Zu viele Basen verderben das Gen

Presseinformation der Max-Planck-Gesellschaft vom 16.02.2009

Ein Gendefekt einer Blütenpflanze liefert den Schlüssel zu genetischen Grundlagen neurodegenerativer Krankheiten

Wissenschaftler am Max-Planck-Institut für Entwicklungsbiologie in Tübingen haben bei der Ackerschmalwand (Arabidopsis thaliana) einen Gendefekt gefunden, der auch für schwere neurodegenerative Krankheiten des Menschen verantwortlich ist. Die Erbkrankheiten entstehen dadurch, dass ein bestimmter Abschnitt der DNA in vielfacher Kopie vorliegt. Bei Arabidopsis führt dies dazu, dass die Pflanzen verkümmern. Beim Menschen verursacht es schwere Nervenkrankheiten wie Chorea Huntington, Friedreich-Ataxie oder Fragiles X-Syndrom. (Science, 20. Februar 2009 / Online-Vorabveröffentlichung 29. Januar 2009).

Die Wissenschaftler um Detlef Weigel vom Max-Planck-Institut für Entwicklungsbiologie sind durch eine Zufallsbeobachtung auf einen bislang unbekannten Gendefekt bei der Blütenpflanze Arabidopsis thaliana gestoßen: Einige der Pflanzen verkümmerten bei höheren Temperaturen in den klimatisierten Zuchträumen. Wie sich herausstellte, haben diese Individuen einen Defekt in einem ganz spezifischen Abschnitt des Genoms. In einem Gen ist ein aus drei Molekülen bestehender Abschnitt, ein Basentriplett, mehr als 400-fach vorhanden. Diese Triplett-Wiederholungen führen dazu, dass das Gen nicht mehr korrekt abgelesen wird und nur noch wenige funktionsfähige Proteine entstehen.

Dass Triplett-Wiederholungen auch die Ursache für einige schwerwiegende Erbkrankheiten beim Menschen sind, macht die Entdeckung der Tübinger Forscher besonders interessant. So erkranken beispielsweise rund fünf von 100.000 Menschen jedes Jahr an Chorea Huntington, einem bislang unheilbaren Nervenleiden, das zunächst zu Bewegungsstörungen und schließlich zum Tod führt. Etwa eines von 50.000 Neugeborenen in Mitteleuropa leidet an der Friedreich-Ataxie, ebenfalls eine neurodegenerative Erkrankung, die im Laufe des Lebens zunehmend zu Bewegungsstörungen und Demenz führt. „Mit Arabidopsis thaliana haben wir einen Modellorganismus gefunden, an dem wir die genetischen Ursachen und die Entstehung schwerer Erbkrankheiten des Menschen untersuchen können,“ sagt Detlef Weigel.

„Bei Arabidopsis können wir untersuchen, wie sich die Triplett-Wiederholungen über mehrere Generationen verändern. Dies ist beim Menschen wegen der langen Generationsfolge schwierig. Im Pflanzenmodell können wir nicht nur innerhalb kürzester Zeit mehrere Generationen betrachten, wir können auch genetische Untersuchungen machen, die beim Menschen unmöglich sind,“ so Marco Todesco, einer der Hauptautoren der Studie.

Die Wissenschaftler haben das Genom einer Bur-0 genannte Rasse der nahezu weltweit verbreiteten Blütenpflanze Arabidopsis thaliana untersucht, da diese Pflanzen beim Umsetzen in einen 27 Grad Celsius warmen Zuchtraum plötzlich verkümmerten, während sie bei 23 Grad gut gewachsen waren. Es stellte sich heraus, dass in dem IIL1 Gen ein Basentriplett mehr als 400-mal hintereinander vorkam. Bei Vergleichspflanzen lag diese Sequenz nur 20-mal vor. Das betroffene Gen enthält die Information für ein Protein, das für die Chloroplasten und damit das Überleben der Pflanzen wichtig ist. Durch die Triplett-Wiederholungen kann das Gen nicht korrekt abgelesen werden, was dazu führt, dass die Pflanzen klein und kümmerlich werden.

