Kontrollierte chemische Reaktionen mit einzelnen lokalisierten Molekülen

Medienmitteilung der Universität Basel vom 07.08.2012

Forschern der Universität Basel ist es erstmals gelungen, einen Ladungstransfer mit einzelnen lokalisierten Molekülen durchzuführen und zu analysieren. In Kombination mit Computersimulationen konnten sie aufzeigen, wie Energie im Verlauf einer chemischen Reaktion umgewandelt wird. Die Ergebnisse wurden als Titelthema im renommierten Fachjournal «Chemical Physics Letters» veröffentlicht.

Die Reaktivität einer chemischen Verbindung, also ihre Fähigkeit in einer chemischen Reaktion umgesetzt zu werden, wird massgeblich durch ihren Energieinhalt beeinflusst. Dieser wiederum äussert sich in der Bewegung der Moleküle. So kann sich ein Molekül im Raum bewegen (Translation), drehen (Rotation) oder schwingen (Vibration). Gelingt es, die einzelnen Formen der molekularen Bewegung gezielt zu manipulieren, kann man ihren Einfluss auf die chemische Reaktivität untersuchen und ausnutzen. Diese absolute Kontrolle über Moleküle und ihre Reaktionen ist ein wichtiges Ziel in der Chemie.

Eine Kontrolle der Geschwindigkeit (Translationsenergie) gelingt durch eine extreme Abkühlung nahe an den absoluten Nullpunkt (ca. -273 °C). In den Experimenten am Departement Chemie der Universität Basel haben die Forscher im Ultrahochvakuum einzelne elektrisch geladene Moleküle im elektrischen Feld einer Ionenfalle festgehalten und durch den Kontakt mit lasergekühlten Calcium-Ionen in einem sogenannten Coulomb-Kristall fixiert.

Die Arbeitsgruppe um Prof. Stefan Willitsch im Departement Chemie hat diese Methode verfeinert, indem sie die Vibrations- und Rotationsenergie der Molekülionen bereits vor der Abkühlung festgelegt hat und somit die wichtigsten Bewegungsformen der Moleküle präzise kontrollieren konnte. Die räumliche Fixierung der Teilchen steigerte die Empfindlichkeit des Experiments zusätzlich und ermöglichte die Untersuchung chemischer Prozesse mit einzelnen isolierten Molekülen.

Beim Ladungstransfer, den die Forscher untersucht haben, wird die positive Ladung von einem Stickstoffmolekül auf ein anderes übertragen. Diese Reaktion wurde in der Arbeitsgruppe Willitsch so umgesetzt, dass sie einen Strahl von N2-Molekülen mit lokalisierten N2+-Molekülionen jeweils definierter Energie kollidieren liess. Die Interpretation der Messergebnisse gelang mithilfe von Computersimulationen, welche die Gruppe von Prof. Markus Meuwly durchführte. Im Zusammenspiel von Theorie und Experiment konnten die Forscher erstmals detailliert zeigen, wie im Verlauf eines Ladungstransfers Translationsenergie in Rotationsenergie umgewandelt wird.

Die Forscher erhoffen sich von diesen hochpräzisen Experimenten ein tieferes Verständnis der chemischen Reaktivität, was letztlich zu einer besseren Kontrolle chemischer Reaktionen führen soll.

Originalbeitrag:
Xin Tong, Tibor Nagy, Juvenal Yosa Reyes, Matthias Germann, Markus Meuwly, Stefan Willitsch
State-selected ion-molecule reactions with Coulomb-crystallized molecular ions in traps
Chemical Physics Letters (2012), published online 27 June 2012 | doi: 10.1016/j.cplett.2012.06.042

Externer Link: www.unibas.ch

Neue Ergebnisse in der Quantenphysik: Zugang zur Quantentechnologie wird einfacher

Pressemeldung der Universität Wien vom 06.08.2012

In Rahmen einer internationalen Kooperation sind PhysikerInnen der Universität Wien robusteren Quantentechnologien einen weiteren Schritt näher gekommen: Sie haben gezeigt, dass für essenzielle Operationen in der Quanten- informationsverarbeitung weniger empfindliche Ressourcen verwendet werden können. „Die von uns gezeigten Quanteneffekte können zur Entwicklung verbesserter Informations- oder Computersysteme beitragen“, so der Quantenphysiker der Universität Wien Philip Walther. In einem in „Nature Physics“ publizierten Experiment demonstrieren die WissenschafterInnen, dass die für zukunftsträchtige Quantentechnologien wesentliche Fern-Herstellung von Quantenzuständen auch ohne Verschränkung möglich ist.

