Weniger Tierversuche durch Nanosensoren

Mediendienst der Fraunhofer-Gesellschaft vom 02.01.2012

Experimente an Tieren sind seit Jahrzehnten in der Kritik. Eine Trendwende ist dennoch nicht in Sicht. Die Zahl der Tests mit Labortieren stieg sogar. Forscher haben jetzt eine neue Alternative gefunden: Mit Hilfe von Sensor-Nanopartikeln wollen sie die Anzahl der Versuche reduzieren.

Unzählige Mäuse, Ratten und Kaninchen sterben jährlich für die Wissenschaft – Tendenz steigend. Verwendeten deutsche Labors im Jahr 2005 noch etwa 2,41 Millionen Tiere für Forschungszwecke, so waren es 2009 bereits 2,79 Millionen. Ein Drittel diente der biologischen Grundlagenforschung, ein Großteil davon wurde für die Erforschung von Krankheiten und für die Entwicklung medizinischer Produkte und Geräte benötigt. Die Menschen fordern zwar sichere Medikamente und verträgliche Therapien, doch Tierversuche will kaum jemand in Kauf nehmen. Wissenschaftler suchen daher seit Jahren nach Ersatzmethoden. Eine Alternative haben jetzt die Forscher der Fraunhofer-Einrichtung für Modulare Festkörper-Technologien EMFT in München gefunden: Mit neuartigen Nanosensoren wollen sie die Anzahl der Tierexperimente verringern. »Wir testen Chemikalien quasi im Reagenzglas auf ihre Wirksamkeit und ihr Risikopotenzial. Hierfür setzen wir lebende Zellen, die aus menschlichem und tierischem Gewebe isoliert und in Zellkulturen gezüchtet wurden, der zu untersuchenden Substanz aus«, erläutert Dr. Jennifer Schmidt vom EMFT. Ist der Wirkstoff in einer bestimmten Konzentration giftig für die Zelle, stirbt sie. Diese Änderung des »Wohlbefindens« können Dr. Schmidt und ihr Team mit ihren Sensor-Nanopartikeln sichtbar machen.

Gesunde Zellen speichern ihre Energie in Form von Adenosintriphosphat (ATP). Je mehr ATP vorhanden ist, desto aktiver ist die kleinste lebende Einheit. Wird diese stark geschädigt, verringert sie schlussendlich ihre Stoffwechselaktivität, speichert weniger Energie und produziert infolgedessen auch weniger ATP. »Mit unseren Nanosensoren können wir das Adenosintriphosphat detektieren und feststellen, in welchem Gesundheitszustand sich Zellen befinden. Dies wiederum lässt Rückschlüsse auf den zellschädigenden Einfluss von Medikamenten oder Chemikalien zu«, sagt Dr. Schmidt.

Damit die Nanopartikel das ATP erkennen, statten die Forscher sie mit zwei Fluoreszenzfarbstoffen aus: einem grünen Indikatorfarbstoff, der sensibel auf ATP reagiert, und einem roten Referenzfarbstoff, dessen Farbe sich nicht verändert. Im nächsten Schritt schleusen die Wissenschaftler die Partikel in die lebenden Zellen ein und beobachten sie unter dem Fluoreszenzmikroskop. In Abhängigkeit der Menge des vorhandenen ATPs leuchten die Partikel unterschiedlich stark – je gelber das Signal im Überlagerungsbild erscheint, desto aktiver ist die Zelle. Wäre diese in einem schlechten Zustand, würde das Überlagerungsbild deutlich röter ausfallen. »Werden beispielsweise Krebszellen verwendet, lässt sich zukünftig die Wirksamkeit neu entwickelter Chemotherapeutika testen. Detektieren wir mit den Nanosensoren eine geringe ATP-Konzentration in den Zellen, wissen wir, dass das neue Medikament die Tumorzellen in ihrem Wachstum hemmt oder gar abtötet«, so die Forscherin. »Die vielversprechendsten Medikamente können dann weiter untersucht werden.«

