Fraunhofer-Technologie verleiht Umweltsatelliten Sehkraft

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.08.2022

Kunststoffteile in Meeren, Chlorophyllgehalt von Gewässern, Dürregrad von Äckern – seit April 2022 umkreist der deutsche Umweltsatellit »EnMAP« unsere Erde und sammelt zahlreiche Daten während seiner fünfjährigen Mission. Das Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM sowie das Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF haben verschiedene Kernkomponenten für das optische System des hyperspektralen Satelliten entwickelt.

Am 1. April 2022 um 18:24 Uhr mitteleuropäischer Zeit war es soweit: Der deutsche Umweltsatellit »EnMAP« – kurz für »Environmental Mapping Analysis Program« – startete vom US-Raumflughafen Cape Canaveral seine Reise ins All. Von dort aus soll er fünf Jahre lang die Erde analysieren und u.a. Daten zu Klimawandelauswirkungen, der Verfügbarkeit und Qualität von Wasser oder Änderungen der Landnutzung liefern. Die ersten Daten, die der Satellit zur Erde sandte, stammten vom Bosporus: Analysiert wurde das Frequenzspektrum, das typisch für Algenanreicherungen im Wasser ist. Auf diese Weise wollen Forschende die Algenwanderung und den Algenbesatz untersuchen. Möglich werden solcherlei Analysen unter anderem durch Fraunhofer-Technologie in gleich zweifacher Ausführung.

Herzstück des Satelliten: Ein Doppelspalt aus dem Fraunhofer IMM

Für seine Analysen detektiert der Satellit das Licht der Sonne, das von der Erde reflektiert wird. Allerdings ist der Wellenlängenbereich von 420 bis 2420 Nanometer, also vom sichtbaren Licht bis ins tiefe Infrarot, zu groß, um ihn mit nur einem Spektrometer aufzunehmen. Hier hilft eine Technologie des Fraunhofer IMM. »Wir haben einen hochpräzisen Doppelspalt gefertigt, der das einfallende Licht in zwei Detektoren lenkt«, erläutert Stefan Schmitt, Gruppenleiter am Fraunhofer IMM in Mainz. Da die beiden Spalte naturgemäß räumlich ein wenig voneinander entfernt sind, blicken sie nicht auf die gleichen Stellen der Erde. »Es dauert also den Bruchteil einer Sekunde, bis der zweite Spalt dieselbe Stelle der Erde betrachtet wie der erste«, sagt Schmitt. Dieser Versatz muss genauestens bekannt sein, um die Aufnahmen überlagern zu können und die gewünschte Auflösung von 30 Metern zu erreichen.

Der Clou liegt zum einen in der äußerst präzisen Fertigung des Doppelspalts, was nur mit Siliziumtechnologie möglich ist. »Zwar sind die Techniken, über die wir am Institut verfügen, recht gut geeignet, um diese Anforderungen zu erfüllen, dennoch gab es zahlreiche herausfordernde Details«, erinnert sich Schmitt. Beispielsweise erwiesen sich die anfangs rechteckigen Spalte mechanisch als nicht stabil genug. Die Forscherinnen und Forscher fertigten daher Spalte mit einem gestuften Querschnitt. »Trotz umfangreicher Simulationen und Analysen unserer Partner mussten wir das Design und weitere Anforderungen während der laufenden Prozessphase ändern. Solche Dinge passieren gelegentlich, wenn man Neuland betritt, aber wir sind darauf vorbereitet«, sagt Schmitt. Auch weitere Komponenten der Baugruppe – etwa zur Lichtumlenkung oder zur Unterdrückung von Streulicht – mussten die Forschenden mit höchster Präzision aus weltraumgerechten Materialien wie Aluminium, Edelstahl, Nickel und Invar fertigen, deren Eigenschaften präzise vermessen und dokumentiert wurden. Trickreich war zudem der Zusammenbau der Baugruppe mit dem Doppelspalt. »Die Toleranzen waren kleiner als fünf Mikrometer, also kleiner als ein Zehntel eines Haars«, erläutert Schmitt. All dies ist hervorragend gelungen.