Eine wesentliche Eigenschaft in der Quantenphysik ist, dass zwei oder mehrere Quantenteilchen stärker als klassisch möglich miteinander verbunden, d.h. korreliert, sein können – wie im Falle von Verschränkung. Bereits Erwin Schrödinger – einer der Gründer der heutigen Quantentheorie und österreichischer Nobelpreisträger – hat erkannt, dass die Beeinflussung eines Teilchens durch eine Messung von außen auch den Zustand des mit ihm verschränkten Teilchens verändert. Dabei ist es irrelevant, wie weit die beiden verschränkten Teilchen voneinander entfernt sind. Dies ermöglicht die gezielte Fern-Herstellung von Quantenzuständen und dient einer Reihe von Anwendungen wie der Quantenkommunikation, Quantenkryptographie und der Quantencomputer.

Quanten-Discord als Ressource

Üblicherweise wird der Grad der Verschränkung zweier Teilchen gleich gesetzt mit der unmittelbaren Nützlichkeit für quantentechnologische Anwendungen. Stark verschränkte Systeme reagieren sehr sensibel auf äußere Einflüsse und sind schwer herzustellen. Forschungsteams um die Quantenphysiker der Universität Wien Caslav Brukner und Philip Walther haben gezeigt, dass für eine erfolgreiche Fern-Herstellung eines Quantenzustandes nicht Verschränkung, sondern eine andere robustere Korreliertheit, der so genannte Quanten-Discord, als Ressource ausreicht. Dieses noch weitgehend unverstandene Maß gibt an, wie stark ein System gestört wird, wenn ein Beobachter seine Eigenschaften misst.

Fern-Herstellung von Quantenzuständen

Mit Hilfe von quantenmechanisch präparierten Photonenpaaren haben die ForscherInnen die Fern-Herstellung von Quantenzuständen untersucht. „Durch die Messung des Polarisationszustandes eines Photons können wir den Zustand des dazugehörigen Partnerphotons fern-herstellen“, erklärt Philip Walther. „Im Experiment haben wir beobachtet, wie sich das Variieren des Quanten-Discords auf die Qualität unseres fern-hergestellten Zustands auswirkt.“ Dabei konnte das Forschungsteam demonstrieren, dass die Fern-Herstellung von Quantenzuständen sogar ohne Verschränkung möglich ist, sofern im System Quanten-Discord vorliegt. Diese Erkenntnis ist für die Entwicklung von zukünftigen Quantentechnologien vielversprechend: In Zukunft könnten nicht verschränkte robustere Quantensysteme als Ressource herangezogen werden, was den Zugang zur Quantentechnik erheblich erleichtern würde.

Das Projekt ist eine Kollaboration von ForscherInnen der Fakultät für Physik der Universität Wien, des Vienna Center for Quantum Science and Technology (VCQ), des Instituts für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften, des Centre for Quantum Technologies of the National University of Singapore und der University of Oxford.

Publikation:
„Quantum discord as resource for remote state preparation“: Borivoje Dakic, Yannick-Ole Lipp, Xiaosong Ma, Martin Ringbauer, Sebastian Kropatschek, Stefanie Barz, Tomasz Paterek, Vlatko Vedral, Anton Zeilinger, Caslav Brukner, Philip Walther
(Nature Physics 2012)
DOI: 10.1038/NPHYS2377