Die Nanopartikel der EMFT-Forscher genügen hohen Ansprüchen: Sie sind nicht giftig für Zellen, passieren problemlos die Zellmembran und lassen sich sogar gezielt dorthin transportieren, wo die Testsubstanz detektiert werden soll. Doch bevor das Verfahren angewendet werden kann, müssen die Zulassungsbehörden es anerkennen – ein langer Weg durch die Genehmigungsinstanzen steht den Experten vom EMFT bevor. Das hält die Forscher nicht davon ab, die Technologie inzwischen weiterzuentwickeln und flexibel einzusetzen: beispielsweise, um die Qualität und Genießbarkeit von verpacktem Fleisch zu ermitteln. Hierfür haben sie Nanosensoren entwickelt, die die Konzentration von Sauerstoff und toxischen Aminen bestimmen können.

Externer Link: www.fraunhofer.de

Mit High-Speed-CMOS-Sensoren sieht man besser

Mediendienst der Fraunhofer-Gesellschaft vom 02.01.2012

Herkömmliche CMOS-Bildsensoren sind für lichtschwache Anwendungen wie Fluoreszenz kaum brauchbar. Denn große, in einer Matrix angeordnete Pixel erlauben keine raschen Auslesegeschwindigkeiten. Ein neues optoelektronisches Bauteil beschleunigt diesen Prozess. Es ist bereits zum Patent angemeldet.

Längst haben CMOS-Bildsensoren in der Digitalfotografie den Markt erobert. In der Herstellung sind sie wesentlich günstiger als bisherige Sensoren. Auch in Sachen Stromverbrauch und Handhabung sind sie überlegen. Deshalb verbauen die großen Hersteller von Handy- und Digitalkameras fast ausschließlich nur noch CMOS-Chips in ihre Produkte. Das schont den Akku – und die Kameras werden immer kleiner. Doch die optischen Halbleiterchips stoßen mitunter an ihre Grenzen: Während die Miniaturisierung in der Unterhaltungselektronik zu immer kleineren Pixelgrößen von etwa 1 Mikrometer führt, sind bei bestimmten Anwendungen größere Pixel von mehr als 10 Mikrometer gefragt. Besonders in Bereichen, in denen nur wenig Licht zur Verfügung steht, wie in der Röntgenfotografie oder in der Astronomie, gleicht die größere Pixelfläche den Lichtmangel aus. Für die Umwandlung der Lichtsignale in elektrische Impulse sorgen Pinned-Photodioden (PPD). Diese optoelektrischen Bauelemente sind für die Bildverarbeitung wesentlich und werden in die CMOS-Chips eingebaut. »Doch wenn die Pixel eine bestimmte Größe überschreiten, haben die PPD ein Geschwindigkeitsproblem«, erklärt Werner Brockherde, Abteilungsleiter am Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS. Denn meistens erfordern lichtschwache Anwendungen hohe Bildraten. »Dafür ist die Auslesegeschwindigkeit mit PPD jedoch zu gering«, sagt Brockherde.

Für dieses Problem haben die Fraunhofer-Forscher jetzt eine Lösung gefunden – sie ist bisher einzigartig und bereits patentiert: Die Wissenschaftler haben ein neues optoelektronisches Bauelement entwickelt, LDPD genannt – »Lateral drift field Photodetector«. »Darin wandern die durch das einfallende Licht erzeugten Ladungsträger mit High-Speed zum Ausgang«, erklärt der Forscher. Bei der PPD diffundieren die Elektronen lediglich zum Ausleseknoten. Ein vergleichsweise langsamer Prozess, der für viele Anwendungen ausreicht. »Indem wir aber innerhalb des photoaktiven Bereichs ein elektrisches Spannungsfeld in das Bauelement integriert haben, konnten wir diesen Vorgang bis zum hundertfachen beschleunigen.«

Um das neue Bauelement realisieren zu können, erweiterten die Fraunhofer-Forscher den derzeit verfügbaren 0,35 µm-Standard-CMOS-Prozess zur Herstellung der Chips: »Das zusätzliche LDPD-Bauelement darf die Eigenschaften der restlichen Bauteile nicht beeinträchtigen«, sagt Brockherde. Mithilfe von Simulationsberechnungen gelang es den Experten, diesen Anforderungen zu genügen – ein Prototyp der neuen High-Speed-CMOS-Bildsensoren ist bereits verfügbar. »Die Freigabe für die Serienfertigung erwarten wir für nächstes Jahr«, so Brockherde.