Leicht und präzise: Metallspiegel aus dem Fraunhofer IOF

Auch das Fraunhofer IOF brachte seine Expertise in den Satelliten ein: Als einer der besten Metalloptik-Entwickler der Welt wurden alle Metallspiegel der EnMAP-Optik am IOF hergestellt. »Für Weltraumanwendungen müssen die Spiegel nicht nur eine extrem glatte Oberfläche aufweisen und äußerst präzise geformt sein, sondern auch ein möglichst geringes Gewicht aufweisen«, sagt Dr. Stefan Risse, Projektleiter am Fraunhofer IOF in Jena. »Dabei konnten wir die Anforderungen sogar übertreffen: Statt der geforderten Rauheit von 1 Nanometer RMS (Root Mean Square) weisen unsere Metallspiegel, im Weißlicht (Vergrößerung 50x) gemessen, eine Rauigkeit von weniger als 0,5 Nanometer RMS auf. Auch die zulässige Formabweichung konnten wir nicht nur auf 18 Nanometer RMS, sondern zum Teil sogar auf unter 10 Nanometer RMS genau einhalten.« Dazu nutzten die Forscherinnen und Forscher Aluminium, auf das sie eine röntgenamorphe Metalllegierung aus Nickel und Phosphor abschieden. Diese Dickschicht hat strukturell ähnliche Eigenschaften wie Glas und lässt sich mit Diamantwerkzeugen sehr gut bearbeiten und brillant polieren. Was die finale Form der Metallspiegel angeht, so stellte das Forscherteam diese durch Korrekturverfahren wie das Ionenstrahlpolieren (IBF, eng. Ion Beam Figuring) ein.

Ein weiteres wichtiges Qualitätsmerkmal der Spiegel neben der geringen Oberflächenrauigkeit ist ihr Leichtgewicht. Auch hier punktete das Verfahren des Fraunhofer IOF. »Wir konnten die Masse über ein von uns patentiertes Verfahren um mehr als 40 Prozent reduzieren – mittlerweile sind durch den Einsatz von additiven Verfahren bereits bis zu 70 Prozent Einsparung möglich«, sagt Risse. Das gelang dem Team, indem es die Struktur des Spiegels wie ein Kapitell in einer Kirche anlegte: Kreuzungsbohrungen, die orthogonal aufeinandertreffen, verbinden die Vorder- und Rückseite des Spiegels, die entstehende Säulenstruktur stützt die Flächen. Vorder- und Rückseite des Spiegels sind geschlossen, was dem Element eine große mechanische Steifigkeit verleiht. Insgesamt stellte das Team elf ultrapräzise Metallspiegel inklusive hochreflektiver Silber- und Goldschichten für »EnMAP« her und vergütete zudem die Glasoptiken, wobei auf das Glas eine dünne Schicht mit geringerer Brechkraft aufgebracht wurde.

Externer Link: www.fraunhofer.de

Magnetrecycling lohnt sich

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.07.2022

Magnete sind wertvolle Bauteile. Obwohl in den vergangenen Jahren funktionierende Magnetrecyclingmethoden entwickelt wurden, finden diese in der Praxis bisher keine Anwendung und Magnete werden weiterhin im Stahlschrott eingeschmolzen. Forschende der Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS liefern gute Argumente, wieso sich dies in Zukunft ändern sollte: In ihrem Projekt »FUNMAG« zeigen sie, dass der Einsatz von recycelten Magneten in Bereich der E-Mobilität ohne Leistungseinbußen in der Motorleistung möglich ist und es sich lohnt, eine Wertschöpfungskette für großflächiges Magnetrecycling aufzubauen.

Die Welt setzt auf Elektromobilität. Die Branche wächst kontinuierlich und ist im Zuge der Energiewende auch politisch von großer Bedeutung. So plant beispielsweise die Bundesregierung, dass in Deutschland bis 2030 sieben bis zehn Millionen Elektrofahrzeuge zugelassen sind. Damit ein Elektromotor funktioniert, darf dabei ein Bestandteil auf keinen Fall fehlen: Neodym-Eisen-Bor-Hochleistungspermanentmagnete. Sie sind die leistungsstärksten Magnete, die es derzeit auf dem Markt gibt, machen etwa die Hälfte der Motorkosten aus und enthalten, wie der Name schon verrät, unter anderem Seltene Erden wie Neodym oder Dysprosium. Der wichtigste Lieferant für Seltene Erden ist China. Dort werden über 90 Prozent des weltweiten Bedarfs abgebaut – und das unter kritischen Bedingungen. So werden während der Förderung giftige Beiprodukte freigesetzt, die bei mangelnder Vorsicht zu einer Verunreinigung des Grundwassers führen. Dies schadet Mensch und Natur.