Externer Link: www.univie.ac.at

Neues Fertigungsverfahren für kostengünstigere Endoprothesen

Pressemitteilung der Universität Stuttgart vom 23.07.2012

Keramische Implantate für Jedermann

Wenn Politiker, wie zuletzt Gesundheitsminister Daniel Bahr, laut darüber nachdenken, den Einsatz künstlicher Hüft- oder Kniegelenke aus Kosten-/Nutzenabwägungen für bestimmte Bevölkerungsgruppen künftig zu begrenzen, folgt das Dementi meist auf dem Fuß. Dennoch ist es von großer gesellschaftlicher Bedeutung, die Kosten für dauerhafte Implantate wie etwa Gelenkprothesen/Endoprothesen zu senken, wenn die Versorgung in Deutschland gesichert und Endoprothesen auch in Entwicklungs- und Schwellenländern erschwinglich werden sollen. Wissenschaftler des Instituts für Fertigungstechnologie keramischer Bauteile (IFKB) der Universität Stuttgart arbeiten an einer neuen Technologie auf Basis des keramischen Spritzgießens, mit der die Herstellkosten solcher Implantate deutlich gesenkt werden können.

Herkömmlich werden bei Hüft- und Knieoperationen routinemäßig Implantate aus Spezialstahl und einem Kunststoffgegenkörper aus Niederdruck-Polyethylen (NDPE) eingesetzt. Diese sind zwar vergleichsweise kostengünstig, ihre Gebrauchsdauer ist jedoch je nach Belastung auf zehn bis 15 Jahre begrenzt. Deutlich langlebiger sind keramische Implantate, deren überlegene Werkstoffeigenschaften eine Reduktion des Verschleißes und eine bessere Biokompatibilität (Verträglichkeit) gewährleisten, wodurch Entzündungen im Gewebe vermindert und die Implantatlockerung verlangsamt werden. Zudem wachsen sie schneller ein und die Patienten kommen nach einer Operation rasch wieder auf die Beine. Ihr Nachteil: Die Herstellung und Endbearbeitung der spiegelglatt geschliffenen, harten und zähen Keramik erfordert eine Vielzahl an Arbeitsschritten und ist dementsprechend teuer. Dieser Problematik hat sich Mohammed Abou El-Ezz am Institut für Fertigungstechnologie keramischer Bauteile (IFKB) im Rahmen seiner Doktorarbeit in der Graduate School of Excellence for advanced Manufacturing Engineering Stuttgart (GSaME) angenommen. Der 26-jährige Absolvent der German University of Cairo (GUC) versucht, durch einen deutlich preiswerteren Fertigungsweg Keramikimplantate einem größeren und weniger vermögenden Patientenkreis zugänglich zu machen. Die Arbeit wird durch die Hans-Böckler-Stiftung finanziert und durch Institutsleiter Prof. Rainer Gadow sowie den Leiter der Abteilung Hochleistungskeramiken, Dr. Frank Kern, betreut.

Grundlegend neuer Ansatz

Um die erforderlichen hohen Qualitäten implantatkeramischer Produkte mit den Kostenzielen für einen breiteren Markt in Einklang zu bringen, wählen die Wissenschaftler einen grundlegend neuen Ansatz entlang der gesamten Prozesskette von der Rohstoffkonditionierung über das Formgebungsverfahren bis zur Endbearbeitung. Ihr Ziel ist es, durch die Anwendung des keramischen Spritzgießens (CIM) Implantate in einer Geometrie herzustellen, die der Endkontur schon sehr nahe kommt. Dieses in der Fachsprache als „Net-shape-Formgebung“ bezeichnete Konzept in Verbindung mit dem CIM-Verfahren macht es möglich, die Taktzeit sowie die kostspielige Nacharbeit erheblich zu reduzieren. Allerdings erfordert das Verfahren einen höheren Anteil an Bindemittel und Hilfsstoffen, wodurch sich die Wärmebehandlung und die chemische Technik komplizierter gestalten. Im Rahmen des Projektes wurden zunächst hochfeste und zähe Mischoxidkeramiken entwickelt, die für die Spritzgießtechnik geeignet sind: Aluminiumoxid-Zirkonoxid-Nanokomposite (ZTA: zirconia toughened alumina). Hinter der Abkürzung verbergen sich keramische Hochleistungswerkstoffe für biomedizinische Anwendungen, die eine hohe Festigkeit, Biokompatibilität und Härte besitzen. Dadurch sind sie metallischen Werkstoffen in orthopädischen Anwendungen überlegen. Die üblichen Nachteile der Keramiken, insbesondere die Sprödbruchanfälligkeit, können durch Verstärkungsmechanismen auf der mikroskopischen Ebene des Werkstoffgefüges vermieden werden, welche zu einer Steigerung der Bruchzähigkeit, Härte und Dauerfestigkeit führen. Auf der Basis detaillierter Analysen der Bauteilgefüge und der Versagenskriterien sollen die Prozesse und Materialien schließlich so optimiert werden, dass man preiswerte Implantate von hoher Zuverlässigkeit in großen Stückzahlen herstellen kann.