Die High-Speed-CMOS-Sensoren sind ideale Kandidaten für Anwendungen, in denen großflächige Pixel und eine hohe Auslesegeschwindigkeit erforderlich sind: Nicht nur in der Astronomie, bei der Spektroskopie oder in der modernen Röntgenfotografie könnten sie zum Einsatz kommen. Sie eignen sich auch hervorragend als 3D-Sensoren, die nach dem Time-of-Flight-Verfahren arbeiten. Dabei senden Lichtquellen kurze Impulse aus, die von den Objekten reflektiert werden. Die Laufzeit des reflektierten Lichts wird dann von einem Sensor erfasst und ergibt ein ganzheitliches 3D-Bild. Diese Technologie ist etwa beim Thema Aufprallschutz von Interesse. Denn die Sensoren können das Umfeld dreidimensional exakt erfassen. Für die TriDiCam GmbH haben die Fraunhofer-Forscher bereits einen solchen Flächensensor mit der einzigartigen Pixelanordnung entwickelt.

Externer Link: www.fraunhofer.de

Lebensmittelkontrolle mit Millimeterwellen

Mediendienst der Fraunhofer-Gesellschaft vom 01.12.2011

Wir können durch Glas, Wasser und Luft hindurchsehen, nicht aber durch Packpapier, Plastik oder Pappe. Was dem menschlichen Auge verborgen bleibt, macht ein neuer Millimeterwellensensor sichtbar: Er durchleuchtet optisch nicht transparente Stoffe und arbeitet anders als Röntgenscanner nicht mit gesundheitsschädlichen Strahlen.

Ist die Packung richtig befüllt? Befinden sich in der Schokolade Verunreinigungen? Sind die Plastiknähte korrekt verschweißt? Verbirgt sich in dem Päckchen ein Messer? Antworten auf all diese Fragen liefert der Materialscanner SAMMI, kurz für Stand Alone MilliMeter wave Imager. Der Millimeterwellensensor durchleuchtet alle optisch nicht transparenten Materialien. Forscher des Fraunhofer-Instituts für Hochfrequenzphysik und Radartechnik FHR in Wachtberg haben das Gerät entwickelt, das mit einer Breite von 50 und einer Höhe von 32 Zentimeter nicht größer ist als ein kompakter Laserdrucker. Alle nicht-metallischen Stoffe stellen für SAMMI kein Hindernis dar. »Das System erkennt Holzsplitter im Zellstoff von Windeln, Luftblasen im Kunststoff, Brüche im Marzipanriegel, Fremdkörper in Lebensmitteln. Es kann sogar den Austrocknungsprozess in Pflanzen beobachten und feststellen, wie stark diese durch Trockenperioden gestresst wurden«, sagt Dr. Helmut Essen, Leiter der Abteilung Millimeterwellenradar und Höchtstfrequenzsensorik vom FHR. Daher ist der Scanner vielseitig einsetzbar – er eignet sich sowohl für die industrielle Produktkon-trolle und Qualitätssicherung als auch für die Materialanalyse im Labor. Da das System gefährliche Substanzen wie Sprengstoffpulver in Briefen detektieren kann, lassen sich auch gefährdete Personen wie etwa Politiker oder Mitarbeiter in Frachtunternehmen mit dem Millimeterwellenradar schützen.

Der Clou: SAMMI macht kleinste Materialunterschiede sichtbar, die im Röntgenbereich verborgen bleiben. Denn anders als Röntgenscanner unterscheidet SAMMI beispielsweise zwischen den unterschiedlichen Füllungen von Pralinen oder Gummimischungen, die eine ähnliche oder identische Absorption aufweisen. Ein weiterer Vorteil: Der Materialscanner arbeitet nicht mit ionisierender Strahlung, die zu Gesundheitsschäden führen kann. Er ist zudem wartungsarm, regelmäßige Prüfungen wie bei Röntgenröhren entfallen.