Trotz dieser teuren und problematischen Herstellung landen Magnete am Ende ihrer Nutzungszeit in der Regel auf dem Schrottplatz und werden dort zusammen mit dem Stahlschrott eingeschmolzen. Und das, obwohl es mittlerweile Methoden zum Recycling von Magneten gibt, die erwiesenermaßen funktionieren. Diese Lücke zwischen Theorie und Praxis wollen Wissenschaftlerinnen und Wissenschaftler der Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS in Hanau mit ihrem Projekt »Funktionelles Magnetrecycling für eine nachhaltige E-Mobilität – FUNMAG« schließen. Gefördert von der Hessen Agentur will das Forscherteam nachweisen, dass Elektromotoren mit recycelten Altmagneten dieselbe Leistung erbringen können wie mit ihren ursprünglichen Neumagneten, und es sich daher lohnt, kommerzielles Magnetrecycling im großen Maßstab durchzuführen.

Arbeit mit »bunten Blumensträußen«

Für die damit verbundenen Versuche habe sich das Institut unter anderem ein E-Bike, einen E-Scooter und ein Hoverboard angeschafft, erzählt Konrad Opelt, Leiter des Projekts und studierter Materialwissenschaftler: »Bei allen neuen Fahrzeugen haben wir zunächst ausführlich den Motor charakterisiert, um relevante Kennwerte zu erhalten, mit denen wir dann später die Leistung der Motoren mit den recycelten Magneten vergleichen können.«

Die Elektrofahrzeuge stellen den Rahmen des Projekts dar. Das Kernstück aber ist die Arbeit mit den Altmagneten. Diese konnten über bestehende Kontakte mit Industriepartnern im Tonnenmaßstab beschafft werden und unterscheiden sich in Leistung, Form und Beschaffenheit maßgeblich. »Uns war es enorm wichtig, den realistischen Fall abzubilden«, erklärt Opelt. »Wenn sich ein Schrotthändler dazu entschließt, die Magnete aus seinen deponierten Altmotoren zu separieren, wird das in der Regel ein bunter Blumenstrauß von unterschiedlichsten Magneten sein, deren genaue Eigenschaften niemand kennt. Unser Ziel war es daher zu zeigen, dass der Recyclingprozess auch mit undefiniertem Ausgangsmaterial, dieser Unbekannten im Prozess, umgehen kann. Und das hat vor uns noch niemand gemacht.«

Aus Alt mach Neu

Am Fraunhofer IWKS beschäftigt man sich seit Jahren mit der Herstellung und dem Recycling von Magneten und entsprechende Räumlichkeiten und Geräte ermöglichen die Nachbildung des kompletten Herstellungsprozesses im Technikumsmaßstab. Bei der Herstellung eines neuen Magneten wird das Ausgangsmaterial zunächst bei etwa 1400 Grad geschmolzen und dann abgeschreckt, sodass metallische Flakes entstehen. Diese werden in eine Wasserstoffatmosphäre gegeben und durch das Eindringen des Wasserstoffs zerfällt das Material zu einem Granulat. Dieses wird mit einer Strahlmühle noch weiter zerkleinert und das resultierende metallische »Mehl« kann dann in Pressformen gegeben und gesintert, das heißt zum Magneten »gebacken« werden. Um einen Magneten zu recyceln, reicht es aus, den Altmagneten mit der Wasserstoffatmosphäre in Verbindung zu bringen und die nachfolgenden Prozessschritte zu durchlaufen. »Den umweltbelastenden Abbau der Rohstoffe und das energieintensive Aufschmelzen können wir so einfach überspringen«, fasst Opelt zusammen.

Im Rahmen des Recyclingprozesses können tausende Magnete gleichzeitig verarbeitet werden. »Es lässt sich kaum verhindern, dass die Magnete währenddessen etwas Sauerstoff aufnehmen, was zu leichten Qualitätseinbußen führt. Hier können wir aber gezielt entgegensteuern, indem wir beispielsweise zehn bis 20 Prozent neues Material hinzugeben oder die Mikrostruktur der Magnete noch weiter bearbeiten«, erklärt Opelt. Die Leistung der Recycle-Magnete lässt sich am fertigen Endprodukt oder auch schon im Pulverstadium bestimmen. Letztendlich soll aus diesen Untersuchungen ein Eigenschafts-portfolio abgeleitet werden, das zukünftigen Anwendern Handlungsempfehlungen dazu gibt, wie der Recyclingprozess so modifiziert werden kann, dass je nach Ausgangszusammensetzung die gewünschten Zieleigenschaften für die Magnete erreicht werden.