Erste Versuche sind vielversprechend

Bereits im Frühjahr wurden am IFKB erste spritzgegossene Hüftgelenksimplantate aus ZTA-Verbundkeramik hergestellt, wobei eine Spritzgußform zum Einsatz kam, die das deutsch-ägyptische Unternehmen HBW Gubesch Egypt in Kairo im Rahmen eines Technologietransferprojektes konstruiert und gefertigt hat. „Die Ergebnisse sind vielversprechend und lassen hoffen, dass diese neue Prozessroute für keramische Implantate dazu beitragen kann, die unmittelbaren Herstellkosten dieser Produkte um bis zu 30 Prozent zu senken“, freuen sich Mohammed Abou El-Ezz und sein Doktorvater Prof. Gadow. „Wir gehen davon aus, dass sich dadurch der Kreis der Patientengruppen, die von dieser modernen Werkstofftechnologie in der Medizintechnik profitieren, in der Zukunft erheblich erweitert.“ Durch die Erhöhung der Lebensdauer der Prothesen steigt nicht nur die Lebensqualität der einzelnen Betroffenen. Auch die Gesundheitskosten werden real gesenkt, da weniger Ersatzoperationen und Nachsorgemaßnahmen notwendig werden. Bei einer demografischen Entwicklung mit einer steigenden Anzahl alter Menschen ist dies von erheblichem gesellschaftlichem Interesse, was die Bedeutung von Forschung und Entwicklung vom Werkstoff bis zur industriellen Fertigungstechnik nicht nur für den Standort Baden-Württemberg unterstreicht.

Externer Link: www.uni-stuttgart.de

Heiliger Gral im Ohr aufgespürt

Presseinformation der Universität Göttingen vom 30.07.2012

Schallumwandlung: Göttinger Neurobiologen entdecken verantwortliches Protein

(pug) Treffen Schallwellen im Ohr auf eine Sinneszelle, werden sie dort durch spezialisierte Ionenkanäle, die sich öffnen und schließen, in elektrische Nervensignale umgewandelt. Wissenschaftler der Universität Göttingen haben nun ein Protein entdeckt, ohne dass sich diese Ionenkanäle nicht öffnen und schließen lassen. Damit könnte dieses Protein verantwortlich sein für die Fähigkeit zu hören. Die Untersuchungen fanden im Rahmen des Sonderforschungsbereichs „Molekulare Mechanismen Sensorischer Verarbeitung“ in der Abteilung Zelluläre Neurobiologie statt. Die Ergebnisse wurden in der renommierten Fachzeitschrift Nature Neuroscience veröffentlicht.

Die Wissenschaftler untersuchten am Beispiel der Fruchtfliege Drosophila melanogaster, die mit ihrer Antenne hört, wie die Schallumwandlung im Ohr funktioniert. An den Ionenkanälen sitzen winzige Federn, die Schwingungen durch Schallwellen direkt auf die Kanäle übertragen: Schwingt die Fliegenantenne im Schallfeld, öffnen und schließen sich die Ionenkanäle. Umgekehrt führt das Öffnen und Schließen der Kanäle wiederum dazu, dass sich die Antenne bewegt. Die Forscher nutzten die von den Kanälen verursachten Antennenbewegungen nun aus, um genetische Defekte in der Kanalfunktion aufzuspüren. Dabei stießen sie auf ein Protein, ohne dass sich die Kanäle nicht mehr öffneten und schlossen. Nach dem Wiedereinsetzen des Proteins funktionierten die Kanäle wieder, bei einer reduzierten Proteinmenge funktionierte nur ein Teil der Kanäle.

