge: Pluripotente Stammzellen wachsen auf weniger Raum und in größerer Zahl«, sagt Prof. Zimmermann.

Externer Link: www.fraunhofer.de

LEDs wirtschaftlich recyceln

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.11.2015

In Fernsehern und Leuchtmitteln sind sie massenhaft verbaut. Auch in Autoscheinwerfern werden LEDs immer häufiger. Noch gibt es kein geeignetes Recyclingverfahren für die Leuchtdioden. Fraunhofer-Forscher haben eine Methode entwickelt, die Komponenten von LED-Leuchtmitteln mechanisch trennt.

In modernen Leuchtmitteln sind unterschiedliche Materialien verbaut: Glas oder Kunststoff im Gehäuse, Keramik oder Aluminium im Kühlkörper, Kupfer in Widerständen oder Kabeln – und das Wertvollste im Innern der Leuchtdioden, kurz LEDs (engl. light emitting diodes): Indium und Gallium in der Halbleiterdiode und Seltene Erden wie Europium oder Terbium im Leuchtstoff. Die Dioden herzustellen ist deswegen vergleichsweise teuer, die Margen sind gering. »Schon jetzt fallen bei den Recyclern erste LED-Produkte an, die derzeit nur gelagert werden und für die es keinen geeigneten Recyclingprozess gibt. Ziel ist es vor allem, die wertvollen Materialien zurückzugewinnen. Es ist nur eine Frage der Zeit, bis die Verwerter auf das LED-Recycling umsteigen müssen«, sagt Jörg Zimmermann aus der Projektgruppe für Wertstoffkreisläufe und Ressourcenstrategie IWKS in Alzenau und Hanau des Fraunhofer-Instituts für Silicatforschung ISC.

Komponenten mit Hilfe von Druckwellen ablösen

Mit Hilfe der »elektrohydraulischen Zerkleinerung« zerlegen die Forscher die LED-Leuchtmittel in ihre Einzelteile, ohne dabei die LEDs selbst zu zerstören. Druckwellen elektrischer Impulse lösen in einem Wasserbad die einzelnen Komponenten mechanisch exakt an ihren Sollbruchstellen ab. Die Bauteile können separat wiederverwertet werden. Ihren Versuchsaufbau haben die Forscher für Retrofit-Leuchtmittel angepasst. Sie ähneln in ihrem Aussehen der klassischen Glühbirne oder Leuchtstoffröhre und können genau wie diese in handelsübliche Lampenfassungen geschraubt werden. »Die Methode funktioniert jedoch prinzipiell auch bei anderen Größen – zum Beispiel für LEDs aus Fernsehern und Autoscheinwerfern oder für andere elektronische Bauteile«, erklärt der Experte.

Die Bauteile sauber und rein zu trennen, ist Voraussetzung dafür, den Recyclingprozess wirtschaftlich zu gestalten. »Um alle Komponenten eines LED-basierten Leuchtmittels effizient zu separieren und wiederzuverwerten, bedarf es eines völlig anderen Zerkleinerungskonzepts, welches zu größeren Mengen an Halbleiter- und Leuchtstoff-Komponenten führt«, so Zimmermann. Würde man den Retrofit als Ganzes zerkleinern, wäre es um ein Vielfaches schwerer, die unterschiedlichen Stoffe in der klein gemahlenen Mischung zu sortieren. Durch das Auftrennen in die einzelnen Komponenten lassen sich auch größere Mengen der in ihnen enthaltenen Stoffe leichter zurückgewinnen: Dies gelingt, indem man viele ähnliche Komponenten sammelt, in denen die Konzentration einzelner Stoffe bereits höher ist. »Für Recycler und Hersteller lohnt sich das Wiederverwerten nur, wenn sie größere Mengen verwerten«, beschreibt Zimmermann.

»Wir testen noch, ob man das Zerkleinern zukünftig so oft wiederholen kann, bis man die gewünschten Stoffe separiert hat«, betont Zimmermann. Die Forscher können die Parameter des Versuchaufbaus so einstellen – zum Beispiel die Art und Menge des flüssigen Mediums, Behältergröße, Spannung, die den elektrischen Impuls erzeugt –, dass genau an den Sollbruchstellen getrennt wird. »Insbesondere die Anzahl der Pulse bestimmt, in welcher Weise die Bauteile separiert werden«, sagt der Wissenschaftler.

Die elektrohydraulische Zerkleinerung soll nun im Detail weiter analysiert, verbessert und für weitere Anwendungen ausgeweitet werden. »Mit unserer Forschungsarbeit haben wir gezeigt, dass das mechanische Trennen ein möglicher Weg ist, um zum wirtschaftlichen Recycling von LEDs beizutragen«, so Zimmermann.

Externer Link: www.fraunhofer.de