Der Aufbau einer neuen Wertschöpfungskette

Derzeit sind die Forschenden noch dabei, den Aufbereitungsprozess während des Recyclingvorgangs weiter zu optimieren. Konrad Opelt ist aber zuversichtlich, dass sie die recycelten Magnete schon bald in die E-Motoren einbauen können und freut sich schon darauf, mit dem Hoverboard über den Institutshof zu flitzen.

Ist dieser Schritt geschafft, wäre das der sichtbare Beweis für den Erfolg des Recyclings. »Damit langfristig eine Wertschöpfungskette für Magnetrecycling aufgebaut werden kann, muss sich jeder Akteur auf den anderen verlassen können«, betont Opelt. »Wir demonstrieren mit FUNMAG, dass die Idee auch wirklich funktioniert und tragen so einen entscheidenden Teil zum Aufbau der Wertschöpfungskette bei.«

Das Interesse von Wirtschaft und Politik an dem Ansatz ist groß, denn er verspricht mehr Nachhaltigkeit bei gleichzeitig weniger Ressourcenabhängigkeit. Konrad Opelt hofft, dass dies dazu führt, dass Hersteller zukünftig schon bei der Produktion von Elektromotoren gezielt darauf achten, dass sich die Magnete gut aus- und wieder einbauen lassen. Dasselbe gilt über die E-Mobilität hinaus auch für alle Elektrogeräte unseres täglichen Bedarfs, vom Rasenmäher über den Akkuschrauber bis hin zum Handy. Sie alle enthalten Neodym-Eisen-Bor-Hochleistungspermanentmagnete, die so ebenfalls lohnenswert recycelt werden könnten.

Externer Link: www.fraunhofer.de

Fraunhofer-Verfahren erhöht Methanausbeute von Biogasanlagen

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.06.2022

Biogasanlagen erzeugen Methan – und etwa 40 Prozent CO2, das bislang ungenutzt entweicht. Forschende des Fraunhofer-Instituts für Mikrotechnik und Mikrosysteme IMM wandeln dieses Abfallprodukt nun ebenfalls in Methan um und erhöhen die Methanausbeute von Biogasanlagen somit drastisch. Das Verfahren läuft, derzeit skaliert das Forscherteam die Demonstrationsanlage auf fünf Kubikmeter Methan pro Stunde hoch.

Deutschland ist auf dem Weg zur Klimaneutralität, bereits bis 2030 sollen die Emissionen von Kohlenstoffdioxid um 65 Prozent sinken – verglichen mit den Werten von 1990. Ein Element der Defossilisierung sind Biogasanlagen: In ihnen bauen Bakterien Biomasse unter Ausschluss von Sauerstoff zu Biogas ab, das durchschnittlich aus etwa 60 Prozent Methan und 40 Prozent CO2 besteht. Während das Biogas in Blockheizkraftwerken Strom und Wärme erzeugt oder aber auf Erdgasqualität aufbereitet ins Erdgasnetz eingespeist werden kann, entweicht das CO2 bislang ungenutzt in die Luft.

Biogas in vollem Umfang nutzen

Forscherinnen und Forscher des Fraunhofer IMM wollen dies nun ändern. »Wir wandeln das CO2 mit Hilfe von grünem Wasserstoff in Methan um«, erläutert Dr. Christian Bidart, Wissenschaftler am Fraunhofer IMM, den Ansatz des neuen Verfahrens. Das entstehende Biogas kann also nicht nur wie bisher zu etwa 60 Prozent, sondern in vollem Umfang genutzt werden. Die zugrundeliegende Reaktion ist bereits seit etwa hundert Jahren bekannt, blieb allerdings bislang meist auf Laborniveau. Erst die anstehende Energiewende rückt mögliche Anwendungen in den Fokus, die Forschenden überführen die Reaktion daher erstmals in einen industriellen Prozess.