Wiederholungen kurzer Genabschnitte treten bei vielen verschiedenen Organismen auf und haben nicht nur negative Folgen. Da die Variationen im Erbmaterial dazu führen, dass sich die Individuen sichtbar voneinander unterscheiden, gehen die Wissenschaftler davon aus, dass dieses Phänomen eine Rolle bei der Evolution der Arten spielt. „Diese Wiederholungen können besonders leicht entstehen, aber auch wieder verschwinden. Dadurch sind sie besonders variabel und könnten zu kurzfristigen evolutionären Veränderungen beitragen“, sagte Detlef Weigel. (SD/BA)

Originalveröffentlichung:
Sridevi Sureshkumar, Marco Todesco, Korbinian Schneeberger, Ramya Harilal, Sureshkumar Balasubramanian, Detlef Weigel
A genetic defect caused by a triplet repeat expansion in Arabidopsis thaliana
Science, 20. Februar 2009, Online-Vorabveröffentlichung 29. Januar, 2009; doi: 10.1126/science.1164014

Externer Link: www.mpg.de

RFIDs funken durch Metall

Mediendienst der Fraunhofer-Gesellschaft vom Februar 2009

Metall schirmt Strahlung gut ab – etwa die von RFID-Chips, kleinen Datenspeichern, die in verschiedene Gegenstände integriert werden und ihre Information an ein Lesegerät funken. Nun lassen sich RFID-Chips ihre Information auch entlocken, wenn sie in Metall stecken.

Bei der Fertigung kommt es auf höchste Genauigkeit an – oft zählen hundertstel Millimeter. Sind die Fräser oder Bohrer jedoch abgenutzt, ist es mit der Genauigkeit vorbei. Die Mitarbeiter müssen die Werkzeuge regelmäßig vermessen, bevor sie auf der Bearbeitungsmaschine zum Einsatz kommen. Um auch kleinste Abweichungen im Rundlauf erkennen zu können, rotieren die Werkzeuge dabei. Bisher ist die Vermessung Handarbeit. Die Bohrer müssen dabei mit einem passenden Adapter in eine Halterung, die Spindel, eingesetzt werden. Sowohl das Werkzeug als auch der Adapter sind mit einer Seriennummer versehen – diese und weitere Daten wie die Abmessungen werden per Hand abgetippt, wobei sich leicht Fehler einschleichen.

Künftig geht das einfacher: Forscher des Fraunhofer-Instituts für Mikroelektronische Schaltungen und Systeme IMS in Duisburg haben im Auftrag der Kelch & Links GmbH aus Schorndorf erstmalig eine Möglichkeit gefunden, RFID-Chips in die metallischen Werkzeuge zu integrieren. Auf Anfrage funken diese kleinen Datenspeicher die benötigten Informationen an ein Lesegerät außerhalb der metallischen Spindel, die das Werkzeug mit dem Adapter aufnimmt. Die Herausforderung dabei: Metall schirmt Strahlung gut ab – das weiß jeder, der einmal versucht hat, in einem Haus aus Stahlbeton mit dem Handy zu telefonieren. Dasselbe Problem tritt bei den RFID-Chips auf: Stecken sie in Gegenständen aus Metall, dringt ihre Information nicht bis zum Lesegerät durch. »Wir haben den Übertragungsweg unterteilt«, erklärt Dr. Gerd vom Bögel, Gruppenleiter am IMS. »Vom RFID-Chip, der sich im Adapter befindet, übertragen wir die Daten zunächst mit einem Kabel bis an die Grenzfläche zwischen Adapter und Spindel. Hier leiten zwei Antennenspulen die Daten drahtlos an die Spindel weiter – eine Spule befindet sich dabei im Einsatzmodul, die andere in der Spindel. Ebenso überbrücken wir die Grenzfläche zwischen der drehbaren Spindel und dem feststehenden Teil des Messgeräts drahtlos.«

Eine Kleinserie der RFID-Messgeräte ist bereits in Geräten der Kelch & Links GmbH bei ausgewählten Kunden in der Anwendung. Vom Bögel sieht auch weitere Einsatzbereiche: »Das Übertragungsprinzip lässt sich überall dort nutzen, wo Informationen über mehrere Strecken hinweg drahtlos übermittelt werden müssen – etwa in Roboterarmen, die drehbare Gelenke haben.«