Doch wie funktioniert SAMMI? Im Gehäuse des Systems sind auf zwei sich gegenüberliegenden rotierenden Scheiben je eine Sende- und eine Empfangsantenne angebracht. Ein Förderband fährt die Probe – etwa ein Paket mit unbekanntem Inhalt – zwischen den Antennen hindurch, wobei diese elektromagnetische Wellen im Hochfrequenzbereich von 78 GHz senden. Die verschiedenen Zonen der Probe dämpfen das Signal mit unterschiedlicher Intensität. Auf diese Weise zeigen die diversen Materialzusammensetzungen einer Probe einen unterscheidbaren Kontrast an. »Im Prinzip untersuchen wir die zu durchleuchtenden Gegenstände auf Unähnlichkeiten«, erläutert Essen. Der Probeninhalt wird in Echtzeit auf einem ausklappbaren Display dargestellt, das Bestandteil des Scanners ist. Enthält ein Paket beispielsweise ein Messer, so ist sogar die Maserung des Griffs erkennbar. Sollte dieser hohl sein, zeigt der Millimeterwellensensor dies ebenfalls an. Das Gerät scannt eine Fläche von 30 mal 30 Zentimeter in rund 60 Sekunden.

»Unser System lässt sich ohne Sicherheitsvorkehrungen und -einweisungen bedienen und durch sein geringes Gewicht von rund 20 Kilogramm mobil einsetzen. Zudem ist es für unterschiedliche Messfrequenzen auslegbar«, betont der Wissenschaftler. Künftig wollen die Forscher das System für Terahertzfrequenzen von 2 THz »aufrüsten«. »Dann werden wir in der Lage sein, nicht nur unterschiedliche Strukturen zu erkennen, sondern auch feststellen können, aus welchem Kunststoff ein Produkt ist. Das ist im Augenblick noch nicht möglich«, so Dr. Essen.

Derzeit eignet sich SAMMI nur für Stichprobenkontrollen. Doch die FHR-Forscher sind dabei, den Millimeterwellensensor für eine Produktionsstraße in einer Industrieanlage zur schnellen, automatisierten Kontrolle von Waren anzupassen: Hierfür bringen sie eine Zeile von Sensoren über dem Förderband an. Mit einer Geschwindigkeit von bis zu sechs Meter pro Sekunde sollen die Produkte künftig durchleuchtet werden.

Externer Link: www.fraunhofer.de

Plasma in Tüten

Mediendienst der Fraunhofer-Gesellschaft vom 01.11.2011

Geschlossene Plastikbeutel lassen sich mit Hilfe von Plasmen bei Atmosphärendruck so verändern, dass an ihren Wänden menschliche Zellen anhaften und sich vermehren können. Solche Zellkulturbeutel stellen ein wichtiges Hilfsmittel für Forschung und Klinik dar und könnten vielleicht eines Tages die heutigen Petrischalen ablösen.

Ärzte setzen bei Therapien immer häufiger lebende Zellen ein: bei der Bluttransfusion ebenso wie bei Knochenmarkstransplantationen, bei Stammzelltherapien oder nach schweren Verbrennungen. Zellen, die vom Patienten selbst stammen, sind ideal, um verbrannte Haut zu ersetzen, Immundefekte zu beheben, degenerierte Knorpel zu reparieren oder verletzte Knochen zu heilen, denn sie werden vom Immunsystem nicht abgestoßen. Dazu ist es nötig, solche Zellen patientenspezifisch aufzubewahren, zu züchten, zu vermehren oder gar zu verändern. Problematisch ist jedoch die Haltbarkeit der verwendeten Zelllösungen. Da sie leicht durch Keime infiziert werden, lassen sie sich in den heute üblichen Gefäßen meist nur wenige Tage lagern. Das Verbundprojekt InnoSurf sollte da Abhilfe schaffen: Wissenschaftler aus fünf Forschungseinrichtungen haben mit Partnern aus der Industrie neuartige Kunststoffoberflächen und Messverfahren zur effizienten Gewinnung von humanen Zellen für diagnostische und therapeutische Anwendungen entwickelt. Die Arbeiten wurden vom Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig koordiniert.