Eine Demonstrationsanlage entwickelte das Forscherteam bereits im Projekt ICOCAD I: Diese wandelt einen Kubikmeter Biogas pro Stunde in einen Kubikmeter Methan um, ihre thermische Leistung beträgt zehn Kilowatt. Im Folgeprojekt ICOCAD II skalieren die Forschenden diese Anlage derzeit auf die fünffache Größe, also auf eine thermische Leistung von 50 Kilowatt. Eine der Herausforderungen, die dabei auf der Agenda stehen: der hochdynamische Prozess. Denn die Strommenge, die aus Wind- und Photovoltaikanlagen erzeugt wird, schwankt stark – und damit auch die Menge des grünen Wasserstoffs, der mittels Strom in Elektrolyseuren aus Wasser gewonnen wird. Die Anlage muss also schnell auf schwankende Mengen an Wasserstoff reagieren können. Zwar wäre auch eine Speicherung von Wasserstoff möglich, jedoch aufwändig und teuer. »Wir arbeiten daher daran, die Anlage flexibel zu gestalten, um die Speicherung von Wasserstoff möglichst zu umgehen«, sagt Bidart. Dazu gehören unter anderem CO2-Speicher: Denn die Menge an CO2, das aus den Biogasanlagen strömt, ist gleichbleibend.

Entwicklung effizienter Katalysatoren

Eine weitere Herausforderung lag in der Entwicklung effizienter Katalysatoren für die Reaktion. Die Forschenden des Fraunhofer IMM haben dafür eine Mikrobeschichtung aus Edelmetallen verwendet. Das Prinzip: Wasserstoff und Kohlenstoffdioxid strömen durch zahlreiche Mikrokanäle, in denen sie miteinander reagieren können und deren Wände mit einer Beschichtung des Katalysators versehen sind. »Auf diese Weise können wir die Kontaktfläche der Gase mit dem Katalysatormaterial vergrößern und die benötigte Katalysatormenge reduzieren«, weiß Bidart. Im Reaktionsreaktor werden zahlreiche solcher Mikrostrukturen übereinandergestapelt.

Weitere Skalierungen geplant

Derzeit arbeiten die Forscherinnen und Forscher daran, die größere Anlage umzusetzen und den dynamischen Betrieb zu realisieren. 2023, so hofft das Team, könnte diese dann in Betrieb gehen und an einer Biogasanlage real getestet werden. Damit ist die Hochskalierung jedoch keineswegs abgeschlossen – schließlich sind die CO2-Mengen, die an den Biogasanlagen entstehen, groß. Bis zum Jahr 2025 planen die Forschenden daher eine Hochskalierung auf 500 Kilowatt, bis 2026 soll die Anlage gar ein bis zwei Megawatt Leistung erzeugen.

Externer Link: www.fraunhofer.de

Detektion von Wasserstoff durch Glasfasersensoren

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.04.2022

Wasserstoff spielt in der deutschen Energie- und Klimapolitik eine zentrale Rolle. Kommt er zum Einsatz, sind Sicherheitsmaßnahmen von entscheidender Bedeutung. Denn im Unterschied zu anderen gasförmigen oder flüssigen Energieträgern besteht bei Wasserstoff neben einer erhöhten Brandgefahr durch Leckagen unter bestimmten Bedingungen auch Explosionsgefahr. Um die Sicherheit im Umgang mit Wasserstoff noch weiter zu erhöhen, arbeiten Forschende am Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI an Glasfaser-basierten Sensoren zu dessen Detektion, die herkömmlichen Sensoren in vielerlei Hinsicht überlegen sind.

Um die gesetzten Klimaziele zu erreichen und die globale Erwärmung einzudämmen, müssen alle Staaten den Anteil an fossilen Energieträgern schnellstmöglich auf ein Minimum reduzieren. Als nachhaltige Alternative wird verstärkt auf Wasserstofftechnologien gesetzt – vor allem im Produktions- und Mobilitätssektor. Überall wo mit Wasserstoff gearbeitet wird, er gelagert, transportiert und weitergeleitet wird, dürfen entsprechende Sicherheitsvorkehrungen nicht fehlen. Denn obwohl Wasserstoff nicht giftig ist, er weniger wiegt als Luft und somit nach oben steigt, kann es zu gefährlichen Situationen kommen: Überschreitet nämlich die Wasserstoffkonzentration in der Luft einen Schwellenwert von vier Prozent, was bei ausreichend Druck in einem Wasserstofftank oder bei mangelnder Belüftung eines Raumes schnell erreicht werden kann, genügt eine kleine Zündquelle, ein einzelner Funken, um eine Explosion auszulösen.