Externer Link: www.fraunhofer.de

Das Gen, das die Lebensuhr zurückdreht

Presseinformation der Max-Planck-Gesellschaft vom 05.02.2009

Max-Planck-Forschern ist es gelungen, Körperzellen mit einem einzigen Faktor in pluripotente Zellen zu verwandeln

Früher war die Sache klar: Sobald ein Mensch geboren ist, gibt es kein Zurück. Ob Leber, Muskel oder Haut – keine Körperzelle, so schien es, kann je wieder etwas anderes werden als sie ist. Dieses Dogma freilich ist inzwischen widerlegt. Selbst ausgereifte Zellen, so weiß man heute, lassen sich in einen embryonalen Zustand zurückversetzen – wenn auch nur mithilfe krebsfördernder Gene und heikler genetischer Tricks. Forscher des Max-Planck-Instituts für molekulare Biomedizin in Münster haben jetzt jedoch entdeckt, dass es einfacher und risikoärmer geht als geahnt. Mit einem einzigen Gen konnten Wissenschaftler um Hans Schöler Zellen erwachsener Mäuse erfolgreich reprogrammieren. Damit ist es geglückt, induzierte pluripotente Stammzellen (iPS) ohne eingeschleuste Tumor-Gene zu erzeugen. Das macht die Zellen sicherer und könnte so ein weiterer Meilenstein auf dem Weg zur Entwicklung künftiger Stammzelltherapien sein. (Cell, Online-Vorab-Publikation, 6. Februar 2009)

Seit Jahren wird mit Hochdruck nach einer Methode gesucht, mit der sich ausgereifte Zellen so umprogrammieren lassen, dass sie sich wie embryonale Stammzellen verhalten. Denn diese sind pluripotent, das heißt, in der Lage, jeden der mehr als 200 Zelltypen des Körpers zu bilden. Mit diesen patienteneigenen, pluripotenten Stammzellen könnte ein Traum vieler Mediziner und Patienten in Erfüllung gehen: die Schaffung einer unerschöpflichen Quelle für körpereigene Ersatzgewebe zur Behandlung diverser Krankheiten wie Parkinson, Herzleiden oder Diabetes.

Vor gut zwei Jahren erregten japanische Forscher daher Aufsehen, als es ihnen als Ersten glückte, Hautzellen einer Maus in ihren embryonalen Urzustand zurückzuversetzen. Das Rezept wirkt einfach: Um die begehrten Multitalente zu erzeugen, hatte das Team um Shinya Yamanaka mithilfe von Viren aktive Zusatzkopien von lediglich vier normalerweise abgeschalteten Genen in die Zellen eingeschleust.

In Wirklichkeit steckte dahinter eine detektivische Meisterleistung. Schließlich wusste bis dahin niemand, ob und wenn ja mit welchen Faktoren sich eine Zelle überhaupt reprogrammieren lässt. Allein Yamanaka und seine Kollegen hatten 24 Kandidaten in allen erdenklichen Kombinationen getestet, bis sie die entscheidenden Faktoren – die Gene Oct4, Sox2, c-Myc und Kfl4 – dingfest gemacht hatten.

Vor gerade einmal einem halben Jahr gelang Mitarbeitern aus Hans Schölers Team ein weiterer Coup. Statt wie bisher vier, benötigten die Zellbiologen Jeong Beom Kim und Holm Zaehres nur noch zwei Faktoren. Bei der Entwicklung ihrer neuen Methode kam den Forschern neben Fleiß auch etwas Glück zur Hilfe: In einem anderen Projekt hatten Schöler und seine Mitarbeiter entdeckt, dass es im Gehirn erwachsener Mäuse Zellen gibt, die natürlicherweise drei der vier Faktoren aus dem Reprogrammier-Cocktail produzieren. In diesen neuralen Stammzellen, die als Nachschubquelle für verschiedene Nervenzelltypen dienen, sind die Gene Sox2, Klf4 und c-Myc von sich aus aktiv.

Genau diese Zellen sind es auch, mit denen Kim und Zaehres die Technik nun erneut vereinfacht haben. Wie sie herausfanden, genügt ein einziges Gen aus dem Cocktail, um die Lebensuhr in neuralen Stammzellen zurückzudrehen: der Transkriptionsfaktor Oct4.