Die Idee ist, die Zellen in geschlossenen, sterilen Kunststoffbeuteln zu kultivieren. Dazu muss man die innere Oberfläche der Beutel so verändern, dass sie Zellen gute Überlebensbedingungen bieten. Ein Team um Dr. Michael Thomas am Fraunhofer-Institut für Schicht- und Oberflächentechnik IST in Braunschweig hat dafür nun ein plasmatechnisches Verfahren bei Atmosphärendruck entwickelt. »Wir befüllen die Beutel mit einem spezifischen Gasgemisch und legen eine elektrische Spannung an«, erklärt die wissenschaftliche Mitarbeiterin Dr. Kristina Lachmann. »So entsteht im Inneren für kurze Zeit ein Plasma – also ein leuchtendes, ionisiertes Gas -, das die Kunststoffoberfläche chemisch verändert.« Bei diesem Prozess bleibt der Beutel steril, da Plasmen auch eine desinfizierende Wirkung besitzen. »Der Vorteil des Verfahrens ist, dass es bei Atmosphärendruck arbeitet und damit preiswert, schnell und flexibel ist«, betont Gruppenleiter Dr. Michael Thomas, der auf die Anwendung von solchen Atmosphärendruck-Plasmen zur Veränderung von Oberflächen spezialisiert ist.

Die neuartigen Beutel erleichtern den sterilen Umgang mit den Zellkulturen. Bisher mussten Forscher und Mediziner offene Petrischalen, Flaschen oder Bioreaktoren nutzen. Da diese Systeme zumindest zum Befüllen geöffnet werden müssen, kommt es leicht zu Verunreinigungen. Beim Verwenden geschlossener Beutelsysteme der neuen Technik hingegen wandern die Zellen direkt über eine Injektionsnadel oder durch angeschlossene Schlauchsysteme in den Beutel, ohne mit der Umgebung in Berührung zu kommen. Im sterilen Inneren der Beutel befinden sich das Nährmedium und keimfreie Luft oder ein geeignetes Gas, das man vorher zugegeben hat. Auch während des Kultivierungsprozesses muss man die Behältnisse nicht öffnen, und am Ende lassen sich die Zellen erneut über eine Injektionsnadel entnehmen.

Die Forscher wollen die Einwegsysteme vielleicht auch zum Züchten künstlicher Organe verwenden. Rüstet man die Beutel mit einer dreidimensionalen Struktur aus, könnten sich darauf Zellen festsetzen und künstliche Haut, Nerven, Knorpel oder Knochen bilden, die man dann dem Patienten als Prothesen einsetzen könnte. Bisher scheiterte deren Züchtung meist daran, dass sich die Stammzellen nicht auf räumlichen Gebilden festsetzen wollten. Das am IST entwickelte Plasmaverfahren könnte dieses Problem lösen. Das Städtische Klinikum Braunschweig will in Zusammenarbeit mit der Universität Tübingen aus Gewebeproben bestimmte Stammzellen isolieren und untersuchen, auf welchen der neuen Kunststoff-Oberflächen sie sich etwa zu Knochen oder Knorpel entwickeln. Für diese Entwicklung der Gruppe von Dr. Michael Thomas wurde das IST als »Ausgewählter Ort 2011« im »Land der Ideen« ausgezeichnet. Die Preisverleihung findet am 8. Dezember 2011 am IST in Braunschweig statt.

Externer Link: www.fraunhofer.de

Lebendige Fabrik

Mediendienst der Fraunhofer-Gesellschaft vom Oktober 2011

Neue Produkte kommen in immer kürzeren Abständen auf den Markt. Die Folge: Die Waren werden mit Produktionsanlagen und IT-Systemen gefertigt, die ursprünglich für die Herstellung ganz anderer Modelle vorgesehen waren. Entwickler wollen die Fabrik smarter machen, so dass sie auf Änderungen eigenständig reagiert.