Klein, gut integrierbar und ohne immanentes Sicherheitsrisiko

Dies gilt es vorausschauend zu verhindern und Dr. Günter Flachenecker, Senior Scientist am Fraunhofer HHI, weiß, wie. An der Außenstelle Abteilung Faseroptische Sensorsysteme des Fraunhofer HHI in Goslar forscht der promovierte Physiker zusammen mit seinem Team an Möglichkeiten zur Wasserstoffdetektion mithilfe von Sensoren aus Glasfasern: »Herkömmliche Sicherheitssensoren, die zur Erfassung von Wasserstoff derzeit kommerziell verfügbar sind – das sind in der Regel katalytische Wärmetönungssensoren oder elektrochemische Zellen –, benötigen eine elektrische Stromversorgung. Beide Varianten könnten so, wenn das Gerät oder die elektrischen Zuleitungen einen Defekt aufweisen, im schlimmsten Fall selbst als Zündquelle die Explosion auslösen, die sie eigentlich verhindern sollten«, erklärt Flachenecker. »Bei unseren Glasfasersensoren besteht diese Gefahr nicht. Gleichzeitig müssen sie nicht aufwändig verkabelt werden, sind klein und lassen sich gut in verschiedenste Strukturen der zu überwachenden Anlage oder des Fahrzeugs integrieren.«

Lichtleitende Glasfasern sind aufgrund ihres geringen Durchmessers von etwa einem Viertel Millimeter und ihrer Robustheit geradezu prädestiniert für sensorische Applikationen in einer sicherheitsrelevanten Umgebung. Damit eine Glasfaser zum Wasserstoffsensor wird, muss sie an verschiedenen Stellen modifiziert werden. Hierfür werden zunächst mit einem Laser bestimmte Strukturen in den Glasfaserkern eingeprägt, sodass ein sogenanntes Faser-Bragg-Gitter entsteht – eine periodische Brechungsindexmodulation, die dafür sorgt, dass Licht bei einer bestimmten Wellenlänge reflektiert wird.

Dass die Glasfaser nun speziell auf Wasserstoff reagiert, wird erreicht, indem rund um den Glasfasermantel eine spezifische funktionelle Beschichtung aufgetragen wird: »Wir arbeiten mit katalytischen Schichten, zum Beispiel Palladium oder Palladiumlegierungen«, so Flachenecker. »Palladium hat die Eigenschaft, dass es Wasserstoff aufsaugt, ähnlich wie ein Schwamm. Sobald die beiden Stoffe aufeinandertreffen, zerfällt der Wasserstoff in seine atomaren Fragmente und die freigesetzten Wasserstoffatome dringen in das Kristallgerüst des Palladiums ein. Dies führt zu einer Dehnung in der Glasfaser, die sich über das eingebaute Faser-Bragg-Gitter augenblicklich als Veränderung in den rückgemeldeten Lichtimpulsen messen lässt. Sobald die Wasserstoffkonzentration in der Luft dann wieder abnimmt, löst sich der Wasserstoff auch wieder aus dem Palladium.« Die Beschichtung trägt dadurch also keinen Schaden davon und der Sensor kann wiederverwendet werden. Gleichzeitig funktioniere der beschriebene Vorgang nur, weil Wasserstoffatome sehr klein sind, betont Flachenecker. Andere Stoffe können auf diesem Wege nicht in die Palladiumschicht eindringen.

Potenzial in vielen verschiedenen Anwendungskontexten

Doch das ist nicht die einzige Methode, die von den Forschenden getestet wurde. So ist eine Wasserstoffdetektion auch mit Glasfasern möglich, deren Mantel weggeätzt wurde, oder mit einer sehr dünnen Schicht aus Nanopartikeln, die auf den Glasfasermantel aufgetragen werden. »Das ist eine große Spielwiese und es gibt einiges, was wir noch ausprobieren wollen«, sagt Flachenecker. »Entscheidend ist es für uns, Möglichkeiten zur Wasserstoffdetektion zu finden, die schnell genug sind, um Unfälle zu verhindern, und die zuverlässig im benötigten Empfindlichkeitsbereich reagieren. Und da sind wir aktuell auf einem sehr guten Weg.«