Entscheidend dafür ist allerdings, dass man nicht nur sorgfältig arbeiten, sondern auch warten kann: Mit vier Faktoren, so zeigte sich, ist die Reprogrammierung bereits nach rund einer Woche erfolgreich abgeschlossen. Schleust man nur zwei Gene ein, dauert es mindestens 14 Tage. Hat man allein Oct4 als „Hebel“, der die Zellen in Richtung „Neustart“ schiebt, braucht der Vorgang drei bis vier Wochen.

Doch die Geduld zahlte sich aus. Diejenigen Zellen, bei denen der „Reset“ allein mit Oct4 geklappt hatte, verfügten über die gleichen Fähigkeiten wie jene, die mit zwei oder vier Faktoren reprogrammiert wurden: Aus den 1-Faktor-iPS ließen sich ebenso gut wieder Herz-, Nerven- oder Keimzellen züchten, wie aus jenen iPS, die mit vier Faktoren in Multitalente verwandelt worden waren.

Dass ausgerechnet Oct4 – im Gegensatz zu allen anderen Faktoren – für einen kompletten Neustart ausreicht, ist für Schöler ein Déjà-vu: So hatte er bereits Ende der 80er-Jahre den Transkriptionsfaktor in Eizellen von Mäusen entdeckt. Schöler war es auch, dem es kurz darauf als Erstem gelang, das Oct4-Gen zu beschreiben. Schon damals zeichnete sich ab, dass der Faktor eine Schlüsselrolle in der Keimbahn spielt, erinnert sich Schöler. „Denn das Gen war nicht nur in Eizellen aktiv, sondern auch in frühen Embryonen und embryonalen Stammzellen und dann Keimzellen – all solchen Zellen also, die das Leben von einer Generation in die nächste tragen können und damit potenziell unsterblich sind.“ In allen Körperzellen dagegen war es stets abgeschaltet. Unklar war lange, ob diese Korrelation auf einer Ursache oder aber allein auf Zufall beruhte. Durch gezielte Experimente zeigte Schöler jedoch später, dass Oct4 für die Aufrechterhaltung der Pluripotenz von Zellen unerlässlich ist.

„Im Nachhinein sieht alles so naheliegend aus“, sagt Schöler. Tatsächlich aber konnte bis vor Kurzem niemand wissen, ob sich ausgereifte Körperzellen in pluripotente Zellen verwandeln lassen. „Auch ich“, gesteht Schöler, „hätte deshalb bis vor ein paar Jahren niemals versucht, einfach nur Oct4 auf Zellen zu geben und dann mehrere Wochen zu warten, was passiert.“ Fest steht für ihn aber etwas anderes: „Unser Vorteil war sicher, dass meine Mitarbeiter und ich sowohl embryonale als auch adulte Stammzellen erforschen. Ohne diese Verknüpfung hätten wir unsere jüngste Entdeckung sicher nicht so schnell gemacht.“

Martin Zenke (Rheinisch-Westfälische Technische Hochschule, RWTH Aachen) und Bernd K. Fleischmann (Universität Bonn), wie Schöler Mitglieder im Kompetenznetzwerk Stammzellforschung NRW, waren an dieser Arbeit beteiligt. Das vom Land Nordrhein-Westfalen ins Leben gerufene Kompetenznetzwerk ermöglicht die Bündelung der Exzellenz auf dem Gebiet der Stammzellforschung. (JMK/BA)

Originalveröffentlichung:
Jeong Beom Kim, Vittorio Sebastiano, Guangming Wu, Marcos J. Araúzo-Bravo, Philipp Sasse, Luca Gentile, Kinarm Ko, David Ruau, Mathias Ehrich, Dirk van den Boom, Johann Meyer, Karin Hübner, Christof Bernemann, Claudia Ortmeier, Martin Zenke, Bernd K. Fleischmann, Holm Zaehres, Hans R. Schöler
Oct4-induced pluripotency in adult neural stem cells
Cell, Online-Vorab-Publikation, 6. Februar 2009, doi: 10.1016/j.cell.2009.01.023

Externer Link: www.mpg.de

Strom aus Stroh

Mediendienst der Fraunhofer-Gesellschaft vom Februar 2009

Forscher haben erstmals eine Biogasanlage entwickelt, die statt mit Lebensmittel-Rohstoffen nur mit Reststoffen betrieben wird – Reststoffe werden so zu Wertstoffen. Die Anlage erzeugt 30 Prozent mehr Biogas als bisherige. Eine Brennstoffzelle verstromt das Gas effizient.