Wenn von DNA die Rede ist, denkt man sofort an Biologie und Lebewesen. Denn das DNA-Molekül, das in jeder Zelle steckt, enthält den verschlüsselten Bauplan von Menschen, Tieren oder Pflanzen. Doch auch eine Fabrik besitzt einen solchen Masterplan. Jeder moderne Produktionsbetrieb ähnelt mit seiner komplexen Struktur einem lebenden Organismus. Und genau wie in der Biologie sind alle Komponenten miteinander verknüpft und müssen aufwändig koordiniert werden. Das Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB in Karlsruhe ist nun – gemeinsam mit den Fraunhofer-Instituten IPA in Stuttgart und IPT in Aachen – angetreten, die »Fabrik-DNA« zu entschlüsseln.

Hinter dem griffigen Schlagwort stehen handfeste Ziele: Es geht darum, die Kosten zu senken, die bei Veränderungen von Produkten oder Maschinen entstehen. Denn bisher klappt das Zusammenspiel der einzelnen Bausteine einer Fabrik noch nicht optimal. Das zeigt sich vor allem dann, wenn ein neues Produkt hergestellt werden soll, etwa ein Automodell. Sogar das Hinzufügen eines Manipulators in eine Produktionsstraße oder auch nur ein Update des Betriebssystems machen Ärger, weil sich jede Änderung auf den gesamten Betrieb auswirkt. Was fehlt, sind intelligente Verknüpfungen zwischen den Komponenten: den hergestellten Produkten, den fertigenden Produktionsanlagen und den steuernden IT-Systemen. Hier setzen die Experten vom IOSB an. Mit neuen Schnittstellen wollen sie die Fabrik smarter machen, so dass sie auf Änderungen eigenständig reagiert. Dabei profitieren die Forscher von ihrer jahrelangen Erfahrung mit Softwarelösungen für Fabriken. Sie arbeiten vor allem mit der Daimler AG zusammen. In den Fertigungshallen für den C-Klasse-Mercedes läuft das Produktionsleitsystem »ProVis.Agent«, das rund 2000 Maschinen steuert.

Es geht primär darum, die Produktionsanlagen und die IT-Systeme intelligent zu verknüpfen. Wenn heute das Produkt wechselt, wird zunächst die Produktionsstraße neu zusammengestellt. Erst danach folgt die Konfiguration des IT-Systems. Dazu müssen die Daten jeder Maschine, die zur Straße gehört, von Hand in den Rechner eingegeben werden. Weil es sich dabei um eine Vielzahl kryptischer Zeichenkombinationen handelt, ist die Arbeit langwierig und fehleranfällig. »Und den Fehler merkt man erst, wenn die Anlage läuft«, sagt IOSB-Bereichsleiter Dr. Olaf Sauer. Der Forscher und sein Team haben einen eleganteren Weg gefunden: Ein Mitarbeiter steckt einen Datenstecker ein, und die Sache ist erledigt – »Plug-and-work« heißt das Zauberwort. Das ist wie beim heimischen Computer. Wer früher ein Periphergerät anschließen wollte, musste den entsprechenden Treiber installieren. Heute genügt es, einen USB-Stecker einzustöpseln. Das neue Gerät kommuniziert darüber mit dem PC und beschreibt sich selbst. In der modernen Fabrik soll es ähnlich zugehen, auch wenn dort alles komplizierter ist. So gibt es viele unterschiedliche Maschinen von verschiedenen Herstellern. Und von einer standardisierten Software oder auch nur einer einheitlichen Software-Sprache ist die Sparte weit entfernt. Die Forscher haben deshalb einen digitalen Dolmetscher erfunden und patentieren lassen. Der übersetzt die jeweiligen digitalen Gerätebeschreibungen in die genormte Maschinensprache CAEX (Computer Aided Engeneering Exchange). Diese Daten landen auf einem speziellen Datenspeicher, den das Institut ebenfalls zum Patent angemeldet hat. »Die beiden Komponenten genügen, um die einfache Steckerlösung zu verwirklichen. Wenn die Daten darüber fließen, entwirft der Rechner ein Prozessführungsbild der neuen Fertigungsstraße, ganz ohne Hilfe«, sagt Sauer. Dass das Verfahren funktioniert, haben die Informatiker bereits auf einer kleinen Modellanlage mit vier Komponenten – zwei Transportbändern, einem Drehtisch und einem Prüfgerät – gezeigt. An der ersten konkreten Anwendung wird bereits gearbeitet.

Externer Link: www.fraunhofer.de