In der Praxis könnten die neuen Glasfasersensoren zum Beispiel integraler Bestanteil von Fahrzeugen mit Wasserstoffantrieb werden und zur Überwachung von Wasserstofftankstellen, Autowerkstätten oder Elektrolyseuren eingesetzt werden. Auch der Aufbau eines größeren Sensornetzwerks, das eine Wasserstoff-Infrastruktur an vielen Stellen gleichzeitig überwacht, ließe sich leicht umsetzen. Die Elektronik für die Messdatenaufnahme, also zum Beispiel ein Spektrometer für die optische Auswertung der Glasfasersensoren, kann räumlich beliebig weit entfernt an einem sicheren Ort installiert sein. Wird eine bestimmte Wasserstoffkonzentration überschritten und der Sensor schlägt an, so wird das je nach konkretem Anwendungsfall angebundene Alarmmanagement ausgelöst und spezifische Maßnahmen, zum Beispiel ein akustisches Warnsignal, das Schließen von Ventilen oder das Öffnen von Fenstern können in Sekundenschnelle eingeleitet werden.

Das derzeitige Forschungsprojekt unter der Leitung von Günter Flachenecker wird vom Bundesministerium für Wirtschaft und Klimaschutz gefördert und findet in Kooperation mit einem lokalen Brandschutzunternehmen statt. Es startete vor zwei Jahren und endet nach einem derzeit noch nicht abgeschlossenen Praxistest, bei dem die Glasfasersensoren in LKWs eingebaut werden, im Sommer. Anschließend ist ein Folgeprojekt geplant, in dem die neuen Sensoren noch ausführlicher getestet und weitere vorbereitende Schritte in Richtung Zertifizierung und Kommerzialisierung unternommen werden sollen. Das Ziel ist klar: Ein noch sichereres und unfallfreies Arbeiten mit Wasserstoff.

Externer Link: www.fraunhofer.de

Smartes selbstlernendes Assistenzsystem für die Produktion

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.03.2022

Die Effizienz von Produktionsmaschinen liegt oft weit unter den technischen Möglichkeiten. Der Grund: Erfahrene Mitarbeitende sind im Fall einer Störung häufig nicht verfügbar, anderen Arbeitskräften wiederum fehlt das Know-how, um die tatsächliche Fehlerursache zu beheben. Hier setzt das selbstlernende Assistenzsystem MADDOX an: Mit Methoden des maschinellen Lernens analysiert es Maschinen- und Prozessdaten, sucht per Mustererkennung nach ähnlichen Störungen in der Vergangenheit und präsentiert die Lösung auf dem Tablet. Entwickelt wurde das System von der Peerox GmbH, einem Spin-off des Fraunhofer-Instituts für Verfahrenstechnik und Verpackung IVV.

Bei einem Maschinenstillstand wird das Wissen erfahrener Kolleginnen und Kollegen benötigt. Doch diese sind häufig genau dann nicht vor Ort. Das weniger erfahrene Personal muss dann die Störung in Eigenregie beheben. Doch auch wenn umfangreiche Dokumentationen vorhanden sind, ist es im Fehlerfall und unter Zeitdruck eine große Herausforderung, die passenden Informationen zu finden. In der Folge wird nur selten die tatsächliche Ursache der Störung beseitigt, sodass sie in kurzen Abständen erneut auftritt. Ziel der Peerox GmbH ist es, dieses Alltagsszenario in Produktionsbetrieben zu vermeiden. Mit ihrem intelligenten, selbstlernenden Assistenzsystem MADDOX will sie die Effizienz in Produktionsunternehmen steigern, Ausschuss reduzieren und so einen Beitrag für die ökonomische und ökologische Produktion etwa von Lebensmitteln, Kosmetika und Pharmaprodukten leisten. Das Spin-off aus dem Fraunhofer IVV in Dresden wurde im Sommer 2019 mit Unterstützung des EXIST-Forschungstransfers, einem Förderprogramm des Bundesministeriums für Wirtschaft und Klimaschutz, von Andre Schult und Markus Windisch gegründet. Heute zählt das Unternehmen 17 Mitarbeitende.

»Viele Produktionsbetriebe haben eine Effizienz von kaum mehr als 60 Prozent, da ist noch Luft nach oben. Das liegt zum großen Teil daran, dass die Ursache der Störung an der Maschine nicht behoben wird. Der Bediener erkennt nicht, ob ein Einschieber klemmt, der Sauger verstopft ist oder ein anderer Fehler vorliegt«, sagt Andre Schult, CEO der Peerox GmbH. Das Erfahrungswissen ist zwar vorhanden, aber die Mitarbeitenden mit der gewünschten Expertise sind im Notfall oft nicht greifbar. Mit Blick auf den demographischen Wandel, den Fachkräftemangel und die stärkere Fluktuation der Mitarbeitenden ist die Abhängigkeit von menschlichem Erfahrungswissen in der Produktion zunehmend ein großes Problem, das die Peerox GmbH mit MADDOX adressieren will, indem sie das Erfahrungswissen der Beschäftigten digitalisiert.