„Unsere Ergebnisse zeigen erstmals, dass der Verlust dieses Proteins gezielt den Feder-Kanal-Komplex in Hörzellen durchtrennt“, erläutert der Erstautor der Studie, Thomas Effertz. „Die molekulare Identifizierung dieses Komplexes gilt als heiliger Gral der Hörforschung, und jetzt haben wir diesen im Fliegenohr aufgespürt.“ Das Protein wird TRPN1 oder NompC genannt und kommt in den Hörsinneszellen von Insekten, Fliegen und Fröschen vor. Die Wissenschaftler vermuten, dass es sowohl die Feder als auch den entsprechenden Ionenkanal bildet. Um diese Annahme zu testen, wollen sie die Feder des TRPN1-Ionenkanals nun in weiteren Untersuchungen mit genetischen Tricks verändern und sie beispielsweise steifer und weicher machen.

Originalveröffentlichung:
Thomas Effertz et al. Direct gating and mechanical integrity of Drosophila auditory transducers require TRPN1. Nature Neuroscience (2012). Doi: 10.1038/nn.3175.

Externer Link: www.uni-goettingen.de

Zwischenprodukt mit wichtiger Funktion

Pressemeldung der Universität Erlangen-Nürnberg vom 19.07.2012

Membranlipid PI4P reguliert Körperzellen

Forscher der Universität Cambridge (Großbritannien) und der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben nachgewiesen, dass das Membranlipid PI4P bei der Regulation der Innenseite der Zellmembran eine deutlich größere Rolle spielt als bislang angenommen. Die Ergebnisse haben die Forscher jetzt im Wissenschaftsmagazin „Science“ veröffentlicht.

Die Hülle aller Zellen des Körpers, die sogenannte Zellmembran, trennt das Zellinnere von ihrer Umgebung. Sie kontrolliert den Austausch von Substanzen über Signalwege und damit die Zusammensetzung im Zellinneren. Diese Signalwege werden beispielsweise benutzt, um die Kontraktionskraft des Herzmuskels oder die Freisetzung von Insulin zu steuern.

In der Zellmembran finden sich negativ geladene Komponenten, wie Phosphatidylinositol-4,5-Bisphosphat [PI(4,5)P2], das eine wichtige Rolle bei der Weiterleitung extrazellulärer Signale in die Zelle spielt. Bei der Herstellung von PI(4,5)P2 entsteht auch PI4P – ein Membranlipid, dem bislang nur der Status eines Zwischenproduktes eingeräumt wurde.

Eine Arbeitsgruppe um Prof. Dr. Robin Irvine von der University of Cambridge (Großbritannien) konnte in Experimenten erstmals einen klaren Unterschied in der Funktion dieser beiden Substanzen nachweisen: Es ließen sich Bindungspartner finden, die vorwiegend mit einem der beiden Membranlipide reagieren. Zudem zeigte sich, dass die Herstellung von PI(4,5)P2 weniger von PI4P abhängt als bisher angenommen. Zugleich ergaben sich Hinweise darauf, dass das PI4P die Funktion des PI(4,5)P2 zumindest teilweise übernehmen kann.

Zu den von Dr. Gerald Hammond durchgeführten Experimenten konnte der Erlanger Forscher Dr. Michael Fischer einen wichtigen Puzzlestein beisteuern: Einige Ionenkanäle in der Zellmembran, die unter anderem der Übertragung von Schmerz- und Temperaturreizen dienen, benötigen PI(4,5)P2 und PI4P für ihre ordnungsgemäße Funktion. Überraschend ist, dass die Membranlipide hierbei unterschiedliche Aufgaben wahrnehmen. „Insgesamt erscheinen beide Substanzen in ihrer Regulationsfunktion deutlich unabhängiger als bisher angenommen“, erklärt Michael Fischer.

Eine selektive Beeinflussung dieser Substanzen und die Entwicklung entsprechender Medikamente sind nach gegenwärtigen Erkenntnissen prinzipiell möglich. Da jedoch sehr viele Körperfunktionen von PI(4,5)P2 und PI4P gesteuert werden, sind weitere Forschungsprojekte nötig, um in Zukunft praktische Einsatzmöglichkeiten zu finden. Die Ergebnisse wurden im international renommierten Wissenschaftsmagazin Science (DOI: 10.1126/science.1222483) veröffentlicht.

Externer Link: www.uni-erlangen.de