»Mais gehört auf den Teller, nicht in Biogasanlagen«, solche Einwände werden immer öfter laut. Sie richten sich gegen die Vergärung von Lebensmitteln in Biogasanlagen, mit denen Strom und Wärme erzeugt werden. Gegner befürchten unter anderem, dass diese Energieerzeugung die Lebensmittelpreise nach oben treibt. Forscher des Fraunhofer-Instituts für Keramische Technologien und Systeme IKTS in Dresden haben mit mehreren kleinen und mittelständischen Unternehmen erstmals eine Biogasanlage entwickelt, die gänzlich ohne lebensmitteltaugliche Rohstoffe auskommt. »In unserer Pilotanlage verwenden wir ausschließlich Reststoffe aus der Landwirtschaft, etwa Maisstroh, also die Maispflanze ohne Kolben. Wir erzeugen damit 30 Prozent mehr Biogas als in herkömmlichen Anlagen«, sagt Dr. Michael Stelter, Abteilungsleiter am IKTS. Bisher können Biogasanlagen nur einen gewissen Anteil an Reststoffen verarbeiten, da sich diese meist schlechter in Biogas umwandeln lassen als etwa reines Getreide oder Mais.

Ein weiterer Vorteil: Die Verweilzeit der sauer eingelagerten Reststoffe, der Silage, in der Anlage kann um 50 bis 70 Prozent reduziert werden. Üblicherweise gärt die Biomasse 80 Tage im Fermenter, wobei Biogas entsteht. Durch eine geeignete Vorbehandlung dauert dies in der neuen Anlage nur noch etwa 30 Tage. »Maisstroh enthält Zellulose, die nicht direkt vergoren werden kann. In unserer Anlage spalten Enzyme die Zellulose auf, bevor die Silage gärt«, erklärt Stelter.

Auch die Verstromung des Biogases haben die Forscher optimiert. Sie lenken das Gas in eine Hochtemperaturbrennstoffzelle, die einen elektrischen Wirkungsgrad von 40 bis 55 Prozent hat. Zum Vergleich: Der Gasmotor, den man hier üblicherweise einsetzt, erreicht nur einen Wirkungsgrad von durchschnittlich 38 Prozent. Die Brennstoffzelle arbeitet bei 850 Grad Celsius, die Wärme eignet sich zum Heizen oder lässt sich ins Nahwärmenetz einspeisen. Rechnet man den elektrischen und thermischen Wirkungsgrad zusammen, hat die Brennstoffzelle einen Gesamtwirkungsgrad von bis zu 85 Prozent. Der Gesamtwirkungsgrad des Verbrennungsmotors liegt meist bei etwa 38 Prozent, denn seine Wärme lässt sich nur schwer nutzen. Eine Pilotanlage mit 1,5 Kilowatt elektrischer Leistung, ausreichend für den Bedarf eines Einfamilienhauses, haben die Forscher bereits realisiert. Auf der Hannover-Messe vom 20. bis 24. April stellen die Forscher das Konzept der Anlage vor (Halle 13, Stand E20). In den folgenden Projektphasen wollen die Wissenschaftler die Biogasanlage mit den Industriepartnern schrittweise auf zwei Megawatt hochskalieren.

Externer Link: www.fraunhofer.de

Schmarotzer im Genom

Presseinformation der Max-Planck-Gesellschaft vom 29.01.2009

Die Struktur eines Proteins hilft zu verstehen, wie sich parasitäre Gene im Erbgut vermehren

In unserem Betriebssystem haben sich Schmarotzer breit gemacht: Zu gut einem Viertel besteht unser Erbgut aus parasitären Genen. Wie sich eines dieser Gene im Erbgut einnistet, könnte die Struktur eines Proteins erklären, die Forscher am Max-Planck-Institut für Entwicklungsbiologie in Tübingen jetzt bestimmt haben. Der Bauplan für dieses Protein findet sich auf dem parasitären Gen, das Biologen LINE-1-Retrotransposon, kurz LINE-1, nennen. Anhand der Proteinstruktur haben die Wissenschaftler auch gezeigt, dass LINE-1 nicht so eng mit Retroviren wie etwa dem HI-Virus verwandt sind wie bisher angenommen. Setzen sich die Schmarotzer-Gene an der falschen Stelle fest, lösen sie Krankheiten aus. Gelänge es den Biologen aber, das Verhalten des LINE-1 nachzuahmen, könnten sie die Parasiten-Gene vielleicht zu Therapiezwecken einspannen und gezielt Informationen ins Erbgut einschleusen. (PNAS, 20. Januar 2009)