Wissenskarten mit Störungs- und Lösungshilfen

»Oftmals weiß der Mitarbeitende gar nicht, mit welchen Begriffen er nach der Fehlerursache suchen soll. Löst beispielsweise ein zerquetschter Joghurtbecher den Maschinenstillstand aus, kann man in der Dokumentation nach Band, Becher, Riemen oder einem anderen Schlagwort suchen. Wer dann nicht schnell fündig wird, gibt in der Regel auch auf zu suchen. Daher suchen wir mit MADDOX datenbasiert und nutzen Maschinendaten wie Druckverläufe, Temperaturen, Lichtschrankensignale oder Fehlercodes«, erläutert Schult. Ein eigens entwickelter selbstlernender Suchalgorithmus analysiert die Maschinendaten mithilfe von Algorithmen des maschinellen Lernens und bildet Klassen ähnlicher Datenmuster. Diese werden mit digitalen Wissenskarten verknüpft. Vergleichbar einer Wiki-Seite werden durch die Mitarbeitenden auf diesen Wissenskarten Störungs- und Lösungsbeschreibungen visuell mit Texten, Bildern und Videos dokumentiert. Geht die Maschine in Störung, analysiert der Algorithmus die Datenmuster, sucht nach ähnlichen Klassen und schlägt dem User die verknüpfte Wissenskarte über ein plattformunabhängiges Tablet vor – so das Prinzip der Assistenzlösung. Trat das Problem – etwa eine verschmutzte Düse – vor vier Wochen schon einmal auf, wird ein Lösungsweg vorgeschlagen, den der Bediener ablehnen oder bestätigen kann. In Abhängigkeit davon lernt MADDOX dazu, welche Einträge aus der Datenbank in welcher Situation hilfreich waren. Der Algorithmus wird entsprechend trainiert und lernt sehr schnell dazu. Durch eine spezielle Form der Datenvorverarbeitung und Merkmalsreduktion lernt der Algorithmus besonders schnell.

Digitaler Helfer mit psychologischem Fachwissen

»MADDOX ist im Prinzip ein digitaler Kollege, der helfend zur Seite steht«, sagt der Ingenieur. Wichtig ist die psychologische Komponente. Das linuxbasierte Wissensmanagementsystem enthält viele Features, die menschliche Triebkräfte wie Hilfsbereitschaft und Wertschätzung berücksichtigen und die dazu anregen, es gern zu benutzen. Sie motivieren zum Bestätigen, Ablehnen, Korrigieren und Erweitern der Einträge und zum Teilen des Erfahrungswissens. Die entsprechenden Features konnten durch langjährige Zusammenarbeit mit Ingenieurpsychologen der TU Dresden in das System eingebunden werden. »Das unterscheidet unsere Kommunikationsplattform auch von anderen Wissensmanagementsystemen. Wir beziehen den psychologischen Faktor ein und können so das Engagement erhöhen, die Dokumentation verbessern und Betriebskosten senken«, resümiert Schult. Inzwischen ist die Kompetenz der Ingenieurpsychologie auch Teil des Forschungsteams Digitalisierung und Assistenzsysteme am Fraunhofer IVV.

Zunächst konzentriert sich das Unternehmen mit seinem Produkt auf den Markt für Verarbeitungs- und Verpackungsmaschinen, langfristig sollen auch andere Branchen wie die Halbleiter-, Automotive- und Chemieindustrie avisiert werden. Aktuell wird MADDOX in der Pharmaverpackung der Bayer AG in Leverkusen eingesetzt.

Die Peerox GmbH war 2020 mit ihrem selbstlernenden Assistenzsystem Preisträger beim sächsischen Gründerpreis. 2021 würdigte die Jury den erfolgreichen Überführungsprozess vom Fraunhofer-Institutsteil Verarbeitungstechnik des IVV in die Peerox GmbH mit dem 3. Platz des Sächsischen Transferpreises für Prof. Jens-Peter Majschak, Institutsleiter des Fraunhofer IVV.

Externer Link: www.fraunhofer.de