Im Genom von Säugetieren, auch dem des Menschen, hat sich wahllos das parasitäre Gen LINE-1 verbreitet. Gegenwärtig macht es etwa 17 Prozent des menschlichen Erbgutes aus. „Dies ist ein riesiger Anteil, wenn man berücksichtigt, dass unsere etwa 30 000 Proteine von weniger als fünf Prozent der DNA kodiert werden“, erklärt Oliver Weichenrieder, der diese Gene am Max-Planck-Institut für Entwicklungsbiologie untersucht.

Weichenrieder und seine Mitarbeiterin Elena Khazina helfen nun aufzuklären, wie sich das LINE-1-Retrotransposon ins Erbgut schmuggelt: Sie haben die Struktur eines Proteins namens L1ORF1p ermittelt, dessen Bauplan in dem parasitären Gen enthalten ist. Aus dieser Struktur schließen die Forscher, wie das Protein das LINE-1 Gen bei der Vermehrung unterstützt, denn sie haben in dem Protein einen Bereich entdeckt, der an RNA, die Boten genetischer Information, bindet. Eine solche Region, die Biologen RRM-Domäne nennen, hatten sie in dem Protein nicht erwartet.

„RRM-Domänen, wie wir sie im L1ORF1p-Protein gefunden haben, sind nicht in Viren vorhanden“, erklärt Weichenrieder. „Das grenzt die LINE-1-Retrotransposons deutlich von den Retroviren ab.“ Bislang wurde spekuliert, L1ORF1p sei mit retroviralen Proteinen verwandt.

Die Erkenntnisse sind für Biologen auch deshalb interessant, weil LINE-1 auch anderen parasitären Genen hilft, im Erbgut Platz zu nehmen. „Verstehen wir, wie das geschieht, können wir möglicherweise gezielt Gene einschleusen“, sagt Weichenrieder: „Vielleicht können wir dann sogar Gene präzise aneinander puzzeln – doch das ist bislang nur eine Vision.“

Parasitäre Gene pflanzen sich ständig fort: „Eines von zwanzig Neugeborenen weist eine neue Integration eines solchen Elementes auf“, sagt Weichenrieder: „Es ist kaum vorstellbar, dass die massive Integration von parasitären Genen ohne Auswirkungen auf die Evolution des Menschen blieb. Umso erstaunlicher ist, wie wenig bisher über den Mechanismus und die daran beteiligten Proteine bekannt ist.“ Fast jedes menschliche Gen scheinen die erfolgreichen Schmarotzer schon einmal verändert zu haben. Solche Veränderungen tragen zur Evolution bei, können aber in seltenen Fällen Tumore oder Stoffwechselkrankheiten hervorrufen. Meistens gefährdet es die Gesundheit lebender Menschen jedoch nicht. Wenn tatsächlich einmal ein wichtiges Gen zu stark beschädigt ist, werde ein Mensch gar nicht geboren, führt Weichenrieder aus.

Nun untersuchen die Forscher, wie das LINE-1-Retrotransposon die Zelle einspannt, um sich zu vermehren. Zudem beschäftigt sie die Frage, wie die Zelle verhindert, dass parasitäre Gene überhand nehmen. Bei Pflanzen, Insekten und Fischen sind schon Mechanismen bekannt, die die Vermehrung blockieren. Nun suchen sie nach ähnlichen Mechanismen beim Menschen. (PH/NV)

Originalveröffentlichung:
Elena Khazina, Oliver Weichenrieder
Non-LTR retrotransposons encode noncanonical RRM domains in their first open-reading frame
PNAS, 20. Januar 2009, vol. 106 (3), 731-736, doi: 10.1073/pnas0809964106

Externer Link: www.mpg.de